幼儿教师教育网,为您提供优质的幼儿相关资讯

一次函数教案精选

发布时间:2022-12-10 一次函数教案

心灵塑造的最佳工程师。教案的编写要研究教学大纲和教材,以教学目的。对于教师来说,编写教案是非常有必要的,很多新手老师对于编写教案都很头疼把?以下是幼儿教师教育网小编为大家整理的“一次函数教案 ”,大家不妨来参考。希望你能喜欢!

一次函数教案 篇1

今天,我说课的内容是苏科版八年级上册中的《二元一次方程与一次函数》的第一课时。我打算主要从“说教材,说教法,说学法,说过程”这四大块内容来谈谈我的设计。

一、说教材

(一)教材分析(所处的地位及作用)

“二元一次方程与一次函数”是在前面学习了“一次函数”与“二元一次方程”的基础上来学习的。是对前面“一次函数”和“二元一次方程”的一次提高和升华,也为以后进一步学习“用二次函数图象求一元二次方程的近似解”作铺垫。其中用到的“数形结合”思想是我们中学学习数学的重要思想之一,也是我们数学学习中经常用来解决一些实际问题的重要手段。

(二)教学目标:

(1)使学生初步理解二元一次方程与一次函数的关系。

(2)能利用二元一次方程组确定一次函数的表达式。

(3)能根据一次函数图象求出二元一次方程组的近似解。

(4)进一步培养学生画图,识图能力;培养学生初步的数形结合意识和能力。

(三)教学重点、难点;

重点:

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

难点:

1、二元一次方程和一次函数之间的对应关系即数形结合的意识和能力。

2、二元一次方程的解与一次函数图象交点坐标之间的对应关系。

二、说教法

本节课我通过与学生一起探讨问题,解决问题,以达师生互动的效果。引导学生从已有的知识和生活经验出发,提出问题,让学生自己动手操作,发现问题,解决问题,从而归纳出解决问题的一般方法。

针对本节课的重点,难点“二元一次方程(组的解)与一次函数图象(的交点坐标)之间的对应关系”,由于其理解难度大,因此我准备采用“创设情境”用问题串的形式引导学生动手操作、自主探索来研究发现“二元一次方程(组的解)与一次函数图象(的交点坐标)”两者之间的内在联系。对于书上出现的例1:准备先通过学生自己思考,教师引导评讲最终解决问题;对于书上的练习,主要通过学生自己练习,以达到“巩固知识”的目的。

三、说学法

在本节课开头,我以学生原有的知识作为基础,创设有助于学生探索思考的问题情境,引导学生用“探索————研究————发现”的方法,来获得知识,掌握知识。不过在这个过程中,可能学生的自主探究能力比较差,因此在这方面我打算更多的引导以解决学生不足之处,发现问题,解决问题的能力得到了进一步的发展;同时也培养了学生积极思考,认真探索的良好学习习惯。

四、说过程

这节课我就首先从学生已学过的二元一次方程联想到一次函数出发提出问题:二元一次方程、一次函数、直线的关系。接着通过对书上的问题串让学生进行合作交流的探索和师生的共同探索得出:

⑴二元一次方程、一次函数、直线(一次函数的图象)的关系;

⑵函数的对应值、图象上点的横纵坐标、方程的解的关系;并由此产生两种解二元一次方程的方法(图解法和函数法);

⑶方程组的解和两直线交点的关系。进而会用图象法解二元一次方程(组)。

五、反思困惑

由于本节课是”二元一次方程与一次函数”首次紧密结合,其中充分体现了数学学习中数形结合的思想,学生在理解上有一定难度。因此,如何更好的将本节课的数形结合思想灌输到学生中,特别是在讲到二元一次方程与一次函数的联系,在这方面备课的时候感到比较吃力。希望各位老师给予批评与指正。在这节课的设计中,仍有许多不足之处,请多请教!

一次函数教案 篇2

一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。以下是一次函数说课稿,欢迎阅览!

我今天说课的内容是***版八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

一、教材分析

1、教材地位和作用

本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

2、教学目标分析

根据新课程标准,我确定以下教学目标:

知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

3、教学重难点

本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

二、教法学法分析

八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术----多媒体和实物投影。

三、教学过程分析

本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:

(1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为 m=6t .

(2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为 y=-2x .

(3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为 y=2x+3 .

(4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为 Q=936-312t .

然后请学生观察这些函数,它们有哪些共同特征?

m=6t;y=-2x;y=2x+3;Q=936-312t

学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

然后再问:你们能否用一条一般式来表示它们的共同特点?学生可能用两条一般式来表示:y=ax与y=bx+c(因为这节课我已上过)。教师对两条都进行肯定,同时追问;这两条能否选择一条呢?经过讨论,最后确定式子y=kx+b为能代表共同特征的解析式,我们称之为一次函数,今天这节课我们就来学习一次函数。

这样通过创设问题情境,让学生通过比较函数解析式的具体特征,引出一次函数,提出了课题,让学生感受到一次函数存在于生活中,与我们并不陌生,增强了学生学好本节课的信心,同时也为一次函数概念的落实打下基础。

提出课题后,教师说明:一般地,函数y=kx+b就叫做一次函数。然后问学生:作为一次函数的解析式y=kx+b,在y、k、x、b中,哪些是常量,哪些是变量?哪一个是自变量?哪个是自变量的函数?很明显, x、y是变量,其中自变量是x,y是x的函数,k、b是常量。那么对于一般的一次函数,自变量x的取值范围是什么?k、b能取任何值吗?很明显,x可取全体实数,k、b都是常数,但k≠0,因为如果k=0,那么kx=0,就不是一次函数了,所以一次函数的一般式后面应添上k、b都是常数,且k≠0,这里的k叫做比例系数。那么b可以等于0吗?当然可以,b=0就是引例中前2条式子的一般式,由此可知,当b=0时,函数就成了y=kx,,它是特殊的一次函数,我们称之为正比例函数,其中的常数k也叫做比例系数。

由于一次函数和正比例函数的概念是本节课的重点,所以得出概念后,教师还应对概念进行强调:一次函数的一次指的是自变量x的指数是1次;比例系数k不能为0,但既可取正数,也可取负数;b可以为任何实数,当它取0时为正比例函数,也可以这样说:所有形如y=kx+b(k≠0)的函数都是一次函数,反过来,所有的一次函数都可以写成y=kx+b的形式。同理,所有形如y=kx(k≠0)的式子都是正比例函数,反过来,所有的正比例函数都可以写成y=kx形式。

为了及时巩固概念,教师以快速抢答的形式让学生完成书上做一做:

做一做:下列函数中,哪些是一次函数,哪些是正比例函数?系数k和常数项b的值各是多少?

①c=2πr;②y=x+200;③t=;④y=2(3-x);⑤s=x(50-x)

做完此题教师应强调:①中π为常数,所以比例系数为2π;④、⑤应先化,简,巩固了一次函数的概念,此时出示例1,学生就显得比较轻松。

例1:求出下列各题中x与y之间的关系式,并判断y是否为x的一次函数,是否为正比例函数?

①某农场种植玉米,每平方米种玉米6株,玉米株数y与种植面积x(m2)之间的关系。

②正方形周长x与面积y之间的关系。

③假定某种储蓄的月利率是0.16%,存入1000元本金后,本息和y(元)与所存月数x之间的关系。

例1应由学生口答,教师板书,判断是否属于一次函数应严格按照概念中的一般式,通过本例还让学生弄清楚了正比例函数都是一次函数,而一次函数不一定都是正比例函数。同时也体会到了根据题中的数量关系可直接列出一次函数解析式。如果班里学生比较优秀,也可请大家模仿例1自己编一个例子,写出函数关系式,并判断写出的函数关系式属于哪种类型。这种编写具有一定的难度,教师对于学生的一点点闪光点都要予以肯定。

接着教师出示练习1:已知正比例函数y=kx,当x=-2时,y=6,求这个正比例函数的解析式。

此题是书上课内练习改编过来的,书上的原题是求比例系数k,但我认为求函数解析式层次更高一些,同时为下节课的待定系数法打下基础。

此题可以这样分析:要想求这个正比例函数解析式,必须求出k的值,只要把一组x、y的值代入y=kx,得到一条以k为未知数的一元一次方程,即可求出k的值,然后就可写出解析式,建议教师板书过程,如果班里学生比较优秀,教师也可提到:如何求y=kx+b的解析式呢?同理可得只要求出k、b的值就可以了,k、b是两个未知数,只要两组x、y的值代入,联立二元一次方程组即可求出k、b的值,然后就可写出解析式,具体的操作下节课再学。

以上设计使学生明白了如何求一次函数解析式及判断某条函数关系式是否为一次函数的方法,但大家都知道,学习了新知识,就是为了解决实际问题。

由于例2是本节课的教学难点,里面的问题情景比较复杂,学生一下子难以适应,于是我对例2进行这样处理:

先请同学们看屏幕:教师用多媒体出示一份国家20xx年1月1日起实施的有关个人所得税的有关规定的材料,同时还附上一份税率表。

然后问学生:哪位同学知道什么叫全月应纳税所得额,如果有学生讲出来更好,如果没人讲出来,教师自己介绍:应纳税所得额是指月工资中,扣除国家规定的免税部分1600元后的剩余部分。

为了提高学生的学习兴趣,教师说:你想知道我们班数学老师和科学老师每月应缴个人所得税多少吗?老师们的隐私同学们是最想知道的,于是急着解决问题。

我班数学教师的工资为每月2400元,科学老师的工资为每月2600元,问他俩每月应缴个人所得税多少元?

相信学生很快就有答案(因为这节课我上过),并且方法几乎一致,都是用直接列算式的方法。教师对学生们的结果表示肯定,接着问:如果要计算10个工资均在2100元—3600元之间的教师每月应缴的个人所得税呢?还用直接列算式的方法吗?如果工资均在10000元以上呢?

经过思考、讨论,发现工资额越大,计算应缴个人所得税的累计越麻烦,于是讨论有没有一种比较简单方法,如果有类似于计算公式的,把工资额直接代入就可求出的,那该多好啊!

此时教师出示例2:按国家20xx年1月1日起实施的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至20xx元部分的税率为10%.

(1)设全月应纳税所得额为x元,且500

(2)小明的妈妈的工资为每月3400元,小聪妈妈的工资为每月3600元,问她俩每月应缴个人所得税多少元?

有了刚才的铺垫,学生对此题有了深入的理解,就不再害怕了,教师可先由学生回答,再自己补充。可以这样分析:由于500

此题的设计使学生体会到了运用函数模型解决实际问题的重要性,但某些爱动脑筋的同学可能会问:虽然运用函数可以解决一些实际问题,但方程也是解决实际问题的重要数学模型,它们有什么区别吗?怎样区别?拿到一道题怎么会想到用函数来解决,简单地说,如果没有特殊说明,能用方程解决的问题就用方程来解决,不能用方程来解决的问题就马上想到用函数来解决。但如何建立函数模型,具体的方法我们下节课再学习。

本例的设计使学生既了解了国家的政策法规,又学会了用函数来解决实际问题,通过计算老师们的应缴个人所得税,让学生初步体会了个人所得税的计算方法,再假设要求多数人的所得税,激发了学生探求好方法的欲望,使学生体会到了函数的作用。

为了使学生学有所用,就来完成书上课内练习2.

最后在教师提问的基础上,让学生对本节内容进行归纳总结。

本节课的作业是分层布置:A组、B组、C组分别由班里的三个不同层次的同学完成。

四、设计说明

本节课通过创设问题情境,归纳总结得出一次函数的概念,同时利用一次函数解决了生活中的实际问题。整节课没有大量的练习为基础,而是以提高学生的数学素质为指导思想,以学生积极参与教学活动为目标,以概念讲解为载体,以展开思维分析为主线,在课堂教学中,教师充分调动一切因素,让学生在和谐,愉悦的氛围中获取知识,掌握方法!整个教学既突出了学生的主体地位,又发挥了教师的指导作用。

一次函数教案 篇3

各位评委、老师们:

大家好!

今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、

本节课的内容是《一次函数与二元一次方程(组)》,选自人教版教科书八年级上册第十四章,下面我将对这节课的教学设计加以说明、

这部分内容是在学生充分认识了一元一次方程、二元一次方程(组)和一元一次不等式的基础上,对一次运算进行更深入的讨论、用一次函数将上述几个数学对象统一起来认识,发挥函数对相关内容的统领作用、之前已经用两课时学习了一次函数与一元一次方程、一元一次不等式的关系,本节课是对一次函数与二元一次方程(组)关系的探究、

基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:

1.理解一次函数与二元一次方程(组)的关系、

2.学习利用函数解决问题的方法,感受数学知识之间的内在联系,进一步体会数形结合的数学思想、

3.通过现实化的实际问题背景,反映祖国科技和经济的发展、

一、创设情境,提出问题

本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)

设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)

二、循序渐进,学习新知

1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)

设计意图:研究一次函数与二元一次方程的关系是本课的重点,如何实现从方程到函数的转化也是本课的难点、我没有仅停留在两者形式上的转化,而是从实际出发,通过设置一个个问题,引导学生直观感受变量,感受函数关系,从而自然实现了从二元一次方程,到一次函数的转化,突出了函数思想、

2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)

设计意图:因为已经研究了一次函数与二元一次方程的关系,所以学生完全可以通过独立思考、合作探究得到一次函数与二元一次方程组的关系、我仍然坚持从特殊到一般的探究方式,启发引导学生充分讨论特殊图象交点坐标的含义,从而自然的从“数”和“形”两方面加深了对二元一次方程组的理解、

三、剖析例题,巩固新知

为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)

设计意图:例题仍然坚持了本课统一的问题背景,教师鼓励学生自主探究、合作交流,课堂上学生分别运用一元一次方程、一元一次不等式、一次函数等三种方法求解了此题,并且对于各种解法的优劣、变量的取值范围和该如何画函数图象等方面都形成了讨论,接着由学生互相启发补充,予以解决、通过从不同的角度解决问题,既帮助学生巩固了对一次方程(组)、不等式和一次函数的关系的理解,又使学生获得了一些研究问题的方法和经验,发展了思维能力、

四、解决问题,加深认识

下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)

设计意图:本环节照应了引入部分,既解决了当时提出的问题,又引导学生在课下继续思考二元一次方程组解的情况与同一平面内两条直线不同位置之间的对应关系,从而更加深了对方程组解的图形解释的理解,切身感受到了数形结合思想的应用,为将来高中解析几何的学习做一些铺垫、

五、归纳小结,布置作业

接下来我引导学生从知识与方法两个方面总结本节课的学习,并给学生布置必做作业和选做作业、

这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!

一次函数教案 篇4

一、教材分析

1、教材的地位和作用

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明

对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。

三、教学过程

(一)感知身边数学

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣

1、探究一次函数与二元一次方程的关系

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系

[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车

例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦

1、抢答题

2、旅游问题

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地

1、数学日记

2、布置作业

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。

四、教学设计反思

1、贯穿一个原则以学生为主体的原则

2、突出一个思想数形结合的思想

3、体现一个价值数学建模的价值

4、渗透一个意识应用数学的意识

《一次函数与二元一次方程(组)》教案

教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程

(一)引入新课

多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课

1、探究一次函数与二元一次方程的关系

填空:二元一次方程 可以转化为 ________。

思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

2、探究一次函数图像与二元一次方程组的关系

(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式

例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。

解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题

(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。

(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。

5、旅游问题

古城荆州历史悠久,文化灿烂。

今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

一次函数教案 篇5

一、 教材分析

(一)本节内容在教材中的地位和作用

本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:

本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二) 教学目标

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识目标:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

3、掌握一次函数的性质。

能力目标

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度目标:

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)教学重点难点

教学重点:一次函数的图象和性质。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

二、教法学法

1、教学方法

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导

1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

三、 教学程序设计

(一)、创设情境,导入新课

活动1:观察:

展示学生作的函数图象 (课本P41 做一做),强调列表及图象上的点的对应关系。

1.课前让两名学生将图像画到黑板上,以备上课时应用。

2、课上展示学生函数图像作业 ,既为学生完成作业情况检查,又为本节课打下基础。

这样安排的目的:

1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

2、教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动2、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现"直线y=--6x+5与坐标轴交点"并思考:一次函数y=--6x+5又如何作出图象?

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动3:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)

目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)。作业布置

加强"教、学"反思,进一步提高"教与学"效果,

做课本42页 44页习题。

一次函数教案 篇6

一、教材分析

一教材的地位和作用

今天我说课的内容是人教版八年级上册第十四章一次函数第一课时,本节内容四个课时完成。我设计的是第一课时的教学,主要内容是一次函数概念。学生已经学过了正比列函数之后来学习一次函数。一次函数既为前面学过的正比列函数知识得以概括和升华,也为后面学习函数知识打下了坚实的基础,因此,一次函数的学习起到了承上启下的作用。

二、教学目标

1.知识技能目标

(1)掌握一次函数的概念和解析式的特点;

(2)知道一次函数和正比列函数的关系;

(3)会利用一次函数解决简单的数学问题。

2.过程和方法

(1)通过登山问题和正比例函数的概念引出一次函数的概念,培养学生的探究能力;

(2)在教学过程中,让学生学会知识迁移、以及类比的思想。

3.情感和态度

(1)通过“登山问题”的研究,体会建立函数模型思想;

(1)通过本节课的学习,向学生渗透数学和实践生活的紧密联系。

三、教学重点

1.一次函数的定义和解析式的特点;

2.一次函数和正比列函数的关系;

3.一次函数定义的应用以及解决相关的问题。

四、教学难点

一次函数和正比列函数的关系以及一次函数的应用。

二、学情分析

学生已经学过了正比列函数的相关知识,并结合实际的情境认识了正比例函数的意义、图像和性质以及一元一次方程等相关的知识。能利用正比列函数的思想解决简单的实际问题,为学生学习一次函数奠定了基础。

三、学法分析

用观察、思考、概括、总结、归纳、类比、联想是学法指导的重点

四、教法分析

采用“引导------发现式”的教学法

五、教学过程

一次函数教案 篇7

各位专家,各位老师,大家好!

今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:

一, 教材分析

新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:

二, 教学目标

(一) 知识与技能目标

1, 经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。

2, 经历函数图象信息的识别与应用过程,发展学生的形象思维能力。

3, 更进一步培养学生的识图能力,即从“形”的方面解决问题。

(二) 情感与态度目标

1, 进一步形成利用函数的观点认识现实世界的意识和能力。

2, 通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。

3, 丰富学生数学学习的成功体验。

三, 教学重点和难点及关键

本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,

难点是富有挑战性的数学史料。

四, 教学理念和教学方式

本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。

教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。

评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。

五, 教学媒体和教学技术选用

为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。

六, 教学和活动过程

(一) 教学准备:1,提前一天了解“麦莎”的有关内容。

2,复习“一次函数图象的应用”第一节

(二) 教学过程

全课分为五个教学环节

1, 情景引入 学习新知。2分钟

2, 议一议 探索新知。 8分钟

3, 练一练 巩固新知。 10分钟

4, 试一试 开阔思路。 5分钟

5, 读一读 培养兴趣。 7分钟

6, 练一练 巩固新知。 8分钟

7, 想一想 感悟收获。 4分钟

8, 布置作业。 1分钟

具体过程如下:(多媒体课件)

一次函数教案 篇8

一 、说教材

1、 地位和作用

本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。其中渗透了数形结合的思想,为后继学习奠定了基础。

2、教学目标

知识与技能目标:

(1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。

(2)感知不等式、函数、方程的不同作用与内在联系。

过程与方法目标:

让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来, 通过自主交流合作解决问题,充分发挥学生的主体作用。

情感与态度目标:

让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。

3、 教学重点、难点

教学重点:理解一次函数与一元一次不等式的关系;

教学难点:利用函数图象确定一元一次不等式的解集。

二、 说教法

1、 学情分析

我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。

2、教学方法

鉴于以上对教材和学情的分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。

三、说学法

1.学生自主探索交流,思考问题,获取知识,真正成为学习的主体。

2.学生在小组学习中形成合作交流的良好氛围,体验学习的快乐,更好地掌握知识,发展技能 。

四、说教学程序

(一)创设问题情境,探究新知

兴趣是最好的老师。为了引起学生的兴趣,本节课我通过游戏引入。

游戏规则:准备好写有各种有理数的卡片若干张,每人每次从中抽取一张,用卡片上的数字乘以2再减去4,最后结果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,计算每人的得分总和,得分最高者获胜。

教师提问:

你希望抽到写有哪些数字的卡片?你希望哪些卡片被对方抽走?

在以上游戏中,若用x表示卡片上的数字,y表示计算的结果,你能写出y关于x的函数关系式吗?

设计游戏的目的有以下几点:

(1)游戏的内容便于学生列出函数关系式y=2x-4;

(2)通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对上节课内容的复习巩固,又为本节课的引入创设条件。

(二)探讨归纳,讲解新知

(1) 解不等式 2x-4>0

(2) 观察函数y=2x-4图象,当自变量x为何值时,函数值大于0?

这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。

所以,首先让学生画出引例中函数y=2x-4的图像。从y=0入手,然后分组讨论图像上y>0和y0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y0时相应的x的值。

通过对以上两个问题的解决,使学生认识到解不等式2x-4>0也就是求函数y=2x-4图像上,当y>0时相应的x的取值范围,从而建立数形关系。

最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。

(1) 把一元一次不等式转化为ax+b>0或ax+b

(2) 画出一次函数图象;

(3) 一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上方的点(或下方的点)对应的自变量的取值范围。

(三)应用新知

例2的设计是让学生进一步熟悉图像法解不等式的一般步骤,这也就是教材上的方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。

例2:用画函数图像的方法解不等式5x+4

方法1:原不等式化为3x-6﹤0, 画出直线y=3x-6。可以看出,当x

方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x

总结:以上两种方法其实都是把解不等式转化为比较直线上的点的位置的高低。

从上面的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能发现一次函数与一元一次不等式之间的联系, 直观的看出怎样用图形来表示不等式的解。这种用函数观点认识问题的方法不是单纯解题,而是加强知识间的融会贯通,用变化和对应的眼光分析问题,对于继续学习数学有着重要作用。

(四)随堂练习

1自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?

(1)y=0; (2)y=-7;

(3)y>0; (4)y

设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。

2 利用函数图象解出x:

(1)6x-4=3x-2; (2)6x-4

设计意图:(1)与(2)形式上虽然只是等式与不等式的区别,但反应在图像上相应的x的取值范围却不同。

(五)小结与作业

1. 归纳反思

2. 利用一次函数图像求一元一次不等式解集的步骤

作业布置

必做题:习题14.3第3、4题

选做题:已知y1=-x+3, y2=3x-4,求x取得何值时y1>y2?

自我反思

应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。

一次函数教案 篇9

各位评委老师:

你们好!

我是来自xx市兴凯湖乡中学的一名数学教师,姓名xxx。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。

新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。

一、教材分析:

1、教材内容所处的地位及作用

本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

在《数学课程标准》中,对于本节内容提出了明确的要求,另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。

2、教学目标:

⑴、知识与能力:

①、能通过函数图象获取信息,发展形象思维。

②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

⑵、过程与方法:

①、在亲身的经历与实践探索过程中体会数学问题解决的办法。

②、初步体会方程与函数的关系,建立良好的知识联系。

⑶、情感态度与价值观:

①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。

②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

3、教学重点、难点及其确立的依据:

由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:

1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。

二、学情状况分析:

1、学生现状:

针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:

⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。

⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。

⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。

⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。

2、知识情况:

本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。

3、预期效果:

学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合” 、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。

另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到效果。

三、教学方法及策略:

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1、教学方法:

根据本节课的特点、目标要求及学生的实际情况,在教学方法上主要采用引导观察启发,组织实践探索交流、提问引导探索发现等方法进行本节课的教学活动。

2、教学的理论依据及教学策略

首先《数学课程标准》中明确要求在知识传授的同时,更要注重学生学习活动的过程以及相应的情感态度。将抽象的数学问题进行形象化、生活化是当前新一轮基础教育课程改革下所积极倡导的。因此紧密联系学生的生活经历和经验开展本节课的教学内容十分必要。将学生放在课堂教学的主体位置上,自己成为课堂的组织者、引导者并最终成为与学生的合作者是自己在本节课教学中的一个主导思想。

其次,数学作为基础性的自然学科,很多知识的获取必须通过耐心细致的观察,特别是本节课,主要是通过一次函数的图象去获取信息(已知条件)进而去解决问题,因此引导学生进行大量细致的观察活动是十分必要的,这也是对学生一种良好学习习惯的培养。实践是验证结论的办法,所以本节课还特别安排学生进行了相应的实践验证活动,但数学实践并不一定是具体的实物操作,完全可以利用教材、多媒体网络资源开展,本节课就是如此。

再次,充分引导组织学生参与学习活动中来,就必须要开展学生之间、师生之间的交流讨论与互动活动,因此本节课安排了一定的相关活动,使学生充分融入到学习活动中来。体现并凸现学生参与学习活动的过程。同时,探索发现新的结论是数学学科一重大特点,为了解决难点问题,在进行“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”这一问题的教学时,充分引导学生开展大胆质疑、主动探索、发现结论、解决问题、树立成就感等一系列活动,难点问题解决的同时,也培养了学生创新精神,也可以在某种程度上培养学生主动学习的探索意识。

本节课自己将充分依据《数学课程标准》中所倡导的教师角色,即在课堂教学中真正意义上地成为学生学习活动过程中的组织者、引导者和合作者。充分与学生开展互动活动,与他们共同质疑、共同困惑、共同寻求解决问题的办法。同时在组织学生进行实践的过程中引导学生积极开展交流讨论活动,实现生生间的互动。同时,对教材内容进行一定的创造性使用,以达到更佳的效果。

3、学习方法:

本节课在对学生进行学法指导上,主要是要求和引导学生采用实践探索的方法,进而培养学生数学学习的良好习惯,渗透终身学习的意识,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。指导学生对一次函数的图象进行耐心细致的观察,使学生充分意识到细致的观察、审清题意是应用一次函数图象解决问题的基础和关键,通过范例使学生亲身体会到明确函数图象中两坐标轴所表示的实际意义是解决此类问题的关键。通过该方法的学习培养,帮助学生积累学习方法的同时,也使他们养成耐心细致的学习习惯。交流讨论与合作关系是本节课学生学习活动过程中的重点,通过该学习方法,使学生们充分意识到在数学学习中要互相帮助、互相促进,体会到团队的力量大与个人力量。引导学生主动探索发现新的数学结论是本节课学生学习方法的另一个重要的方面,可以使学生敢于发表自己的独到观点和想法,在函数与方程的关系的学习中,在自己的引导启发下,充分尊重学生的观点及想法,通过实践验证,发现新结论,进而培养学生主动探索新知识,发现新问题的终身学习意识。同时也可以帮助学生树立起获取新知识后的成就感,增强数学学习的信心和兴趣。

四、教学程序:

本节课的教学程序由以下几个环节构成,即创设情境、初步感受、经历体验、探究发现、问题解决、收获体会共六大环节。

1、创设情境:

这是本节课的引入(导入)部分,借助于多媒体,展示兴凯湖美丽的自然风光(培养热爱家乡、热爱大自然的情感),过度到干旱的荒漠地带的图片,引起学生强烈的震撼,进而过度到吉林省吉林市一家苯化工厂发生爆炸造成松花江水污染的生活实例(渗透环抱教育)。在此基础上,利用水库水的逐渐干涸以及松花江水中苯含量会随时间的推移而逐渐减少直至完全消失为情境,引出课题,明确学习目标及任务。该导入设计,一方面贴近学生的生活实际,与本节课的内容恰到好处的自然融合,而且还对学生进行了思想教育,一举两得。

2、初步感受:

本环节主要是引导组织学生对一次函数图象应用的问题进行初步的感受,师引导学从已有的学习经验出发,利用大屏幕展示教材中的引例,提出环环相扣的问题,例如问题;图象中反映的是哪两个变量的关系?横轴表示的是什么?纵轴表示的是什么?你能从图象中获取哪些信息?你是如何获取的?等等。这一设计旨在使学生意识到如何去从函数的图象中去获取有效的信息进而去解决问题,同时在本环节中特别地引导学生将函数中的.数学语言向生活语言转化,这也是此类问题解决时学生必须处理好的关键环节,如果这两个方面的问题处理好了,学生解决此类问题就会更容易一些。其实本环节也是为学生打好基础的一个环节。既是新知识的学习环节,也是新知识的准备和铺垫的环节,该环节将对下面的学习起到至关重要的作用。同时本环节中学生将亲身体会到如何利用一次函数的图象解决问题。特别地借助于教材中的图象引导组织学生开展了猜想、实践等活动。整个环节中,自己始终利用大屏幕进行相应结论的直观展示,使课堂教学呈现形象化和直观化。

3、经历体验:

本环节是本节课的重点内容,即例题的学习解决的过程,也是应用一次函数的图象解决具体问题的过程,由于在上一个环节中学生已对此类问题有了亲身的感受,因此本环节虽是解答教材中的例题,但难度并不大,学生完全可以独立完成,特别本例题是一道摩托车行驶路程与油箱剩余油量关系的一次函数图象,与学生的生活经历密切联系,所以学生在解答中对题意的理解上不会出现问题。为了更好地使问题直观化和形象化,自己利用多媒体课件进行了动态演示,使学生直观地体验到了随着行驶路程的增加摩托车油箱内剩余油量在逐渐减少这一变化过程。因此本环节中自己将更多的时间留给了学生,由他们在交流讨论中独立地完成例题的解决。但由于本题描述的是“摩托车油箱中的剩余油量与摩托车行驶路程的关系”而并非“摩托车油箱中的消耗油量与摩托车行驶路程的关系”,如果学生审题不清很容易出现问题,对此自己事先积极进行了预防,并在此基础上特别提醒学生解决此类问题是要认真审题,确实发现图象中所反映的究竟是哪两个变量之间的关系,以免问题解决时出现错误。事实上这一点在上一个环节中已经进行了特别的强调。另外,将生活语言问题转化为数学函数图象语言问题也是本环节着力培养训练的内容,因为这是学生解决此类问题的一个突破点。由于学生在口头回答时会很容易,但用数学语言符号书写时会出现问题,因此,自己利用大屏幕特别出示了问题解答时规范的书面数学语言,帮助学生养成规范的数学学习习惯,明确数学学习的严谨性。在例题解决后,为了使学生更好地对此类问题进行合理的分析与解答,避免因审题不清而出现错误,自己还特别地提出了这样一个问题:“试一试:如果其它条件不变,我们想反映该摩托车消耗油量y(升)与行驶路程x(千米)之间关系的图象,在该图中应该是怎样的?”然后组织学生进行讨论解答,自己利用大屏幕给出正确答案。利用这种对比性教学,有利于加强学生思维能力的训练。

4、探究发现:

本环节主要是引导学生发现“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”。为了突破这一难点,自己在本环节中先出示了这样一个问题:观察图象回答问题

(1)当y=0时,x=()

(2)直线对应的函数表达式是()

由于在前面几节课中的学习,学生完全可以解决上面问题。在此基础上,组织学生解方程:y=0.5x+1。进而提出问题,你发现什么了?用自己的语言进行归纳。自己利用大屏幕给出规范化的结论:

①、从“数”的方面看,当一次函数y=0.5x+1的因变量的值为0时,相应的自变量的值即为方程0.5x+1=0的解。

②、从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解。

这种教学方法,从具体的实际问题入手,由特殊问题到一般规律的揭示,不仅解决了难点问题,而且从另外一个角度讲也渗透给了学生们在数学学习活动中如何探索并形成数学结论的方法。有利于学生主动探索意识的培养。

5、问题解决:

本环节主要是应用本节课所学的知识以及所积累形成的学习经验和体验解决问题的过程,即课堂巩固训练。在练习题的选择上,由简单到复杂。先是结合图象获取信息进行简单的填空和选择,然后进行了一道发散思维问题的训练,即让学生结合“龟兔赛跑”的故事在同一坐标系中大致画出龟兔赛跑的图象。主要是为了训练学生发散思维的意识和能力。同时考虑到本节课内容在中考中的重要性,自己特别地将20xx年xx市中考题进行了引导练习。

6、收获体会:

本环节主要是课堂小结的过程,引导学生从知识、学习过程(学习的经历、体验)、情感态度等方面进行归纳,主要由学生之间互相合作补充发言完成,对于学生忽略的地方自己进行引导性弥补。在此基础上布置本节课的作业,作业分为两部分,一方面布置一次函数图象应用的作业;一部分布置一次函数与一元一次方程关系的作业。

五、预期效果:

yjs21.cOm更多幼儿园教案编辑推荐

数学一次函数教案


每个老师为了上好课需要写教案课件,只要我们老师在写的时候认真负责就可以了。 教案课件是教学的纲领,要写到位才能有效提高教学,好的教案课件怎么写?是否想更深入地了解“数学一次函数教案”下面的资料或能帮到你,希望这篇文章能够为您提供实用的方法和建议!

数学一次函数教案 篇1

一、主题:一次函数基础知识概述

一次函数是初中数学中的一种重要的概念,也是高中数学的基础。一次函数的定义是y=kx+b,其中k和b都是常数,x和y分别代表函数中的自变量和函数值。本教案将对一次函数的基础知识进行概述,包括一次函数的定义、一次函数的图像和性质以及一次函数的应用。

二、相关知识点介绍

1. 一次函数的定义

一次函数是指函数的表达式为y=kx+b的函数,其中k和b是常数,x为自变量,y为函数值。其中k称为一次函数的斜率,b称为一次函数的截距。

2. 一次函数的图像和性质

一次函数的图像是一条直线,斜率k决定了直线的斜率方向和倾斜程度,截距b决定了直线与y轴的交点。一次函数的性质包括:斜率为正数,则函数单调递增;斜率为负数,则函数单调递减;斜率为0,则函数为常函数;截距为0,则函数经过原点。

3. 一次函数的应用

一次函数在实际问题中有广泛的应用。例如,通过分析销售数据,可以得到销售额和销售量之间的一次函数关系式,以此来预测未来的销售额和销售量;通过分析工资和工龄之间的一次函数关系式,可以了解员工工资的增长趋势和未来的工资水平。

三、教学方法

1. 概念讲解法:通过对一次函数的定义、图像和性质等核心概念的讲解,使学生对一次函数的基本概念有一个初步了解。

2. 例题演练法:通过多种类型的例题演练,让学生进一步掌握一次函数的基础知识和应用技巧。

3. 课堂练习法:在讲解完基础知识和例题演练后,通过一些小测验或课堂练习等形式,帮助学生巩固所学知识。

四、实施教学过程

1. 通过让学生观察实际物体的图像,引导学生认识到图像中的直线是一种很常见的几何图形,并引出一次函数。

2. 对一次函数的定义和核心概念进行讲解,并通过实例和图像进行演示。

3. 对一次函数的图像进行讲解,并说明图像的基本性质。

4. 引导学生通过图像和方程相互转化的方式,进一步掌握一次函数的性质和基本技巧。

5. 通过多种类型的例题演练和课堂练习,帮助学生深入掌握一次函数的知识点和应用技巧。

6. 布置作业,让学生巩固所学知识,并在下节课上进行讲解和订正。

五、教学反思

一次函数是数学学科中的基础概念,不仅在初中阶段会接触,也是高中数学中的重要知识点。通过本教案的实施,使学生对一次函数的定义和基础知识有了较深入的了解,并且能够较好地掌握相关的应用技巧。通过让学生学习一次函数的基础知识,不仅可以提高学生的数学素养和应用能力,还可以培养学生的数学兴趣和创新精神,为学生的未来发展打下良好的数学基础。

数学一次函数教案 篇2

数学一次函数教案

主题:一次函数的基本概念和应用范围

篇一:一次函数的定义、图像和性质

一、教学目标

1. 了解一次函数的基本定义及其表示形式。

2. 掌握一次函数的图像特征和性质。

3. 能够利用一次函数解决实际问题。

二、教学重点

1. 一次函数的定义及其表示形式。

2. 一次函数的图像特征和性质。

三、教学难点

1. 一次函数的图像特征和性质的应用。

2. 实际问题的建模等。

四、教学过程

1. 导入新知

让学生观察一些实际问题的图像,引导学生思考这些问题与一次函数的关系。

2. 新知呈现

简要介绍一次函数的定义及其表示形式,并通过图像展示一次函数的特征,包括直线、斜率和截距等。

3. 案例分析

举例说明如何根据题目给出的条件,建立一次函数方程,并计算问题的解。

4. 个案解读

让学生结合实际问题,选择合适的一次函数模型,并解答相关问题。

5. 练习巩固

提供一些实际问题,让学生通过建立一次函数模型,解答问题。

(例题1:某商店每天卖出的商品数量与商品价格的关系是一次函数关系,当商品价格为20元时,每天卖出30件商品;当商品价格为30元时,每天卖出20件商品。问当商品价格为40元时,每天能卖出多少件商品?

解题思路:设商品价格为x元,每天卖出数量为y件,则根据题意得到两个点(20, 30) 和(30, 20)。根据两点式建立一次函数方程,求解x=40时的y值。)

六、拓展延伸

让学生进一步观察一次函数的性质,如斜率为正,则函数递增;斜率为负,则函数递减等。

七、归纳总结

总结一次函数的基本概念和性质。

八、评价反思

以小组或个人形式,让学生互相评价,并反思自己的学习过程。

篇二:一次函数的应用

一、教学目标

1. 掌握一次函数在实际问题中的应用方法。

2. 培养学生应用一次函数解决问题的能力。

二、教学重点

1. 一次函数在实际问题中的应用方法。

2. 学生能够熟练应用一次函数解决实际问题。

三、教学难点

1. 如何根据实际问题建立一次函数方程。

2. 如何利用一次函数解决实际问题。

四、教学过程

1. 导入新知

通过一个实际问题引出本节课的主题,并与学生讨论问题的解决方法。

2. 新知呈现

简要介绍一次函数在实际问题中的应用方法,并通过实际问题的解决过程进行演示。

3. 案例分析

举例说明如何应用一次函数解决实际问题,并引导学生进行思考和讨论。

4. 拓展延伸

提供一些复杂的实际问题,让学生自行分析和解决,并与同学进行交流和讨论。

5. 练习巩固

提供一些实际问题,要求学生独立解答,并进行答案的订正和解题思路的讨论。

六、归纳总结

总结一次函数在实际问题中的应用方法,并让学生归纳并总结自己解题过程中的经验。

七、评价反思

以小组或个人形式,让学生互相评价,并反思自己的解题过程和方法。

以上为参考范文,你可以根据自己实际情况进行修改和完善。

数学一次函数教案 篇3

课题    一次函数的应用

教学内容:

知识与技能:巩固所学的一次函数的定义、图象和性质。能够用一次函数的知识解决实际问题。

过程与方法:掌握用待定系数法求函数解析式的一般方法。

情感态度与价值观:继续渗透数形结合的数学思想。

教学重点和难点:

重点:用待定系数法求一次函数的解析式是本节课的重点。

难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。

方法:探索式

教学过程

一、复习提问

1.什么是一次函数?确定一个一次函数需要几个因素?是哪几个?

y=kx+b(k≠0)叫做关于x的一次函数,其中k和b为常数。这样在一次函数中,只要确定了k和b的值,那么这个一次函数也就随之确定了。可以说k和b是确定一次函数的两个因素。

提这个问题是为使用待定系数法确定k和b的值做准备。

2.已知一次函数y=2x+1,x取何值时,函数值y=3?

令y=3,代入解析式,得3=2x+1,解得x=1.

3.从“形”的角度说“直线y=3x+4经过点(-1,1)”,把它改为从“数”的角度来叙述。

提这个问题的意义在于使同学们搞清“点在图象上”与“坐标满足解析式”是从“形”与“数”两个不同角度叙述的同一内容,是“数”与“形”的相互转化,是数形结合思想的体现。

二、例题讲解

例1已知ab两地相距90千米。某人骑自行车由a地去b地,他平均时速为15千米。

(1)求骑车人与终点b之间的距离y(千米)与出发时间x(小时)之间的函数关系;

(2)画出函数图象:

分析:在这个问题中有两个已知量。一个是两地之间的距离90千米,一个是骑车人的速度。而骑车人与终点的距离y及出发时间x则都是未知量。我们能否找到这两个已知量与两个未知量之间的等量关系呢?找到后还要把它写成函数的形式,即把y写在等号的左边,其他的量则写到等号的右边。

解:y与x之间的函数关系式为y=90-15x.

分析:写到这里是否就写完了呢?还没有。我们知道一次函数的自变量取值范围是全体实数,而这个问题是实际问题,时间、距离都不会取负值,因此,有一个x的取值范围问题,请同学们想,x应在什么范围内取值?

得出x的取值范围是 0≤x≤6

然后取点画函数的图象。

取x=0,得y=90,

取x=6,得y=0.

画点a(0,90),b(6,0),然后连线段ab即为所求。

说明:由于函数图象是函数关系的反映,因此所画函数图象要与自变量取值范围相一致。本例中自变量x的取值范围是0≤x≤6,因此它的图象只是直线y=90-15x上的一条线段。

例2为了保护学生视力,课桌椅的高度都是按一定的关系配套设计的。研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数。下表列出两套符合条件的课桌椅的高度:

第一套

第二套

椅子的高度x(cm)

40

37

桌子的高度y(cm)

75

70.2

(1)  写出y与x之间的函数关系式。

(2)  现有一把高42cm 的椅子和一张高为78.2cm 的课桌,它们是否配套?通过计算说明。

例3某地长途汽车客运公司规定旅客可以随身携带一定质量的行李,若超过规定,则需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数,其图象如图所示。

(1)写出y与x之间的函数解析式。

(2)旅客最多可以携带多少免费行李。

分析:(1)根据一次函数的图象可以求出两个交点的坐标,进而可以列方程组,求出k、b的值,得出函数解析式。         (2)根据函数图象与x轴的交点求出旅客可以携带免费行李质量。

例4如图温度计上表示了摄氏温度与华氏温度之间的对应关系。

(1)       能否用函数解析式表示两者之间的关系?

(2)       若今天的气温是摄氏20度,那么华氏是多少度?

三、小结

这节课我们讲了三个例题,重点是用待定系数法求一次函数的解析式,画一次函数的图象以及数形结合的思想。

待定系数法的主要步骤是:

1.把某些未知的系数用字母表示;

2.根据已知条件列出含有待定字母的方程或方程组。一般有几个待定字母应列几个方程;

3.解方程或方程组求出待定字母的值,使问题得解。

函数的解析式与它的图象是对应的,解析式的特点会影响到图象的位置,这种“数”与“形”的对应关系应该在函数的学习中逐渐加深理解。

四、布置作业

1.画出下列一次函数的图象:

2.已知一个一次函数,当x=-4时,y=9,当x=6时,y=3.求x=1时y的值。

3.已知一次函数的图象经过(3,2)和(-3,0)两点,求这个一次函数解析式并画出在-1≤x≤3内的函数图象。

4.某工人生产一种零件,完成定额,每天收入28元,若超额生产一个零件则增加收入1.5元

(1)       写出该工人一天收入y(元)和超额生产零件x(个)之间的函数关系式

(2)       某日该工人超额生产了12个零件,这天他的实际收入是多少?

5. 全国每年都有大量的土地被沙漠吞没,改造沙漠保护土地资源已经成为一项十分重要和急迫的任务。某地区现在有土地面积100万km2,沙漠面积200万km2,土地沙漠化的变化情况如下图所示。

(i)如果不采取任何措施,那么到第5年底?该地区的沙漠面积将新增加多少万km2?

(ii)如果该地区沙漠面积继续按此形式发展那么从现在开始几年底后,该地区将丧失土地资源?

(iii)如果从现在开始采取植树造林措施,每年改造沙漠4万km2那么几年底该地区的沙漠面积能减少到176万km2?

数学一次函数教案 篇4

一次函数教学过程设计

1. 准备工作

在教学开始前,教师应该对本课的教学内容进行详细的研究和准备,制定出科学合理的教学计划和教学步骤,以充分发挥教学效果。

2. 导入新知识

首先,教师应该利用学生先前学习的知识和现实生活中的例子,从简单到复杂地引导他们理解什么是一次函数,以及一次函数的特点和性质。例如,可以利用柿子树生长的例子来引导学生理解一次函数,利用图表和数学式子帮助学生理解一次函数 y = kx + b 的含义。

3. 理论讲授

接下来,教师应该详细讲解一次函数的定义、特点、性质和相关概念,为学生打下牢固的理论基础。教师可以使用多媒体课件、幻灯片、黑板等教具,给学生呈现多种多样的学习资源。

4. 课堂练习

在理论讲解之后,教师可以通过课堂练习来帮助学生熟悉一次函数的相关概念和运用方法。课堂练习的形式可以是个人练习、小组练习或者全班练习。

5. 拓展延伸

在课堂练习结束后,教师可以通过一些实际应用情境,以及更复杂的一次函数的应用案例来拓展学生的思维和知识,帮助他们更加深入地理解一次函数的概念和运用。

6. 总结反思

随着本课程的结束,教师应该适时地对本节课的教学内容进行总结。教师可以邀请学生分享他们在本课程中的学习心得和经验,或者给出一些总结性的问题来帮助学生更好地理解本课程内容。

7. 作业布置

最后,教师应该适时地布置与本课程相关的作业,以巩固学生对一次函数的掌握和运用能力。可以有多种形式的作业,例如奥数训练、实际连续性训练和动手设计等方式。

一次函数授课思路

1. 引入,以引导学生认识一次函数的基本概念。

利用学生已有的知识,以买柿子、车行路程等例子引导学生认识一次函数的基本概念,包括什么是一次函数,一次函数的定义,一次函数的图像等。

2. 讲解一次函数的解析式以及相应的性质。

讲解一次函数 y=kx+b 的含义和推导方式,重点讲解斜率 k 及截距 b 的意义及公式。

3. 制作一次函数教学素材,让学生调整解析式的参数。

通过制作一份一次函数教学素材,让学生自行调整函数的解析式中的参数,来理解不同参数对于函数图像的影响以及斜率和截距的作用。

4. 针对常见问题进行讲解。

对于学生在学习过程中常见的问题,例如“斜率 k 是什么?截距 b 又是什么?”,教师应当对其进行详细讲解,以确保学生对相关概念的掌握。

5. 轻松愉快,采用趣味互动的方式,确保学生掌握一次函数的图像和解析式作用。

采用小游戏形式或展示各种不同图像的形式来稳固巩固学生对一次函数的图像和解析式的掌握,确保他们从进一步了解一次函数的角度准确掌握相关知识。

6. 知识的拓展,扩展应用场景。

通过实际情境和特殊问题等方式,大力拓展一次函数的应用场景。例如,可以通过测量树木高度、车行荷载、股票测算等例子,开发学生学习乐趣,引导他们思考一次函数的实际应用。

7. 总结,并进行知识的自我总结。

针对一次函数的相关概念和知识点,对学生进行清晰的概括,以加深他们的理解和记忆。同时,鼓励学生自己互相交流并将所掌握的知识向他人展示,以提高整个班级的学习水平。

8. 推荐学生复习和强化训练,巩固所学知识。

鼓励学生在学习完相关知识后进行复习和强化训练,在这一过程中充分巩固所学知识,并全面提高自身做题和解决实际问题的能力。

数学一次函数教案 篇5

大家好!

今天我说课的题目是《一次函数的图像》,所选用的教材为华师大版义务教育阶段初中数学实验教材第四册。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。

一、教材分析

1、教材的地位和作用

本节教材是初中数学8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。第18章,既是学生函数的入门,也是进一步学习的基础。

作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

2、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解

难点确定为:k、b的取值与一次函数图像位置的关系.

二、学情分析

从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。

三、教学目标分析

新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时也是学生学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。

1、知识与技能

理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握k与b的取值对直线位置的影响.

2、过程与方法

经历一次函数的作图过程,探索某些一次函数图象的异同点;

3、情感态度与价值观

体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.

四、教学方法分析

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

五、教学过程分析

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(一)创设情境

前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象.

(1)y=-1/2x;(2)y=-1/2x+2;(3)y=3x;(4)y=3x+2.

教学说明:

第一步、对于函数(1)应结合以前函数图像的作法详细讲解。特别注意学生在列表取值,平面直角坐标系的正方向、单位长度,描点的正确性等学生作图的易错点

第二步、学生自主完成函数(2)的图像。

第三步、同学们观察并互相讨论,并回答:你所画出的图象是什么形状?

一次函数y=kx+b(k≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).又因为两点可以确定一条直线,所以今后画一次函数图象时只要取两点,过两点画一条直线就可以了.

第四步、学生用两点法作出函数(3)(4)的图像。

观察上面四个函数的图象,发现它们都是直线.请同学举例对他们的发现作出验证.

设计意图:教学应从学生已有的知识体系出发,作函数图像是本节课深入研究一次函数y=kx+b(k≠0)的图象的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(二)探究归纳

再观察上面四个函数的图象,也就是k、b的取值与一次函数图像位置的关系:

(1)y=-1/2x+2是由直线y=-1/2x向上移动2个单位得到的;而直线y=3x+2是由直线y=3x分别向上移动2个单位得到的.

(2)y=-1/2x+2与y=3x+2的交点在同一点,是因为两条直线的b相同;即直线与y轴的交点纵坐标取决于b.

由此得出结论,两个一次函数,当k一样,b不一样时有共同点:直线平行,都是由直线y=kx(k≠0)向上或向下移动得到;

不同点:它们与y轴的交点不同.

而当两个一次函数,b一样,k不一样时,有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行.

补充说明:由于上述函数只有b>0的情况,不能体现将正比例函数向下平移,因此我在教学中让学生自主完成了b<0时的图像以利于学生理解图像向下平移的情况。

设计意图:现代数学教学理论认为:教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳使学生有一个完整的知识形成过程。

(三)实践应用

1、完成课本例1

注意引导让学生讨论、交流,及时反馈知识在实际中的应用。

2、完成课后练习.

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让更多的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(四)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,应从学习的知识、方法、体验几个方面进行归纳,我设计了这么三个问题:

①通过本节课的学习,你学会了哪些知识;

②通过本节课的学习,你最大的体验是什么;

③通过本节课的学习,你掌握了哪些学习数学的方法?

(五)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态

六、教学评价

本课教学注意挖掘教材,体现学生的主体地位;同时以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学习水平,使传授知识与培养能力融为一体。

数学一次函数教案 篇6

数学一次函数教案

教学目标:

1. 理解一次函数的定义和性质,能够正确用数学语言表达一次函数的定义和性质。

2. 掌握一次函数的图象特征,能够正确画出一次函数的图象。

3. 能够利用一次函数解决实际问题,能够正确应用一次函数解决实际问题。

教学重难点:

1. 一次函数的图象特征。

2. 一次函数在实际问题中的应用。

教学准备:

1. 教师:黑板、粉笔、PPT。

2. 学生:教科书、练习册。

教学过程:

一、导入(5分钟)

1. 教师打开PPT,用一张灵活的图像导入一次函数的概念,引发学生兴趣。

二、概念解释(15分钟)

1. 教师通过PPT展示一次函数的定义和性质,解释一次函数是指函数的最高次数为1的多项式函数,函数的表达式是y=ax+b(a≠0)。

2. 学生跟随教师一起默写一次函数的定义和性质,教师纠正错误并对比正确答案。

三、图象特征(15分钟)

1. 教师通过PPT展示一次函数的图象特征,包括函数的斜率、截距、单调性和图象在坐标系中的位置。

2. 学生跟随教师一起练习画出一次函数的图象,教师提供几个例子供学生模仿练习。

四、实际应用(20分钟)

1. 教师通过PPT展示一些实际问题,引导学生用一次函数解决这些实际问题。

2. 学生分组进行讨论,解决实际问题,并用一次函数的图象解释答案。

3. 学生通过小组讨论将解题过程和结果展示给全班,教师进行点评和讲解。

五、练习巩固(20分钟)

1. 学生进行一次函数的练习题,教师提供足够的练习时间和指导。

2. 学生在教师的指导下相互批改作业,订正错误。

六、总结归纳(10分钟)

1. 教师向学生总结一次函数的定义、性质、图象特征和实际应用。

2. 学生通过小组合作的方式总结一次函数的重点。

七、拓展延伸(10分钟)

1. 教师通过PPT展示一些与一次函数相关的知识,如函数的概念、函数的性质等。

2. 学生跟随教师一起做一次函数的拓展练习,提高对一次函数的理解和应用能力。

教学反思:

通过本节课的教学,学生对一次函数的定义、性质、图象特征和实际应用有了初步的理解和掌握。但是,学生在画一次函数的图象时还存在一定的困难,需要通过更多的练习来提高。另外,学生在实际问题的解决中需提高分析问题和运用一次函数的能力。因此,在后续的教学中,需要加强练习和实践,提供更多的实际问题,培养学生的解决问题的能力。

数学一次函数教案 篇7

教学目标 :

1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点 :根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法

教学过程 :

1、复习旧课

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

2、引入新课

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。教师将学生的正确的例子写在黑板上)

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。)不难看出函数都是用自变量的一次式表示的,可以写成

( )

的形式。

一般地,如果

( 是常数, )(括号内用红字强调)

那么y叫做x的。

特别地,当b=0时, 就成为

( 是常数, )

3、例题讲解

例1、某油管因地震破裂,导致每分钟漏出原油30公升

(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式

(2)破裂3.5小時后,共漏出原油多少公升

分析:y与x成正比例

解:(1)

(2) (升)

例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)

(1)       列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;

(2)       多长时间以后,小丸子的银行存款才能买随身听?

分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱

解:(1)

(2)1680=500+90x解得x=13.…

所以还需要14个月,小丸子才能买随身听

例3、已知函数 是正比例函数,求 的 值

分析:本题考察的是正比例函数的概念

解:

说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上

4、小结

由学生对本节课知识进行总结,教师板书即可。

5、布置作业

书面作业 :1、书后习题 2、自己写出一个实际中的的例子并进行讨论

探究活动

某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息。小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和。(剩余欠款年利率为0.4%)

(1)若第x( 年小明家交付房款y元,求y与x的函数关系式;

(2)求第三、第十年的应付房款值。

参考答案:

(1); (2) 5340元  、5200元。

数学一次函数教案 篇8

八年级数学一次函数教案(教学目标)

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

八年级数学一次函数教案(重难点)

教学重点:

正比例函数的概念及两者之间的关系。

2、 会根据已知信息写出一次函数的表达式。

教学难点: 一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

八年级数学一次函数教案(课件教学过程)

一、创设问题情境,引入新课

1、 简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习

1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

正比例函数的概念学习讨论:刚才写出的.两个关系式y=y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、 例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

三、随堂练习

b的值。若不是一次函数,请说明理由。

A、y= +x B、y=-y=y=6-

2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人y乙,解答下列问题:(

让学生归纳本节课学习内容:

正比例函数概念以及它们之间的关系。

2、会根据已知信息写出一次函数的关系式。

数学一次函数教案 篇9

【数学一次函数教案】

主题:求解一次函数的相关方法与应用

一、教学目标

1. 理解一次函数的定义和特征;

2. 熟练掌握一次函数的图像、表达式和性质;

3. 掌握一次函数的求解方法,解决与实际问题的应用;

4. 培养学生分析问题、解决问题的能力。

二、教学重点

1. 一次函数的性质与表达式;

2. 一次函数的图像及其相关参数;

3. 一次函数的求解方法。

三、教学内容

1. 一次函数的定义和性质:

了解一次函数的定义,并指出一次函数的图像是一条直线;

了解一次函数的表达式形式,即y = kx + b;

了解一次函数的斜率和截距的概念,理解斜率对应直线的倾斜程度。

2. 一次函数的图像和特点:

通过在平面直角坐标系中画出一次函数的图像,探究函数的斜率和截距对图像的影响;

探究当斜率k为正数和负数时,直线的走势和倾斜方向的不同;

理解截距b的正负对图像的平移和位置的影响。

3. 一次函数的求解方法:

理解如何求解一次函数的零点,即函数与x轴的交点;

学会通过斜率和截距求解直线的方程;

了解如何求解一次函数的交点,即两函数的解(非一次函数)。

4. 一次函数在实际问题中的应用:

探究一次函数在实际问题中的应用案例;

学会用一次函数解决实际问题,如关于速度、距离、成本等方面的问题;

发展学生解决实际问题的思维能力。

四、教学方法

1. 示范法:通过画图和计算的方式,引导学生理解一次函数的定义和性质;

2. 指导法:通过具体问题的引导,帮助学生理解一次函数的应用方法;

3. 探究法:通过实例和问题的解析,引导学生主动思考、探索与发现。

五、教学步骤

1. 导入:通过一些实际问题,引出一次函数的概念和应用。

2. 发现:通过画图和计算,让学生发现一次函数图像的特点和性质。

3. 解释:对一次函数的斜率和截距进行解释,并引导学生理解。

4. 拓展:通过一些实际问题,拓展学生对一次函数的应用和解决方法。

5. 实践:通过练习题和实例,检验学生对一次函数的理解和应用能力。

6. 总结:对一次函数的定义、性质和应用进行总结和归纳。

7. 反思:学生对本节课知识的掌握情况,提出问题和解答疑惑。

六、教学评估

1. 练习题:布置一些练习题,测试学生对一次函数的掌握情况。

2. 实际问题:让学生解答一些实际问题,考察其对一次函数应用的能力。

七、教学拓展

1. 深化一次函数的性质和应用,引入函数的变化率和几何意义;

2. 探究一次函数与其他函数的关系,如一次函数与二次函数的交点问题;

3. 引入一次方程的概念和求解方法。

八、教学资源

1. 平面直角坐标纸;

2. 教学课件;

3. 一次函数的实际应用案例。

九、教学反馈

1. 学生的课后习题完成情况;

2. 学生的实际问题解答情况;

3. 学生的课堂互动和问题反馈情况。

通过本节课的学习,学生将能够掌握一次函数的定义、性质和求解方法,并能够应用一次函数解决实际问题。同时,通过多种教学方法的运用,帮助学生培养分析问题和解决问题的能力,提高数学思维和运算能力。

二次函数教案精选11篇


本文是关于“二次函数教案”的资料,幼儿教师教育网编辑整理了这篇文章。为了编写课程教案课件,老师通常会参考课本中的主要教学内容。因此,在本学期写教案课件之前,仔细研读教材是必要的。请继续阅读本文,以获取更多相关内容!

二次函数教案 篇1

教学内容:

人教版九年义务教育初中第三册第108页

教学目标:

1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识,第五册二次函数教学设计。

教学重点:

二次函数的意义;会画二次函数图象。

教学难点:

描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一. 一. 创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2. ①

2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

答:S=L(30-L)=30L-L2 ②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二. 二. 归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

那么,y叫做x的二次函数.

注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的`趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三. 三. 尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

解:一、列表:

x

-3

-2

-1

1

2

3

Y=x2

9

4

1

1

4

9

二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.

对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意,初中数学教案《第五册二次函数教学设计》。

练习:画出函数 ; 的图象(请两个同学板演)

X

-3

-2

-1

1

2

3

Y=0.5X2

4.5

2

0.5

0.5

02

4.5

Y=-X2

-9

-4

-1

-1

-4

-9

画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。

(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

三. 三. 运用新知、变式探究

画出函数 y=5x2图象

学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

二次函数教案 篇2

教学目标

熟练地掌握二次函数的最值及其求法。

重 点

二次函数的的最值及其求法。

难 点

二次函数的最值及其求法。

一、引入

二次函数的最值:

二、例题分析:

例1:求二次函数 的最大值以及取得最大值时 的值。

变题1:⑴、 ⑵、 ⑶、

变题2:求函数 ( )的最大值。

变题3:求函数 ( )的最大值。

例2:已知 ( )的最大值为3,最小值为2,求 的取值范围。

例3:若 , 是二次方程 的两个实数根,求 的最小值。

三、随堂练习:

1、若函数 在 上有最小值 ,最大值2,若 ,

则 =________, =________。

2、已知 , 是关于 的一元二次方程 的两实数根,则 的最小值是( )

A、0 B、1 C、-1 D、2

3、求函数 在区间 上的最大值。

四、回顾小结

本节课了以下内容:

1、二次函数的的最值及其求法。

课后作业

班级:( )班 姓名__________

一、基础题:

1、函数 ( )

A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2

2、函数 的最大值是4,且当 =2时, =5,则 =______, =_______。

二、提高题:

3、试求关于 的函数 在 上的最大值 ,高三。

4、已知函数 当 时,取最大值为2,求实数 的值。

5、已知 是方程 的两实根,求 的最大值和最小值。

三、题:

6、已知函数 , ,其中 ,求该函数的最大值与最小值,

并求出函数取最大值和最小值时所对应的自变量 的值。

二次函数教案 篇3

1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点

2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题

3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

这节课,我们来学习二次函数的三种表达方式。

鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。

由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。

关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。

函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。

在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。

二次函数教案 篇4

二次根式的乘除法

教学目标

1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。

2、使学生掌握积的算术平方根的性质、会根据这一性质熟练地化简二次根式.

3、培养学生合情推理能力。

教学过程

一、复习提问

1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?

2、二次根式有哪些性质?计算下列各题:

()2

二、提出问题,导入新知

1、试一试

计算: (1) _=( )=( )

=( )=( )

(2) _=( )=( )

=( )=( )

提问:观察以上计算结果,你能发现什么?

2、思考

_与是否相等?

提问:(1)你将用什么方法计算?

(2)通过计算,你发现了什么?是否与前面试一试的结果一样?

3、概括

让学生观察以上计算结果、归纳得出结论:_=(a≥0,b≥0)

注意,a,b必须都是非负数,上式才能成立。

三、举例应用

例1、计算。

__

说明:二次根式运算的结果,应该尽量化简、如(2)结果不要写成,而应化简成4。

等式_=(a≥0,b≥0),也可以写成=_(a≥0,b≥0)

利用它可以进行二次根式的化简,例如:=_==a2

例2、化简

说明:(1)如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。

四、课堂练习

1、计算下列各式,将所得结果化简:

_ _

2、P12页练习1(1)、(2)、2

五、想一想

1、__与是否相等?a、b、c有什么限制?请举一个例子加以说明。

2、等于__吗?

3、化简:

六、小结

这节课我们学习了以下知识:

1、二次根式的乘法运算法则,即_= (a≥0,b≥0)

2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a≥0,b≥0)……)

要特别注意,以上(1)、(2)中,a、b必须都是非负数,如果a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么?

3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a≥ 0),加深了对非负数a的算术平方根的性质的认识

七、作业

习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题

二次函数教案 篇5

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第二节第二课(2.2.2)《二次函数的性质与图象》。关于《二次函数的性质与图象》在初中已经学习过,根据我所任教的学生的实际情况,我将《二次函数的性质与图象》设定为一节课(探究图象及其性质)。二次函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习其他初等函数的基础,同时在生活及生产实际中有着广泛的应用,所以二次函数应重点研究。

二、学生学习况情分析

二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的又一次应用。基于在初中教材的学习中已经给出了二次函数的图象及性质,已经让学生掌握了二次函数的图象及一些性质,只是像单调性、对称性、零点这种性质还没有规范,课本给出的三个例题对于学生来说非常熟悉。本节课需要认真设计问题来激发学生学习新知的兴趣和欲望。

三、设计思想

1.函数及其图象在高中数学中占有很重要的位置。如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。

2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:

(1)在课堂活动中通过同伴合作、自主探究尝试培养学生积极主动、勇于探索的学习方式。

(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

(3)通过课堂教学活动向学生渗透数学思想方法。

四、教学目标

根据任教班级学生的实际情况,本节课我确定的教学目标是:

1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。

3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

五、教学重点与难点

教学重点:使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。

教学难点:借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。

六、教学过程:

(一)创设情景、提出问题

本节课一开始我就让学生直接总结出二次函数的性质与图象,并指出如何得到函数的相关性质。学生在初中学习的基础上很容易就完成。就在学生回答后,教师提出一个让大家意想不到的问题:既然大家已经学习也掌握了二次函数的图象和性质,那我们今天还有必要再重复吗?编者的失误?还是另有用意呢?

【设计意图:一方面可以激发学生学习热情和探索新知的欲望;另一方面也给学生传递一个学习目标方面的信息。在学生感觉很疑惑的时候,教师再次设问,把问题引向深入。】

【学情预设:学生可能很疑惑,或者有一些猜测】

你能独立完成问题2吗?。

问题2:试作出二次函数的图象。

要求学生按照自己处理二次函数的方法独立完成。

【设计意图:充分暴露学生的问题,突出本节课的重要性,激发学生学习的动力。】

【学情预设:一部分学生使用描点法作图;另一部分学生只确定对称轴和开口、只利用对称轴和y轴的交点等不是很规范的方法作图。】

在总结交流的基础上教师指出:有的同学用描点作图的方法作出函数的图象,从方法上没有问题,但是需要描出大量的点才能得到较为准确的图象;有的同学只是找到函数的对称轴判定开口方向就画出一个图象,或者是找到函数的对称轴和y轴的交点确定开口方向就画出函数的图象等等,这种不是很规范的作图方法,感觉很快,但是往往得到的图象不是很准确的,为什么呢?

(学生稍作思考)

师:实质上函数的性质是函数自身特殊对应关系的体现,而体现函数的对应关系的方法有解析式法、图象法和列表法。既然能够用解析式结合图象得到函数的性质,那么能否借助于解析式直接分析其性质,然后推断出图象的特征呢?在推断函数的图象时要考虑函数的哪些主要性质呢?我想这也是今天这节课的意图所在,如何利用函数性质的研究来推断出较为准确的函数图象,大家是否有兴趣和能力来探讨这个问题呢?

带着这样的问题我带领学生进入下一个环节——师生互动、探究新知。

(二)师生互动、探究新知

在这个环节上,我引用课本所给的例题1请同学们以学习小组为单位尝试完成。

例1、试述二次函数的性质,并作出它的图象。

要求:按照解析式----性质----推断函数图象的`过程来探讨,

【设计意图是:以便于学生在对比中进一步理解函数性质的应用,突破应用函数的性质来推断函数图象这一难点。同时体验分析障碍和获得成功的快乐,激发学生的学习兴趣。】

在学生学习小组的一番探讨后,教师选小组代表做总结发言,要求说出利用解析式得到性质的分析过程。

(其他小组作出补充,教师引导从以下几个方面完善):

(1)定义域(2)开口方向(3)值域(顶点)及最值(4)对称轴(5)单调性(6)奇偶性(7)零点(8)图象

【设计意图是:让学生在师生互动,共同探讨的过程中逐步实现知识的迁移,基本上形成新的认知。】

【学情预设:因为是第一次尝试利用解析式分析性质并推断图象,学生对于某些性质不能准确的阐述出分析过程,对对称轴的确定、单调区间及单调性的分析等可能存在困难。】

这时教师可以利用对解析式的分析结合多媒体引导学生得到分析的思路和解决的方法,进而突破教学难点。

根据实际情况教师可以引导学生从二次函数的配方结果来分析:

(1)单调性的分析: 在=中当时,取得最小值-2,当时,自变量就越大,越小,就越大,就越大,即就越大,即就越大; 就越大;当时,自变量越大,这样单调性及单调区间(分界点)自然可以解决,结合单调性的定义可给出严格的证明;同时也可以帮助我们说明开口的方向是向上的。

(2)对称性的分析:

在=中当和时,如果=时,即,也就是,则时,一定有

也就是成立。因此可以令成立,这就是说二次函数的两个数于直线和对称。 的自变量时,函数值在轴上取两个关于-4对应的点为对称中心的两个点对应总是成立的,这就说明函数的图象关在对解析式分析的同时借助于几何画板课件演示,让学生直观感受:

然后在教师的引导之下推广并得出一般结论:如果函数成立,则函数的图象关于直线对定义域内的任意

对称。 都有在得出对称性的一般结论这一副产品后,为了强化对这个结论的认识和理解,教师可以安插一个练习题:

练习:试用以上结论来概括函数___________________________. 应该满足的结论是

在完成以上各环节后,教师再次提出任务:既然我们把二次函数的相关性质都分析完成,那么根据以上性质请同学们再次分析如何利用二次函数的性质推断出二次函数的图象? 用二次函数的性质推断函数的图象时需要研究分析二次函数的哪些主要性质才能比较准确地画出图象?

二次函数教案 篇6

教学目标

1·从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系·

2·探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念·能够利用二次函数的图象求一元二次方程的近似根·

3·通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点·

教学重点

二次函数的最大值,最小值及增减性的理解和求法·

教学难点

二次函数的性质的应用·

《22·2二次函数与一元二次方程》同步练习

三、解答题

7·(1)请在坐标系中画出二次函数y=x2—2x的大致图象;

(2)根据方程的根与函数图象的关系,将方程x2—2x=1的根在图上近似地表示出来(描点);

(3)观察图象,直接写出方程x2—2x=1的根(精确到0·1)·

《22·2二次函数与一元二次方程》练习题

16·(杭州中考)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t—5t2(0≤t≤4)·

(1)当t=3时,求足球距离地面的高度;

(2)当足球距离地面的高度为10米时,求t;

(3)若存在实数t1,t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围·

二次函数教案 篇7

教学目标:

会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:

重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:

一、例题精析,强化练习,剖析知识点

用待定系数法确定二次函数解析式.

例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;

(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用

例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交

二次函数教案 篇8

一、教材分析

本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a

二、学情分析

本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标

(一)知识与能力目标

1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;

2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标

通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标

1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;

2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点

1.重点

通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2.难点

二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与 设计说明

本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程

教学环节(注明每个环节预设的时间)

(一)提出问题(约1分钟)

教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?

学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。

(二)探究新知

1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)

教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。

学生活动:讨论解决

目的:激发兴趣

2.配方求解顶点坐标和对称轴(约5分钟)

教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)

=0.5(x2-12x+36-36+42)

=0.5(x-6)2+3

教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。

学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。

目的:即加深对本课知识的认知有增强了配方法的应用意识。

3.画出该二次函数图像(约5分钟)

教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。

学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。

目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。

4.探究y=-2x2-4x+1的函数图像特点(约3分钟)

教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。

学生活动:学生独立完成。

目的:研究a

5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)

教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a

学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。

目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。

6.简单应用(约11分钟)

教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。

教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。

学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。

目的:巩固新知

课堂小结(2分钟)

1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?

2. 你对本节课有什么感想或疑惑?

布置作业(1分钟)

1. 教科书习题22.1第6,7两题;

2. 《课时练》本节内容。

板书设计

提出问题 画函数图像 学生板演练习

例题配方过程

到顶点式的配方过程 一般式相关知识点

教学反思

在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

我认为优点主要包括:

1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3.板书字体端正,格式清晰明了,突出重点、难点。

4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。

所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:

1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;

2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;

3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。

二次函数教案 篇9

二次函数的图象与性质

1.画出函数=2x2-3x的图象,说明这个函数具有哪些性质。

2.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

(1)=3x2+2x;

(2)=-x2-2x

( 3)=-2x2+8x-8 (4)=12x2-4x+3

板书设计

1、画函数=ax2+bx+c(a≠0)的图象。

(列表时,应以对称轴为中心,对称地选取自变量的值,求出相应的函数值。)

2、二次函数=ax2+bx+c(a≠0),

当a>0时,开口向上,当a<0时,开口向下。

对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a)

(最值与抛物线的开口方向及顶点的纵坐标有关。)

课后反思

在本节教学中,教学仍从回顾上节人手,使学生掌握二次函数是由如何平移得来,并熟练掌握二次函数图象的'开口方向、对称轴和顶点坐标及有关性质。在此基础上,引导学生思考二次函数=ax2+bx+c(a≠0)图像的开口方向、对称轴和顶点坐标?这样激起学生的求知欲望,能进行有目的探究活动,学生变被动为主动,学习方式发生了改变。这节课学生既动手又动脑,体验到学习知识的乐趣。

二次函数教案 篇10

教学目标:

1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一. 创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2. ①

2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

答:S=L(30-L)=30L-L2 ②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二. 归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

那么,y叫做x的二次函数.

注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三. 尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

二次函数教案 篇11

教学目标:

1、使学生进一步理解二次函数的基本性质;

2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.

3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.

教学重点:初步理解数形结合的数学思想

教学难点:初步理解数形结合的数学思想

教学用具:微机

教学方法:探究式、小组合作学习

教学过程:

例1、已知:抛物线y=x2-(m2-1)x-2m2-2

⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点

⑵m取什么实数时,两交点间距离最短?是多少?

解:

△ =(m2-1)2+4(2m2+2)

=m4-2m2+1+8m2+8

=m4+6m2+9

=(m2+3)2

m2≥0

∴m2+3>0

∴△>0

∴抛物线与x轴有两个交点

问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)

设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.

数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式.设交点坐标为(x,y)

这样交点问题就转化成求这个二元二次方程组的解.代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根.∴y =ax2+bx+c

y =0

有两个不等的实数解

∴抛物线与x轴交于两个不同的点.

形:顶点在x轴上方,且开口向下.或者顶点在x轴下方,且开口向上.

设计意图:渗透解析几何的基本思想

使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性.掌握数形结合,分类讨论的思想方法.逐步学会数学的思维.

转化成代数语言为:

小结:第一种方法,根据解析几何的基本思想.将求曲线的交点问题,转化成求方程组的解的问题.

第二种方法,借助于图象思考问题,比较直观.发现规律后,再用数学的符号语言将其形式化.这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法.

思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系.

设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程.使主体积极地参与到学习中去.以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念.

⑵m取什么实数时,两交点间距离最短?是多少?

解:设二次函数与x轴的两交点为(x1,0),(x2,0)

解法㈠ 由⑴可知m为任何实数时, 都有△>0

解①

∴ x1+x2=m2-1

x1·x2=-2(m2+1)

∴│x2-x1│=

=

=

=

=m2+3

∴当m =0时,两交点最小距离为3

这里两交点间距离是m的函数

设计意图:培养学生的问题意识.在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法.培养学生独立地获取数学知识的能力.渗透函数思想

问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明.

设x1、x2 为ax2+bx+c =0的两根

可以推出:

还可以理解为顶点到x轴距离最短.

设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构.

小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法.

解法㈡:用十字相乘法或求根公式法求根.

思考:一元二次方程与二次函数的关系.

思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?

练习:

观察函数 的图象,回答:

(1)y>0时,x的取值范围如何?

(2)y=0时,x取什么值?

(1)y

小结:数与形是数学中相互依赖的两个方面.图形比较直观,可以启发思路;而数学的严格证明也是必不可少的.直观性和形式化是数学的两重性.

探究活动

探究问题:

欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把.

(1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?

(2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?

(3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?

(4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)

解:(1)(14—8) (元)

(2)638元、728元、748元、792元、792元、750元。

(3)设降价 元时利润最大,最大利润为 元

=

=

=

∴ 当 时, 有最大值

(4)设降价 元时利润最大,利润为 元

(其中 )。

化简,得 。

∴ 当 时, 有最大值。

∴ 。

数学教案-二次函数y=ax2+bx+c 的图象

数学一次函数教案14篇


老师在上课前需要有教案课件,只要课前把教案课件写好就可以。制作好的教案是实现优质教学的有力保障。幼儿教师教育网编辑为你收集整理了“数学一次函数教案”,我们在这里提供的指导意见仅供参考具体情况还需要您自己决定!

数学一次函数教案 篇1

数学一次函数教案

【导语】:一次函数是初中数学的重要内容之一,它是后续高中数学和大学数学的基础。因此,掌握一次函数的知识对学生来说至关重要。本教案旨在通过合理安排教学内容和方式,帮助学生全面理解一次函数的概念、性质和应用,提高他们的数学学习能力和解决实际问题的能力。

【教学目标】:

1. 掌握一次函数的定义和性质;

2. 熟练运用一次函数的相关公式和运算方式;

3. 提高通过建立和解决一次函数模型解决实际问题的能力。

【教学内容】:

1. 一次函数的定义和性质;

2. 一次函数的图像和性质;

3. 一次函数的斜率和截距;

4. 一次函数的解析式和其它表示形式;

5. 一次函数的运算和应用。

【教学步骤】:

一、导入新知识(10分钟):

1. 调查:请学生回答一次函数的定义是什么?它有哪些性质?

2. 引导学生思考:一次函数的图像如何确定?与它的性质有什么关系?

二、讲解一次函数的定义和性质(15分钟):

1. 通过数学定义引入一次函数的概念;

2. 介绍一次函数的性质:自变量和因变量呈线性关系,函数图像为一条直线。

三、探究一次函数的图像和性质(20分钟):

1. 使用计算机或幻灯片演示一次函数的图像和性质;

2. 探究一次函数的图像与斜率、截距的关系;

3. 设计一些练习题,让学生通过计算和绘图验证一次函数的性质。

四、讲解一次函数的斜率和截距(15分钟):

1. 引入一次函数的斜率的概念:斜率表示函数图像的倾斜程度;

2. 介绍一次函数的截距的概念:截距表示函数图像与坐标轴的交点。

五、解析式和其他表示形式(10分钟):

1. 通过实例讲解一次函数的解析式的写法和意义;

2. 介绍一次函数的斜截式和一般式的表达形式。

六、一次函数的运算和应用(20分钟):

1. 通过例题演示一次函数的加减、乘除运算;

2. 引导学生思考一次函数的应用场景,并举例说明。

七、巩固练习和展示(10分钟):

1. 分组合作,设计一些练习题,让学生自主解答;

2. 请学生代表向全班展示解题过程和思路。

【教学评估】:

1. 通过学生的讨论和展示情况,评估他们对一次函数的定义和性质的掌握程度;

2. 观察学生在解答练习题和实际问题时的能力,评估他们对一次函数的应用能力。

数学一次函数教案 篇2

【一次函数教案】

相关主题范文

一、教学设计背景

在高中数学中,一次函数是一个重要且常见的概念。它是数学习中的基础,也是后续学习其他函数类型的基础。因此,教师需要设计一次函数教案,引导学生加深对一次函数的理解与运用。本教案的设计面向高中一年级学生,通过引入真实生活中的问题,让学生明确一次函数在实际中的作用和应用。

二、教学目标

1. 知识目标:

学生能够理解一次函数的基本概念和性质,能够正确区分一次函数的常见表示形式。

学生能够运用一次函数解决实际问题,并理解其中的数学思维和方法。

2. 能力目标:

学生能够分析和解决一次函数相关问题,培养学生的数学思维和问题解决能力。

3. 情感目标:

学生能够通过实际问题的解决,理解数学在现实生活中的应用和重要性,增强对数学的兴趣和学习动机。

三、教学过程

1. 导入(10分钟)

(教师展示一张图表展示温度随时间的变化,引发学生思考)

T: 同学们,这是一张图表,表格中列出了一天中的时间和相应的温度值。你们能看出这两者之间有一种关系吗?

S: 温度是随着时间变化的。

T: 很好。这种关系是否可以用函数来表示呢?

S: 可以。

2. 知识讲解与引入(15分钟)

T: 那么,我们来学习一次函数。一次函数是什么呢?

S1: 一次函数是指函数的最高次数是1的函数。

T: 除了最高次数是1这个特点,还有哪些表示方式呢?

S2: 一次函数可以用线性函数的形式表示,也可以用一元一次方程的形式表示。

T: 很好。接下来,我们学习一次函数的性质。谁能说出一次函数的性质呢?

3. 性质讲解(10分钟)

T: 一次函数有两个重要的性质,分别是线性关系和比例关系。我们先来看什么是线性关系。

(教师用具体例子解释线性关系)

T: 那么,比例关系是什么呢?

(教师用具体例子解释比例关系)

4. 实例讲解(15分钟)

T: 现在我们来看几个实际问题,并运用一次函数解决。

(教师出示一组问题,学生分组讨论并解答,随后进行讲解)

5. 练习与巩固(15分钟)

T: 现在你们可以尝试自己解决一下这几个问题。

(学生个别或分组完成练习题目)

T: 时间到,哪些同学有解答的?

6. 拓展与应用(15分钟)

T: 那么一次函数在生活中还有哪些应用呢?请同学们思考一下。

(学生自主思考和列举一次函数在生活中的应用,并进行展示)

7. 总结与展望(10分钟)

T: 同学们,今天我们学习了一次函数的基本概念和性质,掌握了一些运用一次函数解决实际问题的方法。希望你们能够巩固这些知识,并在以后的学习中更好地运用和拓展。下节课我们将深入学习二次函数,希望大家继续努力。

四、教学评价

通过教学中的讨论、练习和解题展示,教师能够了解学生对一次函数的理解和运用情况,并针对学生的问题进行适当的指导和反馈。在学生的展示环节,可以看出学生的拓展思维和应用能力是否得到提升。

数学一次函数教案 篇3

一次函数教学过程设计

1. 准备工作

在教学开始前,教师应该对本课的教学内容进行详细的研究和准备,制定出科学合理的教学计划和教学步骤,以充分发挥教学效果。

2. 导入新知识

首先,教师应该利用学生先前学习的知识和现实生活中的例子,从简单到复杂地引导他们理解什么是一次函数,以及一次函数的特点和性质。例如,可以利用柿子树生长的例子来引导学生理解一次函数,利用图表和数学式子帮助学生理解一次函数 y = kx + b 的含义。

3. 理论讲授

接下来,教师应该详细讲解一次函数的定义、特点、性质和相关概念,为学生打下牢固的理论基础。教师可以使用多媒体课件、幻灯片、黑板等教具,给学生呈现多种多样的学习资源。

4. 课堂练习

在理论讲解之后,教师可以通过课堂练习来帮助学生熟悉一次函数的相关概念和运用方法。课堂练习的形式可以是个人练习、小组练习或者全班练习。

5. 拓展延伸

在课堂练习结束后,教师可以通过一些实际应用情境,以及更复杂的一次函数的应用案例来拓展学生的思维和知识,帮助他们更加深入地理解一次函数的概念和运用。

6. 总结反思

随着本课程的结束,教师应该适时地对本节课的教学内容进行总结。教师可以邀请学生分享他们在本课程中的学习心得和经验,或者给出一些总结性的问题来帮助学生更好地理解本课程内容。

7. 作业布置

最后,教师应该适时地布置与本课程相关的作业,以巩固学生对一次函数的掌握和运用能力。可以有多种形式的作业,例如奥数训练、实际连续性训练和动手设计等方式。

一次函数授课思路

1. 引入,以引导学生认识一次函数的基本概念。

利用学生已有的知识,以买柿子、车行路程等例子引导学生认识一次函数的基本概念,包括什么是一次函数,一次函数的定义,一次函数的图像等。

2. 讲解一次函数的解析式以及相应的性质。

讲解一次函数 y=kx+b 的含义和推导方式,重点讲解斜率 k 及截距 b 的意义及公式。

3. 制作一次函数教学素材,让学生调整解析式的参数。

通过制作一份一次函数教学素材,让学生自行调整函数的解析式中的参数,来理解不同参数对于函数图像的影响以及斜率和截距的作用。

4. 针对常见问题进行讲解。

对于学生在学习过程中常见的问题,例如“斜率 k 是什么?截距 b 又是什么?”,教师应当对其进行详细讲解,以确保学生对相关概念的掌握。

5. 轻松愉快,采用趣味互动的方式,确保学生掌握一次函数的图像和解析式作用。

采用小游戏形式或展示各种不同图像的形式来稳固巩固学生对一次函数的图像和解析式的掌握,确保他们从进一步了解一次函数的角度准确掌握相关知识。

6. 知识的拓展,扩展应用场景。

通过实际情境和特殊问题等方式,大力拓展一次函数的应用场景。例如,可以通过测量树木高度、车行荷载、股票测算等例子,开发学生学习乐趣,引导他们思考一次函数的实际应用。

7. 总结,并进行知识的自我总结。

针对一次函数的相关概念和知识点,对学生进行清晰的概括,以加深他们的理解和记忆。同时,鼓励学生自己互相交流并将所掌握的知识向他人展示,以提高整个班级的学习水平。

8. 推荐学生复习和强化训练,巩固所学知识。

鼓励学生在学习完相关知识后进行复习和强化训练,在这一过程中充分巩固所学知识,并全面提高自身做题和解决实际问题的能力。

数学一次函数教案 篇4

各位评委老师,你们好!

我是来自密山市兴凯湖乡中学的一名数学教师,姓名姚宝昌。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。

新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。

一、 教材分析:

1、教材内容所处的地位及作用

本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

在《数学课程标准》中,对于本节内容提出了明确的要求,另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。

2、教学目标:

⑴、知识与能力:

①、能通过函数图象获取信息,发展形象思维。

②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

⑵、过程与方法:

①、在亲身的经历与实践探索过程中体会数学问题解决的办法。

②、初步体会方程与函数的关系,建立良好的知识联系。

⑶、情感态度与价值观:

①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。

②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

3、教学重点、难点及其确立的依据:

由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:

1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。

二、学情状况分析:

1、学生现状:

针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:

⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。

⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。

⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。

⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。

2、知识情况:

本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。

3、预期效果:

学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合” 、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。

另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到最佳效果。

数学一次函数教案 篇5

标题: 探索数学一次函数的教学方法——基于实践和应用

引言:

数学是一门抽象而又实用的学科,而数学中的一次函数是数学中最基本且广泛应用的函数之一。了解和掌握一次函数的概念、性质和应用,对学生的数学素养和日常生活中的问题解决能力具有重要意义。本教案旨在通过以实践和应用为导向的教学方式,帮助学生更深入地理解和掌握一次函数,并在实际问题中应用得当。

一、教学目标:

1. 理解一次函数的概念、定义和基本性质;

2. 能够正确地利用一次函数建立模型,解决实际问题;

3. 能够利用一次函数的性质进行函数的应用拓展。

二、教学准备:

1. 教师准备PPT,提供一次函数的定义、性质和应用案例;

2. 准备足够数量的练习题或实际问题;

3. 准备计算机和互联网,以便学生参与教学活动。

三、教学过程:

步骤一:引入概念

1.通过PPT展示一次函数的定义和基本形式:y=ax+b,解释其中a和b的含义。

2.通过实际案例展示一次函数在现实生活中的应用,如汽车的行驶距离与时间的关系等。

步骤二:探索一次函数的性质

1.学生分组进行小组讨论,并总结一次函数的性质,包括函数的单调性、零点、图像和解的唯一性等。

2.请学生利用互联网资源,查找一次函数性质的相关实例,并与小组分享。

步骤三:应用案例分析

1.教师提供一些实际问题,涉及一次函数的应用,如购物满减、公式推导、简单经济模型等。

2.学生个别或小组探讨和解决这些问题,并从不同的角度解释答案的意义。

3.学生展示解题过程和结果,并相互评价。

步骤四:拓展应用

1.教师引导学生对一次函数的应用进行拓展,如勾股定理、简单抛物线模型等。

2.学生独立或小组进行相关拓展应用的研究,并展示自己的发现和结论。

3.学生评价他人的拓展应用,并相互交流心得和体会。

四、教学拓展:

1.教师鼓励学生自主学习,利用互联网资源和相关教材,深入了解一次函数的不同应用领域。

2.鼓励学生进行课外参观和实践活动,如调查房价与面积的关系等。

五、教学评价:

1. 根据学生在解决实际问题中的应用能力进行评价;

2. 通过小组和个别展示、讨论和评价,评估学生对于一次函数概念和性质的理解和掌握情况;

3. 结合课堂练习和作业,评价学生对于一次函数应用拓展的能力。

结语:

通过实践和应用为导向的教学方式,学生能更深入地理解一次函数的概念、性质和应用,同时也提高了学生的数学素养和实际问题解决能力。教师还应鼓励学生在自主学习和课外实践中,进一步拓展和应用一次函数理论,培养学生的创新思维和问题解决能力。

数学一次函数教案 篇6

数学一次函数教案

导语:

一次函数是初中数学中重要的内容之一,它是函数的基础部分,对于学生的数学学习和逻辑思维能力的培养有着重要的作用。本教案将介绍一次函数的基本概念、性质和例题解析,以帮助学生掌握这一知识点。

一、教学目标

1. 了解一次函数的概念和性质;

2. 能够用解析式表示一次函数;

3. 能够根据一次函数的图像求解相关问题;

4. 能够应用一次函数解决实际问题。

二、教学内容

1. 一次函数的定义和图像;

2. 一次函数的性质和解析式表示;

3. 一次函数的例题分析和解答;

4. 一次函数在实际问题中的应用。

三、教学步骤和方法

步骤一:引入一次函数的概念和性质(时间:15分钟)

1. 提问:你知道什么是函数吗?函数有哪些特点?

2. 引导学生回顾函数的定义和性质,然后引入一次函数的概念和性质。

3. 通过示例和讲解的方式,解释一次函数的定义和性质。

步骤二:学习一次函数的解析式表示(时间:20分钟)

1. 讲解一次函数的解析式表示的方法和步骤,包括如何确定函数的系数和常数项。

2. 通过具体的例题,引导学生理解和掌握一次函数的解析式表示的方法和技巧。

3. 给学生一些练习题,巩固和运用解析式表示一次函数的能力。

步骤三:探究一次函数的图像和性质(时间:30分钟)

1. 分析和讨论一次函数的图像特点,如斜率、截距等。

2. 在黑板上画出一次函数的图像,并引导学生观察和分析其性质。

3. 给学生一些练习题,让他们根据一次函数的图像解答相关问题。

步骤四:应用一次函数解决实际问题(时间:30分钟)

1. 提供一些与实际生活相关的问题,让学生运用一次函数解决。

2. 引导学生思考如何建立模型、如何解析问题,然后运用一次函数解答问题。

3. 通过讨论和分析实际问题的解决思路和方法,培养学生的问题解决能力和创新思维。

四、教学反思

通过本节课的教学,学生应该对一次函数有了基本的认识和理解。通过概念的引入、性质的讲解、图像的观察和实际问题的应用等多种形式的教学,能够更好地激发学生学习的兴趣和动力。同时,巩固和运用的练习题也是评估和检查学生掌握程度的重要一环。在教学实践中,教师还应注意激发学生的思维和动手操作的能力,使其在学习中能够主动参与和探究,提高学生的问题解决能力和创新思维。

数学一次函数教案 篇7

数学一次函数教案

1. 教学目标

a. 知识与技能目标:掌握一次函数的概念和性质,并能够应用一次函数进行实际问题求解。

b. 过程与方法目标:培养学生观察和发现问题的能力,提高学生分析和解决问题的能力。

c. 情感态度与价值观目标:鼓励学生发展数学思维,培养学生对数学的兴趣和对数学的自信心。

2. 教学重点

a. 一次函数的概念和性质。

b. 如何应用一次函数进行实际问题的求解。

3. 教学难点

a. 将实际问题转化为一次函数的模型,并解答问题。

b. 培养学生观察和发现问题的能力。

4. 教学过程

第一节 一次函数的概念和性质

a. 导入新知识

教师通过一个简单的实际问题引导学生思考,如“小明每天骑自行车上学,他发现自行车速度与骑行时间成正比。”教师以教育性发问的方式提问学生,“你们知道什么是成正比吗?成正比的关系可以用什么函数来表示呢?”引导学生思考,激发他们对于一次函数的探究兴趣和求知欲。

b. 提出问题

教师提出问题:“小明骑自行车到学校的总路程是否与骑行总时间成正比?如果是,你们能用一次函数来表示这种关系吗?”引导学生思考,让他们从生活中的实际问题中发现一次函数的特征。

c. 引入新知识

教师出示一次函数的定义和性质,并进行讲解。“一次函数是指函数的定义域为实数集,值域为实数集,且函数的表达式为 f(x) = ax + b (a ≠ 0) 的函数。”教师重点讲解一次函数的图像、斜率和函数值的关系。

d. 案例分析

教师通过实例,让学生进一步理解一次函数的概念和性质。如:“小明骑自行车平均速度为25km/h,他骑行2小时,请问他骑行的总路程是多少?”教师引导学生解答问题,并将其转化为一次函数的模型。

第二节 应用一次函数解决实际问题

a. 实际问题引入

教师提供一个关于商品销售的实际问题引入,如:“某商家的销售经理发现,每天销售额与广告投入成正比。”教师引导学生思考,如何通过一次函数来描述销售额和广告投入的关系,并解决相关问题。

b. 解决问题

教师指导学生分析实际问题,将问题转化为一次函数的模型,并解答问题。如:“某商家的每日广告投入为3000元,销售经理预测,如果每天的广告投入增加500元,销售额将增加多少?”引导学生构建一次函数的模型,并求解问题。

c. 拓展应用

教师引导学生进一步思考更复杂的实际问题,如:“如果某商家每天销售额为3000元,销售经理希望提高销售额,他该如何调整广告投入?”教师帮助学生分析问题,并引导他们构建一次函数的模型,进一步解决问题。

5. 教学方法

a. 提问法:通过提问来引导学生思考,激发学生的兴趣和求知欲。

b. 案例分析法:通过实际例子来让学生深入理解一次函数的概念和性质。

c. 问题导向法:以实际问题为导向,让学生探索一次函数的应用。

6. 教学评价

a. 教师观察学生在课堂上的表现,并及时给予针对性的指导和帮助。

b. 针对学生在课后的作业和习题做出评价,帮助他们发现问题并加以改进。

c. 组织小组讨论和学生展示,让学生互相评价和指导,促进合作学习和互动交流。

7. 教学扩展

a. 组织学生开展实际调研,以探索更多的一次函数应用实例,并进行展示和讨论。

b. 引导学生进行一次函数应用的创新设计,鼓励他们发挥自己的想象力和创造力,拓展一次函数的应用领域。

c. 鼓励学生参与数学竞赛和数学建模活动,提高他们解决实际问题和应用数学的能力。

通过这个教案,学生能够掌握一次函数的概念和性质,并能够应用一次函数进行实际问题的求解。通过教学的过程,培养学生观察和发现问题的能力,提高他们分析和解决问题的能力,同时也鼓励他们发展数学思维,培养对数学的兴趣和自信心。同时,教师也可以通过观察学生在课堂上的表现、作业和习题的评价、小组讨论和学生展示等方式对教学效果进行评价,从而进一步指导学生的学习和发展。

数学一次函数教案 篇8

数学一次函数教案

一、教学内容分析

1. 教学目标:

通过本次课学习,学生应能够:

a) 理解一次函数的定义及其特点;

b) 能够识别一次函数的图象、判断一次函数的图象在坐标平面中的位置;

c) 能够根据一次函数的图象,确定一次函数的函数表达式;

d) 能够用一次函数的函数表达式给出函数值,并通过图象表示出来;

e) 能够用一次函数的函数表达式求自变量与因变量之间的关系式;

f) 能够应用一次函数解决实际问题。

2. 教学重点:

a) 一次函数的定义及其特点;

b) 识别一次函数的图象及其所在位置;

c) 根据一次函数的图象,确定一次函数的函数表达式。

3. 教学难点:

a) 用一次函数的函数表达式判断图象;

b) 用一次函数的函数表达式解决实际问题。

二、教学准备

1. 教具准备:

a) 教学课件、教学视频等多媒体教具;

b) 黑板、彩色粉笔;

c) 学生练习册。

2. 学具准备:

a) 一次函数的图象实例或图表;

b) 实际生活中的一次函数例题。

三、教学过程设计

1. 导入新课:

a) 向学生展示一次函数的图象实例或图表,通过引导学生观察,了解一次函数的特点和图象在坐标平面中的位置。

b) 引发学生对一次函数的兴趣,在实际生活中,通过列举例子,让学生感受一次函数的存在。

2. 新课讲解:

a) 讲解一次函数的定义及其特点,并通过实例进行说明。

b) 讲解一次函数的图象及其判断方法,并通过图象讲解一次函数在坐标平面中的位置。

c) 讲解一次函数的函数表达式的确定方法,并通过实例进行详细讲解。

3. 训练与巩固:

a) 让学生通过实例自主练习,判断一次函数的图象及其所在位置。

b) 让学生通过实例练习,根据一次函数的图象确定函数表达式。

4. 拓展与应用:

a) 引导学生通过一次函数的函数表达式给出函数值,并通过图象表示出来。

b) 引导学生应用一次函数解决实际问题,让学生感受一次函数在实际生活中的应用场景。

5. 总结与归纳:

a) 对一次函数的定义、特点、图象及其位置、函数表达式的确定方法进行总结与归纳。

b) 引导学生反思本节课的学习内容,对所学知识进行巩固和复习。

6. 作业布置:

a) 布置相关练习题,巩固所学知识;

b) 布置一次函数在实际生活中的应用题,培养学生的应用能力。

四、教学反思

本次教学通过生动的实例和图象,引发了学生对一次函数的兴趣,增加了学习的积极性。通过细致的讲解和适度的引导,学生理解了一次函数的定义及其特点,能够熟练判断一次函数的图象和确定函数表达式。在拓展与应用环节,学生提出了许多问题,教师灵活应对,解答了学生的疑惑,并引导学生将所学知识应用到实际问题中。通过本节课的教学,学生的数学能力得到了提高,学习兴趣得到了培养。

数学一次函数教案 篇9

一次函数是初中数学的重要内容之一,学生必须掌握它的定义、性质和应用。本教案将以如下主题进行讲述:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用。

一、一次函数的定义

一次函数又称为线性函数,是形如y=ax+b的函数,其中a和b为实数且a≠0。其中,a被称为斜率,它表示了函数图像的倾斜程度;b被称为截距,表示了函数与y轴相交的位置。

二、一次函数的图像

1. 当a>0时,函数图像是一个单调递增的直线,斜率越大,图像的倾斜程度越大。

2. 当a3. 当a=0时,函数图像是一条水平直线,表示函数的值不随x的变化而变化。

三、一次函数的性质

1. 零点:一次函数的零点是使得函数值等于0的x值。对于一次函数y=ax+b,它的零点为x=-b/a。

2. 增减性:当a>0时,函数是递增的;当a3. 最值:当a>0时,函数无最小值,有最大值;当a

四、一次函数的应用

1. 速度与时间的关系:一次函数可以表示速度与时间的关系,其中a表示速度的增长或减少速度,b表示起始的位置。通过求解函数的零点,可以得到相交点的时间。

2. 成本与产量的关系:一次函数可以表示成本与产量的关系,其中a表示单位产量的成本,b表示固定成本。通过求解函数的最小值,可以得到最优产量。

3. 直线描绘:一次函数可以用来描述和描绘直线,通过给出两个点的坐标,可以确定一条直线的方程。

4. 运动轨迹:一次函数可以用来描述物体的运动轨迹,通过给出物体的起始位置和速度,可以得到物体的位置随时间变化的函数。

通过以上的教学内容,学生可以对一次函数有更深刻的理解,从而能够灵活地应用一次函数解决实际问题。同时,通过大量的练习和应用,学生可以提高自己的数学思维能力和解决问题的能力。

数学一次函数教案 篇10

一次函数教学设计

一、教学内容

本次教学以高中数学一次函数为主要内容,包括一次函数的定义、性质及应用,以及如何画出一次函数的图像等。

二、教学目的

通过本次教学,学生能够:

1. 理解一次函数的定义和性质

2. 能够运用一次函数解决实际问题

3. 能够画出一次函数的图像

三、教学过程

1. 引入:教师在黑板上画出一个简单的直线图像,让学生通过直观来了解一次函数。

2. 授课:解释一次函数的定义及其性质,如y=kx+b(k、b为常数),其中k为斜率,b为截距。

3. 练习:让学生完成几个简单的一次函数计算练习以及应用题目,加深学生对于一次函数的理解和掌握。

4. 拓展:让学生了解一些常见的一次函数应用,如直线运动、比例关系、工资计算等。

5. 总结:教师对于本次课程的重点进行概括,并让同学们自由提问和讨论。

四、教学方法

1. 演示法

通过示范、图示等方式直观地表达一次函数的概念。

2. 讨论法

通过学生之间的讨论,了解不同的解题方法和思路,引导学生形成正确的解题思维。

3. 实践法

在课堂上加入一些实际问题的练习,帮助学生进行实际操作,提高学生对于一次函数的应用能力。

五、教学资源

本次教学需要准备的教学资源:

1. PPT课件

2. 一些练习题和应用题的解答

3. 计算器

六、教学评价

学生在课堂上的提问和练习情况,以及上课后的课后作业情况等,作为教学评价的考核指标。

七、小结

在本次教学中,以实际问题为切入点,又借助于演示、讨论和实践等多种教学方法,帮助学生全面、系统地掌握了一次函数的知识。

数学一次函数教案 篇11

数学一次函数教案

主题:一次函数的基本概念和应用范围

篇一:一次函数的定义、图像和性质

一、教学目标

1. 了解一次函数的基本定义及其表示形式。

2. 掌握一次函数的图像特征和性质。

3. 能够利用一次函数解决实际问题。

二、教学重点

1. 一次函数的定义及其表示形式。

2. 一次函数的图像特征和性质。

三、教学难点

1. 一次函数的图像特征和性质的应用。

2. 实际问题的建模等。

四、教学过程

1. 导入新知

让学生观察一些实际问题的图像,引导学生思考这些问题与一次函数的关系。

2. 新知呈现

简要介绍一次函数的定义及其表示形式,并通过图像展示一次函数的特征,包括直线、斜率和截距等。

3. 案例分析

举例说明如何根据题目给出的条件,建立一次函数方程,并计算问题的解。

4. 个案解读

让学生结合实际问题,选择合适的一次函数模型,并解答相关问题。

5. 练习巩固

提供一些实际问题,让学生通过建立一次函数模型,解答问题。

(例题1:某商店每天卖出的商品数量与商品价格的关系是一次函数关系,当商品价格为20元时,每天卖出30件商品;当商品价格为30元时,每天卖出20件商品。问当商品价格为40元时,每天能卖出多少件商品?

解题思路:设商品价格为x元,每天卖出数量为y件,则根据题意得到两个点(20, 30) 和(30, 20)。根据两点式建立一次函数方程,求解x=40时的y值。)

六、拓展延伸

让学生进一步观察一次函数的性质,如斜率为正,则函数递增;斜率为负,则函数递减等。

七、归纳总结

总结一次函数的基本概念和性质。

八、评价反思

以小组或个人形式,让学生互相评价,并反思自己的学习过程。

篇二:一次函数的应用

一、教学目标

1. 掌握一次函数在实际问题中的应用方法。

2. 培养学生应用一次函数解决问题的能力。

二、教学重点

1. 一次函数在实际问题中的应用方法。

2. 学生能够熟练应用一次函数解决实际问题。

三、教学难点

1. 如何根据实际问题建立一次函数方程。

2. 如何利用一次函数解决实际问题。

四、教学过程

1. 导入新知

通过一个实际问题引出本节课的主题,并与学生讨论问题的解决方法。

2. 新知呈现

简要介绍一次函数在实际问题中的应用方法,并通过实际问题的解决过程进行演示。

3. 案例分析

举例说明如何应用一次函数解决实际问题,并引导学生进行思考和讨论。

4. 拓展延伸

提供一些复杂的实际问题,让学生自行分析和解决,并与同学进行交流和讨论。

5. 练习巩固

提供一些实际问题,要求学生独立解答,并进行答案的订正和解题思路的讨论。

六、归纳总结

总结一次函数在实际问题中的应用方法,并让学生归纳并总结自己解题过程中的经验。

七、评价反思

以小组或个人形式,让学生互相评价,并反思自己的解题过程和方法。

以上为参考范文,你可以根据自己实际情况进行修改和完善。

数学一次函数教案 篇12

数学一次函数教案

一、教学目标:

1. 理解一次函数的基本概念,能够分辨一次函数的图象。

2. 掌握一次函数的性质,能够准确地表示一次函数的解析式。

3. 学会利用一次函数模型解决实际问题。

4. 培养学生的数学思维和创新意识,提高学生的数学素养。

二、教学重点:

1. 了解一次函数的基本概念和性质。

2. 掌握一次函数的图象和解析式的表示方法。

三、教学难点:

1. 掌握一次函数图象和解析式之间的转化方法。

2. 学会将实际问题转化为一次函数模型进行求解。

四、教学过程:

1. 热身导入(5分钟)

教师出示一道与一次函数相关的实际问题:小明在一家商场买了一件T恤衫,原价120元,现在打8折出售,问小明应付多少钱。鼓励学生思考,快速解答。

2. 概念讲解(15分钟)

教师以板书形式呈现一次函数的定义:如果一个函数的解析式为y = ax + b (其中a和b是常数,并且a ≠ 0),那么它就是一次函数。然后,教师对一次函数的基本概念进行讲解,包括自变量、因变量、解析式和函数图象等。

3. 性质探究(20分钟)

教师通过问题引导学生自主发现一次函数的性质。例如:一次函数的图象必定是一条直线,当自变量为0时,函数值为常数b,当自变量每增加1时,函数值增加a。

4. 图象绘制(20分钟)

教师给出一些一次函数的解析式,如y = 2x + 1,y = -3x + 4,引导学生绘制对应的函数图象,并让学生探讨函数图象与函数解析式的联系和特点。

5. 实际问题解决(20分钟)

教师提供一些与生活实际问题相关的一次函数模型,如某电影院票价与购票人数的关系,某商场日销售额与顾客数量的关系等,鼓励学生运用一次函数模型解决这些实际问题。

6. 拓展应用(10分钟)

教师出示一些挑战性的扩展问题,例如:如何通过两点确定一次函数的解析式?如何通过一次函数图象推断函数的解析式?需要学生灵活运用一次函数的概念和性质,进行推理和解决问题。

7. 小结归纳(5分钟)

教师对本节课的重点内容进行归纳总结,回顾本节课所学的一次函数的基本概念和性质,以及如何利用一次函数模型解决实际问题。

五、课后作业:

1. 完成课堂练习册上与一次函数相关的习题。

2. 思考并总结自己在学习一次函数过程中的收获和困惑。

六、教学反思:

本节课通过引导学生自主思考,培养了学生的数学思维和探究能力。通过实际问题的引入,培养了学生将数学知识应用到实际问题解决的能力。但是在实际问题解决环节,有些学生仍存在困惑,需要更多的实践和指导。下节课将加强实践环节的引导和讲解,帮助学生更好地掌握一次函数的应用。

数学一次函数教案 篇13

一、教学目标:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

二、教学重点

利用二次函数的图象求一元二次方程的近似根。

教学难点:

理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

三、教学方法:

启发引导合作交流

四:教具、学具:

课件

五、教学媒体:

计算机、实物投影。

六、教学过程:

[活动1]检查预习引出课题

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2]创设情境探究新知

问题

1.课本p16问题.

2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

(结合预习题1,完成课本p16观察中的题目。)

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

二次函数y=ax2+bx+c的

图象和x轴交点

两个交点

一个交点

没有交点

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;

2.学生在思考问题时能否注重数形结合思想的应用;

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3]例题学习巩固提高

问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4]练习反馈巩固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根两个相异的实数根两个相等的实数根没有实数根根的判别式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac

问题:(1)p97.习题1、2(1)。

师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

[活动5]自主小结,深化提高:

1.通过这节课的学习,你获得了哪些数学知识和方法?

2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

设计意图:

1.题促使学生反思在知识和技能方面的收获;

2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

[活动6]分层作业,发展个性:

1.(必做题)阅读教材并完成p97习题21。2:3、4.

2.(备选题)p97习题21。2:5、6

设计意图:分层作业,使不同层次的学生都能有所收获。

七、教学反思:

1.注重知识的发生过程与思想方法的应用

《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方

法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

2.关注学生学习的过程

在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

3.强化行为反思

“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

4.优化作业设计

作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

数学一次函数教案 篇14

数学一次函数教案

教学目标:

1. 理解一次函数的定义和性质,能够正确用数学语言表达一次函数的定义和性质。

2. 掌握一次函数的图象特征,能够正确画出一次函数的图象。

3. 能够利用一次函数解决实际问题,能够正确应用一次函数解决实际问题。

教学重难点:

1. 一次函数的图象特征。

2. 一次函数在实际问题中的应用。

教学准备:

1. 教师:黑板、粉笔、PPT。

2. 学生:教科书、练习册。

教学过程:

一、导入(5分钟)

1. 教师打开PPT,用一张灵活的图像导入一次函数的概念,引发学生兴趣。

二、概念解释(15分钟)

1. 教师通过PPT展示一次函数的定义和性质,解释一次函数是指函数的最高次数为1的多项式函数,函数的表达式是y=ax+b(a≠0)。

2. 学生跟随教师一起默写一次函数的定义和性质,教师纠正错误并对比正确答案。

三、图象特征(15分钟)

1. 教师通过PPT展示一次函数的图象特征,包括函数的斜率、截距、单调性和图象在坐标系中的位置。

2. 学生跟随教师一起练习画出一次函数的图象,教师提供几个例子供学生模仿练习。

四、实际应用(20分钟)

1. 教师通过PPT展示一些实际问题,引导学生用一次函数解决这些实际问题。

2. 学生分组进行讨论,解决实际问题,并用一次函数的图象解释答案。

3. 学生通过小组讨论将解题过程和结果展示给全班,教师进行点评和讲解。

五、练习巩固(20分钟)

1. 学生进行一次函数的练习题,教师提供足够的练习时间和指导。

2. 学生在教师的指导下相互批改作业,订正错误。

六、总结归纳(10分钟)

1. 教师向学生总结一次函数的定义、性质、图象特征和实际应用。

2. 学生通过小组合作的方式总结一次函数的重点。

七、拓展延伸(10分钟)

1. 教师通过PPT展示一些与一次函数相关的知识,如函数的概念、函数的性质等。

2. 学生跟随教师一起做一次函数的拓展练习,提高对一次函数的理解和应用能力。

教学反思:

通过本节课的教学,学生对一次函数的定义、性质、图象特征和实际应用有了初步的理解和掌握。但是,学生在画一次函数的图象时还存在一定的困难,需要通过更多的练习来提高。另外,学生在实际问题的解决中需提高分析问题和运用一次函数的能力。因此,在后续的教学中,需要加强练习和实践,提供更多的实际问题,培养学生的解决问题的能力。

二次函数教案十一篇


不为明天做好准备的人是没有未来的,优质课堂,就是幼儿园的老师在讲学生在答,讲的知识都能被学生吸收,为了提升学生的学习效率,准备教案是一个很好的选择,教案可以帮助学生更好地进入课堂环境中来。我们要如何写好一份值得称赞的幼儿园教案呢?小编花时间特意编辑了二次函数教案十一篇,供大家借鉴和使用,希望大家分享!

二次函数教案【篇1】

导语:教案是教师为顺利而有效地开展教学活动,根据教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等

教学目标:

1、利用2-6乘法的推导方法,学习推导出7的乘法口诀,使学生掌握7的乘法口诀,并能应用口诀进行计算。

2、培养学生利用旧知识类推新知识的学习能力。

教学重点:

7的口诀含义,知道每句口诀的来源。

教学难点:

熟记7的乘法口诀,并能正确地应用。

教学过程:

一、复习:

1、看图说图意,列乘法式。

○○○○○○○○○○

○○○○○○○○○○

()个()相加列式:

2、提问:什么情况下用乘法计算?

二、新课。

1、谈话引入新课。

2、学生动手用七巧板拼图,学习例1。

(1)引出连加的结果。

学生汇报摆一个图形几块,摆几个图形用几块,在学习回答的基础上填好表格。

提问:你知道1个7是多少?2个7是多少?3个7是多少?你是怎样知道的?这些都是几个几个地加?

(2)教师引导启发学生推导出7的乘法口诀。

提问:你能依据刚才做的练习自己推导出7的乘法口诀吗?请学生试着推导,在书上填写。

口诀分别是什么?口诀的含义是什么?

(3)观察7的乘法口诀排列规律。

提问:7的乘法口诀有几句?口诀排列有什么规律?

提问:为什么因数一个比一个多1,积就一个比一个多7呢?

提问:如果74=?你忘了,有什么办法可以想出吗?

3、多种形式熟记7的乘法口诀。

三、练习。

1、完成P73练习十六的内容。

N1和N2是巩固7的乘法口诀。

N3、N6、N11是用乘法口诀进行乘法式最基本的计算形式,通过练习,达到准确、流畅、迅速和正确。

N5、N7、N8、N12以多种形式巩固乘法口诀,增强学生记忆口诀的兴趣,并熟悉口诀之间、口诀与计算之间的联系,为解决实际问题打基础。

N4、N9、N10、N13、N14、N15是用7的乘法口诀解决实际问题的练习。目的是通过这些练习让学生体会学习乘法的用处,培养学生用乘法解决问题的意识。

二次函数教案【篇2】

回顾旧知:

1.作函数图象有几个步骤?(列表-----描点-------连线) 2.一次函数图象有什么特点?

(一次函数图象是一条直线,其中,正比例函数的图象是经过原点(0,0)的一条直线.)

1.结合图像探索并掌握一次函数y=kx+b(k≠0)的性质。 2.能根据一次函数的图像和性质解决简单的数学问题。

3、通过对一次函数性质的探索与应用,领会数形结合的思想方法。 【自主探索】

(一)自学指导:

自学教材P48—P50内容,完成以下内容: 1.在同一直角坐标系中画出下列函数的图象:

32、在同一直角坐标系中画出下列函数的图象:

3y=-x+2和y=-x-1 23.根据前两题的函数图像观察自变量x从小变到大时函数y的值分别有何变化?

4.请同学们在小组内进行交流讨论,并试着总结一次函数y=kx+b(k≠0)的性质。

(二)自学效果检测:

2、下图中哪一个是y=x-1的大致图象:

4、函数y=-2x+4,y=-3x,y=3-x的共同性质是( ) A.它们的图象都不经过第二象限 B.它们的图象都不经过原点 C.函数y都随自变量x的增大而增大 D.函数y都随自变量x的增大而减小

5、下列一次函数中,y的值随x的增大而减小的有_____________ (1)y=10x-9 (2)y=-0.3x+2 (3)y=【合作提升】

1.利用函数y=-2x+2的图象,回答下列问题:

(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化? (2)当x取何值时,y=0?当x取何值时,y>0?当0

12、已知点(2,m) 、(-3,n)都在直线y=x+1的图象上,试比较 m和n的

1.一次函数y=kx+b中,k≠0 kb>0,且y随x的增大而减小,则它的图象大致为(

D

2、关于x的一次函数y=(2m-1)x+m-1的图象与y轴的交点在x轴的上方,求m的取值范围。

3、点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3的图象上两个点,且x1

4、若一次函数y=kx+b(k≠0)的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是(

1、 一次函数y=3x+b的函数图象经过原点,则b的值是________.

2、 已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,则k__0,b__0,请写出符合上述条件的一个关系式:_____________.

二次函数教案【篇3】

【基础过关】

1、用一根长10 的铁丝围成一个矩形,设其中的一边长为 ,矩形的面积为 ,则 与 的函数关系式为 .

2、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.求S与x之间的函数关系

3、小敏在某次投篮中,球的运动路线是抛物线 的

一部分(如图),若命中篮圈中心,则他与篮底的距离 是( )

4、小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.

5、某商场以每台2500元进口一批彩电,如果每台售价定为2700元,可卖出400台,以100元为一个价格单位,若每台提高一个单位价格,则会少卖出50台。

⑴若设每台的定价为 (元)卖出这批彩电获得的利润为 (元),试写出 与 的函数关系式;

⑵当定价为多少元时可获得最大利润?最大利润是多少?

6、王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线 ,

其中 (m)是球的飞行高度, (m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.

(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.

(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.

比例线段

1.相似形:在数学上,具有相同形状的图形称为相似形

2.比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段

3. 比例的性质

(1)基本性质: , a∶b=b∶c b2=ac

(2)比例中项:若 的比例中项.

比例尺 = (做题之前注意先统一单位)

以上就是初三数学寒假作业之求二次函数的应用的全部内容,希望你做完作业后可以对书本知识有新的体会,愿您学习愉快。

二次函数教案【篇4】

I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

III.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条抛物线。

二次函数教案【篇5】

目标设计

1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。

能力训练要求

1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力, 学会用建模的思想去解决其它和函数有关应用问题。

2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。

情感与价值观要求

1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。

2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。

方法设计

由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

教学过程

导学提纲

设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富 ,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受 ,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

(一)前情回顾:

1.复习二次函数y=ax2+bx+c(a≠0)的图象、顶点坐标、对称轴和最值

2.(1)求函数y=x2+ 2x-3的最值。

(2)求函数y=x2+2x-3的最值。(0≤x ≤ 3)

3、抛物线在什么位置取最值?

(二)适当点拨,自主探究

1.在创设情境中发现问题

请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?

2、在解决问题中找出方法

某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大?

(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题, 目的在于让学生体会其应用价值??我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理 论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。)

3、在巩固与应用中提高技能

例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?

(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)

解:设垂直于墙的边AD=x米,则AB=(32-2x) 米,设矩形面积为y米2,得到:

Y=x(32-2x)= -2x2+32x

[错解]由顶点公式得:

x=8米时,y最大=128米2

而实际上定义域为11≤x ?16,由图象或增减性可知x=11米时, y最大=110米2

(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错 解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与 形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)

(三)总结交流:

(1)同学们经历刚才的探究过程,想想解决此类问题的思路是什么?.

引导学生分析解题循环图:

(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?

(四)掌握应用:

图中窗户边框的 上半部分是由四个全等扇形组成的半圆,下部分是矩形。如果制作一个窗户边框的材料总长为15米,那么如何设计这个窗户边框的尺寸,使透光面积最大(结果精确到0.01m2)?(设计思路:先出示如图图形,然后引伸到课本中的图形,让学生有一个思考递进的空间。)

(五)我来试一试:

如图在Rt△ABC中,点P在斜边AB上移动,PM⊥BC,PN⊥AC,M,N分别为垂足,已知AC=1,AB=2,求:

(1)何时矩形PMCN的面积最大,把最大面积是多少?

(2)当AM平分∠CAB时,矩形PMCN的面积.

(六)智力闯关:

如图,用长20cm的篱笆,一面靠墙围成一个长方形的园子,怎样围才能使园子的面积最大?最 大面积是多少?

作业:课本随堂练习 、习题1,2,3

板书设计

二次函数的应用??面积最大问题

课后反思

二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。 本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流, 让学生通过掌握 求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。

教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐 和成就感。在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。同时也注重对解题方法与解题 模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法。

二次函数教案【篇6】

教学目标:

让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。

重点:二次函数表达式的形式的选择

难点:各种隐含条件的挖掘

教法:引导发现法

教学过程:

(一)诊断补偿,情景引入:

1、二次函数的一般式是什么

2、二次函数的图象及性质

(先让学生复习,然后提问,并做进一步诊断)

(二)问题导航,探究释疑:

一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式。例如:我们在确定一次函数的关系式时,通常需要两个立的条件:确定反比例函数的关系式时,通常只需要一个条件:如果要确定二次函数的关系式,又需要几个条件呢?

(三)精讲提炼,揭示本质:

例1。某涵洞是抛物线形,它的截面如图26。2。9所示,现测得水面宽1。6m,涵洞顶点O到水面的距离为2。4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?

分析如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。

解由题意,得点B的坐标为(0。8,-2。4),

又因为点B在抛物线上,将它的坐标代入,得所以因此,函数关系式是。

例2、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2);

(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);

(3)已知抛物线与x轴交于点M(-3,0)(5,0)且与y轴交于点(0,-3);

(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。

分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。

解(1)设二次函数关系式为,由已知,这个函数的图象过(0,-1),可以得到c= -1。又由于其图象过点(1,0)、(-1,2)两点,可以得到

解这个方程组,得a=2,b= -1。

所以,所求二次函数的关系式是。

(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。

所以,所求二次函数的关系式是。

(3)因为抛物线与x轴交于点M(-3,0)、(5,0),

所以设二此函数的关系式为。

又由于抛物线与y轴交于点(0,3),可以得到解得。

所以,所求二次函数的关系式是。

(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。

(四)题组训练,拓展迁移:

1、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);

(2)已知抛物线的顶点为(-1,2),且过点(2,1);

(3)已知抛物线与x轴交于点M(-1,0)、(2,0),且经过点(1,2)。

2、二次函数图象的对称轴是x= -1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。

(五)交流评价,深化知识:

确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。

(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。

(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。

本课课外作业1。已知二次函数的图象经过点A(-1,12)、B(2,-3),

(1)求该二次函数的关系式;

(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。

2、已知二次函数的图象与一次函数的图象有两个公共点P(2,m)、Q(n,-8),如果抛物线的对称轴是x= -1,求该二次函数的关系式

二次函数教案【篇7】

的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。

实质上,函数的名称都反映了函数表达式与自变量的关系.

三、课堂训练(略)

四、小结归纳:

学生谈本节课收获

1.二次函数概念

2.二次函数与一次函数的区别与联系

3.二次函数的4种常见形式

五、作业设计

㈠教材16页1、2

㈡补充:

1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是

2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是____________.

3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是_______,若年利率为6%,两年到期的本利共______元.

4、在△ABC中,C=90,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是____;当a=8时,S=____;当S=24时,a=________.

5、当k=_____时,是二次函数.

6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为_______________.

7、已知s与成正比例,且t=3时,s=4,则s与t的函数关系式为_______________.

8、下列函数不属于二次函数的是()

A.y=(x-1)(x+2)B.y=(x+1)2C.y=2(x+3)2-2x2D.y=1-x2

9、若函数是二次函数,那么m的值是()

A.2B.-1或3C.3D.

10、一块草地是长80m、宽60m的矩形,在中间修筑两条互相垂直的宽为xm的小路,这时草坪面积为ym2.求y与x的函数关系式,并写出自变量x的取值范围.

二次函数教案【篇8】

一、教材分析

1.地位和作用

(1)二次函数是初中数学教学的重点和难点之一。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届上海市中考试题中,二次函数都是不可缺少的内容。

(2)二次函数的图象和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

2.教学目标

知识目标

1、通过复习,掌握各类形式的二次函数解析式的求解方法和思路,能够一题多解,发散学生的思维,提高学生的创造思维能力;

2、能运用数学思想解决有关二次函数的综合问题,帮助学生提高解决综合题的能力。

能力目标

提高学生对知识的整合能力和分析能力

情感目标

用powerpoint制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

3.教学重点与难点

学习重点:各类形式的二次函数解析式的求解方法和思路

学习难点:1、运用数学思想解决有关二次函数的综合问题

2、运用数形结合思想,选用恰当的数学关系式解决几何问题。

二、教学方法

1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

三、学法指导

授人以鱼,不如授人以渔。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

二次函数教案【篇9】

22.1.3二次函数函数y=a(x-h)2+k的图像和性质

一、教学内容

二次函数函数y=a(x-h)2+k的图像和性质

二、教材分析

二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。

三、学情分析

四、教学目标

1、知识与技能

使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。

2、过程与方法

会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。

3、情感态度价值观

让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。

五、教学重难点

重点:理解函数y=a(x-h)2+k的性质以及图象与y=ax2的图象之间的关系

难点:正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质

六、教学方法和手段

讲授法、小组讨论法

七、学法指导

讲授指导

八、教学过程

一、提出问题导入新课

1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?

(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?这就是本节要学习得内容。

二、学习新知

1、画图:在同一直角坐标系中画出函数y=2(x-1)2与y=2xy=2(x-1)2+1的图象,看看它们之间有何的关系? 在学生画函数图象时,教师巡视指导;

出示例3:你能发现函数y=2(x-1)2+1有哪些性质? 教师可组织学生分组讨论,互相交流,让各组代表发言,函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。

当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。

2:出示4(P10)

3、课堂练习:不画图像说说函数y=2(x-1)2-2与y=2(x-1)2的异同点

九、课堂小结

1.通过本节课的学习,你学到了哪些知识?还存在什么困惑? 2.谈谈你的学习体会。

十、作业布置

P33练习

十一、板书设计

22.1.3二次函数函数y=a(x-h)2+k的图像和性质

十二、教学反思

二次函数教案【篇10】

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;

(4)必须分解到每个多项式不能再分解为止。

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

3.下列哪些变形是因式分解,为什么?

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

二次函数教案【篇11】

〖大纲要求〗

1. 理解二次函数的概念;

2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;

3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;

4. 会用待定系数法求二次函数的解析式;

5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,数学教案-二次函数。

内容

(1)二次函数及其图象

如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。

二次函数的图象是抛物线,可用描点法画出二次函数的图象。

(2)抛物线的顶点、对称轴和开口方向

抛物线y=ax2+bx+c(a≠0)的顶点是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是( )

(A)2米 (B)3米 (C)4米 (D)5米

三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)

21.已知:直线y=x+k过点A(4,-3)。(1)求k的值;(2)判断点B(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。

22.已知抛物线经过A(0,3),B(4,6)两点,对称轴为x=,

(1) 求这条抛物线的解析式;

(2) 试证明这条抛物线与X轴的两个交点中,必有一点C,使得对于x轴上任意一点D都有AC+BC≤AD+BD。

23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在O℃时长度为200cm,温度提高1℃,它就伸长0.002cm。

(1) 求这根金属棒长度l与温度t的函数关系式;

(2) 当温度为100℃时,求这根金属棒的长度;

(3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。

24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22

(1) 求S关于m的解析式;并求m的取值范围;

(2) 当函数值s=7时,求x13+8x2的值;

25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。

26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:

(1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围;

(2) 当x为何值时,S的数值是x的4倍。

27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。

(1) 写出调整后税款y(元)与x的函数关系式,指出x的取值范围;

(2) 要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.

28、已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)

(1) 写出A,B,C三点的坐标;

(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;

(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值。

习题2:

一.填空(20分)

1.二次函数=2(x - )2 +1图象的对称轴是 。

2.函数y= 的自变量的取值范围是 。

3.若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是 。

4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。

5.若y与x2成反比例,位于第四象限的一点P(a,b)在这个函数图象上,且a,b是方程x2-x -12=0的两根,则这个函数的关系式 。

6.已知点P(1,a)在反比例函数y= (k≠0)的图象上,其中a=m2+2m+3(m为实数),则这个函数图象在第 象限。

7. x,y满足等式x= ,把y写成x的函数 ,其中自变量x的取值范围是 。

8.二次函数y=ax2+bx+c+(a 0)的图象如图,则点P(2a-3,b+2)

在坐标系中位于第 象限

9.二次函数y=(x-1)2+(x-3)2,当x= 时,达到最小值 。

10.抛物线y=x2-(2m-1)x- 6m与x轴交于(x1,0)和(x2,0)两点,已知x1x2=x1+x2+49,要使抛物线经过原点,应将它向右平移 个单位。

二.选择题(30分)

11.抛物线y=x2+6x+8与y轴交点坐标( )

(A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)

12.抛物线y=- (x+1)2+3的顶点坐标( )

(A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)

13.如图,如果函数y=kx+b的图象在第一、二、三象限,那么函数y=kx2+bx-1的图象大致是( )

14.函数y= 的自变量x的取值范围是( )

(A)x 2 (B)x- 2且x 1 (D)x 2且x –1

Ⅲ.课堂练习

随堂练习

Ⅳ.课时小结

本节课进一步探究了函数=3x2与=3(x-1)2,=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.

Ⅴ.课后作业

习题2.4

Ⅵ.活动与探究

二次函数= (x+2)2-1与= (x-1)2+2的图象是由函数= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?

解:= (x+2)2-1的图象是由= x2的图象向左平移2个单位,再向下平移1个单位得到的,= (x-1)2+2的图象是由= x2的图象向右平移1个单位,再向上平移2个单位得到的.

= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到= (x-1)2+2的图象.

= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到= (x+2)2-1的图象.

板书设计

4.2.1 二次函数=ax2+bx+c的图象(一) 一、1. 比较函数=3x2与=3(x-1)2的

图象和性质(投影片2.4.1 A)

2.做一做(投影片2.4.1 B)

3.总结函数=3x2,=3(x-1)2= 3(x-1)2+2的图象之间的关系(投影片2.4.1 C)

4.议一议(投影片2.4.1 D)

二、课堂练习

1.随堂练习

2.补充练习

三、课时小结

四、课后作业

备课资料

参考练习

在同一直角坐标系内作出函数=- x2,=- x2-1,=- (x+1)2-1的图象,并讨论它们的性质与位置关系.

解:图象略

它们都是抛物线,且开口方向都向下;对称轴分别为轴轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).

=- x2的图象向下移动1个单位得到=- x2-1 的图象;=- x2的图象向左移动1个单位,向下移动1个单位,得到=- (x+1)2-1的图象.

相关推荐

  • 数学一次函数教案 每个老师为了上好课需要写教案课件,只要我们老师在写的时候认真负责就可以了。 教案课件是教学的纲领,要写到位才能有效提高教学,好的教案课件怎么写?是否想更深入地了解“数学一次函数教案”下面的资料或能帮到你,希望这篇文章能够为您提供实用的方法和建议!...
    2024-06-07 阅读全文
  • 二次函数教案精选11篇 本文是关于“二次函数教案”的资料,幼儿教师教育网编辑整理了这篇文章。为了编写课程教案课件,老师通常会参考课本中的主要教学内容。因此,在本学期写教案课件之前,仔细研读教材是必要的。请继续阅读本文,以获取更多相关内容!...
    2023-06-06 阅读全文
  • 数学一次函数教案14篇 老师在上课前需要有教案课件,只要课前把教案课件写好就可以。制作好的教案是实现优质教学的有力保障。幼儿教师教育网编辑为你收集整理了“数学一次函数教案”,我们在这里提供的指导意见仅供参考具体情况还需要您自己决定!...
    2023-09-11 阅读全文
  • 2025一次函数教案8篇 对于新入职的老师而言,教案课件还是很重要的,因此教案课件不是随便写写就可以的。优秀的教案是教师有效开展教学工作的必要手段之一,写教案课件要具备哪些步骤?编辑为您选出的“一次函数教案”让您不容错过,请您好好看看本文!...
    2024-06-17 阅读全文
  • 二次函数教案十一篇 不为明天做好准备的人是没有未来的,优质课堂,就是幼儿园的老师在讲学生在答,讲的知识都能被学生吸收,为了提升学生的学习效率,准备教案是一个很好的选择,教案可以帮助学生更好地进入课堂环境中来。我们要如何写好一份值得称赞的幼儿园教案呢?小编花时间特意编辑了二次函数教案十一篇,供大家借鉴和使用,希望大家分享...
    2024-02-23 阅读全文

每个老师为了上好课需要写教案课件,只要我们老师在写的时候认真负责就可以了。 教案课件是教学的纲领,要写到位才能有效提高教学,好的教案课件怎么写?是否想更深入地了解“数学一次函数教案”下面的资料或能帮到你,希望这篇文章能够为您提供实用的方法和建议!...

2024-06-07 阅读全文

本文是关于“二次函数教案”的资料,幼儿教师教育网编辑整理了这篇文章。为了编写课程教案课件,老师通常会参考课本中的主要教学内容。因此,在本学期写教案课件之前,仔细研读教材是必要的。请继续阅读本文,以获取更多相关内容!...

2023-06-06 阅读全文

老师在上课前需要有教案课件,只要课前把教案课件写好就可以。制作好的教案是实现优质教学的有力保障。幼儿教师教育网编辑为你收集整理了“数学一次函数教案”,我们在这里提供的指导意见仅供参考具体情况还需要您自己决定!...

2023-09-11 阅读全文

对于新入职的老师而言,教案课件还是很重要的,因此教案课件不是随便写写就可以的。优秀的教案是教师有效开展教学工作的必要手段之一,写教案课件要具备哪些步骤?编辑为您选出的“一次函数教案”让您不容错过,请您好好看看本文!...

2024-06-17 阅读全文

不为明天做好准备的人是没有未来的,优质课堂,就是幼儿园的老师在讲学生在答,讲的知识都能被学生吸收,为了提升学生的学习效率,准备教案是一个很好的选择,教案可以帮助学生更好地进入课堂环境中来。我们要如何写好一份值得称赞的幼儿园教案呢?小编花时间特意编辑了二次函数教案十一篇,供大家借鉴和使用,希望大家分享...

2024-02-23 阅读全文
Baidu
map