幼儿教师教育网,为您提供优质的幼儿相关资讯

乘法分配律教学反思怎么写

发布时间:2023-02-19 乘法分配律教学反思

「必备」乘法分配律教学反思怎么写(通用6篇)。

教师是创造真善美的人,教师在每节课之前都需要准备一份教案。教案也便于教师做自我总结,实现专业跃升,如何让自己的教案变得更加完整呢?幼儿教师教育网编辑特别整理来自网络的乘法分配律教学反思怎么写,希望对你有所帮助,动动手指请收藏一下!

乘法分配律教学反思怎么写【篇1】

乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。

教学内容:教材第54~55页例题,完成“做一做”。

教学目标:

1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。

2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功

感,增强学习的兴趣和自信。

乘法分配律教学反思怎么写【篇2】

教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,在教学中应该注意些什么呢?

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决“一共贴了多少块瓷砖?”这一问题,结合具体的生活情景,得到了(6+4)×9=6×9+4×9这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解(6+4)×9=6×9+4×9是相等的,还要从乘法的意义的角度理解,即左边表示10个9,右边也表示10个9,所以(6+4)×9=6×9+4×9。

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、 让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算125×88;101×89你能用几种方法? 125×88 ①竖式计算; ②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88; ⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

4、多练。

针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

乘法分配律教学反思怎么写【篇3】

《乘法分配律》是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的.计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……

1、关注学生已有的知识经验。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。

2、展示知识的发生过程,引导学生积极主动探究。让学生根据提供的问题,用不同的方法解决,引导学生观察,让学生说明自己发现的规律。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。

3、出示乘法分配律的几种不同的形式让学生进行练习。

通过这一系列的教学措施,一节课下来,总体感觉良好——觉得同学们掌握得还不错。于是,我布置了让学生们完成练习册中《乘法分配律》这一课的习题。

当我批改练习时我傻了眼,学生的作业大多是中,少部分得良和差(我的作业批改评定标准),为什么会是这样的结果,我进行反思,发现是讲时,例题出示的不多,当时学生都会做了,但是对于熟练掌握这个既是重点又是难的课程的确不是那么简单的,三种题型放在一起学生就很容易受到干扰,结果是张冠李戴,错得让我涕笑皆非。而为了让学生把这个知识点掌握牢固,我整整又用了两节课。

通过这个知识点的教学,我发现数学不多练是不行的。在学生理解之后,必须对其进行及时、有效的练习才可以使知识掌握的更加牢固。

乘法分配律教学反思怎么写【篇4】

1、在思考如何设计《乘法分配律练习课》之前,我收集了一些本校四年级学生的错题,进行分析,了解学生的学习现状,针对学生普遍存在的问题进行教学设计。

2、经过调查发现学生出现错误的根本原因在于不理解算式的意义,仅仅停留在题目表面,先找相同因数,再套用公式,不能按照算理正确地思考简算过程。所以我认为,这节练习课应该从最朴素的算理——乘法的意义出发,抓住问题本质,才能对症下药。教学中我通过两个判断练习,引导学生从乘法意义的角度理解乘法分配律,从学生的反馈来看,这样的设计教学效果比较合理科学的,学生在进行简算时已经有了检查的意识。而不再是盲目地套用格式。

3、通过将乘法分配律常见题型进行归类,不同题型采用了不同的小妙招来解决,题目形式变化,解决方法也不同,但只要符合“几个几加上几个几”的意义,紧扣每一步都相等,就能够借助乘法分配律进行简算。学生对这4个简算小妙招比较感兴趣,从练习反馈来看学习效果比较好。

本节课的教学设计合理、教学重难点突出,教学目标明确、教学效果比较好。当然也有一些不足之处:在计算大长方形的面积时,课件上呈现的数字要把单位带上,如果时间允许,最好给学生5分钟左右的集中练习的时间。

乘法分配律教学反思怎么写【篇5】

教学过程:

一、创境

1、直接出示:师口述:张阿姨买5件夹克和5条裤子,一共要付多少元?你们能用两种方法解答吗?(独立)指名板演

2、组织交流:你是怎么想的?(先求什么,再求什么)

比较:最后结果,你发现什么?

说明:这样的两个算式可写成一个等式

3、出示课题运算律

今天,我们就来仔细研究这两个算式,找出其中隐藏的秘密。

二、探究:

1、仔细观察此算式,比较等号的两边有什么联系?

2、明确:左边先算什么?再算什么?右边先算什么?再算什么?

3、根据观察,你有什么猜想?是不是所有这样的两道算式间都有这样联系呢?

列举指名口答算式齐计算感受结果相等

4、发现规律

5、出示公式

三、应用深化

1、完成1,填一填

2、完成2

3、完成4

老师出一道算式,请同学们根据乘法分配律,说出算式,比比谁反应最快。

4、完成3:你能用两种不同方法计算长方形菜地周长吗?

5、完成5

四、回顾

通过今天的学习你有什么收获?

五、作业

对自主探究与有效生成几点尝试

——《乘法分配律》教学案例与反思

一、回顾

本课对乘法分配律的教学,结合具体的问题情境,帮助学生理解两种算法之间的联系与区别,即先算出一套的和再乘5套,与先分别算5件及服和5条裤子的总价再相加,它们的结果相等;再通过例举验证,观察比较,归纳出乘法分配律;最后进行多层次的练习,进一步提升孩子们对乘法分配律理解与应用。

二、反思

新课程如春风化雨,走进了师生的生活。倡导自主探究,关注有效生成,成为新课程改革永恒的主题。在追求有效的教学中我作出了以下几点的尝试:

1、从具体的问题情境出发,有利于学生的自主探索

对于5套运动服一共多少元,这样的问题对于大多数学生来说是驾轻就熟的。结合熟悉的问题情境,便于学生理解两种算法间的联系与区别,

为后叙对乘法分配律的成功探究理好伏笔。最近发展区理论告诉我们,只有找准了学生的知识起点,才能有效的教学,熟悉的问题情境面向全体学生,只有全面参与的探究,才是真正的自主有效的探究。

2、鼓励学生大胆猜想,在验证过程中形成共识。

数学的猜想是在一系列的实验、观察、归纳、类比的基础上获得的,数学活动脱离了猜想就会显得没有意义。本课教学乘法分配律的探究过程分为几个层次:(1)启发猜想。在解决实际问题的基础上通过比较,引导学生的发散性思维,提出猜想。在具体的问题情境中,让学生插上想象的翅膀,激起创新的火花。(2)例举验证。让学生围绕猜想,以小组探究为主要形式,以独立思考例举算式与合作学习有机结合,算出得数发现两种算式结果相等,在相互交流中,形成对乘法分配律的共识。在交流、合作中,使学生真正成为学习的主人。

3、设计多层次练习,在层层深入中启迪学生的智慧

在形成对乘法分配律的认识后,分几个层次运用知识训练,首先是基础训练,书本55页第1、2、3题练习从正的两个角度进行,使学生明确乘法分配律是互逆的。从而达到灵活运用真正理解并掌握的目标。其次变式练习,我将书本55页第4题组练习设计成游戏的形式呈现,让学生在国松的氛围中,发现用乘法分配律可使计算方便。最后拓展延伸启迪智慧。练习中再次结合具体的问题情境,通过观察与比较体会到乘法分配律不仅适用于一个数两个数的和,也适用于一个数乘两个数的差。在这层层深入的练习中面向了全体学生,使每个孩子有所进步,有所发现,有所启迪,有所收获。

新课改的脚步在前行,新课扆的理念在深入。作为教师只有不断内化新课程理念,才能使自己的教学面向全体,促使学生真正的自主探究,成为学习的主人。

乘法分配律教学反思怎么写【篇6】

关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:

首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。

其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。

不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。

《乘法分配律》教学反思3

乘法分配律是一节比较抽象的概念课,教师可以根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

具体是这样设计的:先创设佳乐超市的情景调动学生的学习积极性,通过买“3套运动服,每件上衣21元,每条裤子10元,一共花多少元?”列出两种不同的式子,他们确实能够体会到两个不同的算式具有相等的关系。这是第一步:通过资料获取继续研究的信息。(虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。)

第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,教师不要急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的`能力。

第三步:应用规律,解决实际问题。通过对于实际问题的解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。

Yjs21.Com更多幼师资料扩展阅读

乘法分配律教学反思精选11篇


以下是幼儿教师教育网编辑为大家精心准备的乘法分配律教学反思精选,欢迎学习和参考,希望对你有帮助。严于己,而后勤于学生,教师想成功开展教学活动中,应当准备好教案。教案有利于教学思路清晰,过程流畅。

乘法分配律教学反思精选 篇1

乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。

1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

结合学生的掌握情况我觉得教学此内容需要注意以下几点:

1、区分乘法结合律与乘法分配律的特点,多进行对比练习。乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

3、多练。针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

《乘法分配律》教学反思11

乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

乘法分配律教学反思精选 篇2

关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:

首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。

其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。

不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。

乘法分配律教学反思精选 篇3

乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。

一、创设师生竞赛,激发学习欲望。

上课教师先出示:(1)8×(125+11) (2)(100+1)×23

(3 )648×5+352×5

老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。

结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。

这样的导入让学生充满了求知的欲望,激发了学习的热情。

二、设计思考问题,学生自主探究。

出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。

讨论:

1、这两种方法有什么不同?两个算式的结果如何?用什么符号连接?

2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。

生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

三、练习有坡度,前后有呼应。

在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。为了让学生初步感受乘法分配律能使一些计算简便,我特意把开始和老师比赛的题目让学生运用今天所学知识进行计算,学生非常有兴趣,在练习中培养了学生分析、推理、概括的思维能力。

总之,在本堂课中新的.教学理念有所体现,是一节本色的数学课堂。但在具体的操作中还缺乏成熟的思考,自主探究环节对问题的设计不够简洁,还可以再做斟酌。实际分配律的揭示过程与教案设计顺序有些出入,感觉效果没有预想的好,上课时对于教案的熟悉程度还有待加强。

乘法分配律教学反思精选 篇4

多年来,我一直从事小学数学教学工作,每当教授学生学习运用乘法分配律进行简便计算时,心里多少都有些发怵,因为这是一节比较抽象的概念课,学生极易混淆概念。这节课是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是学习这几个定律中的难点,它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。于是,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行仔细观察,比较和归纳,大胆提出自己的猜想并且举例进行验证。

乘法分配律是四年级下册的教学内容,对本课的教学目标我定位在:

1、从学生已有的生活经验出发,通过口算、观察、类比,归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

2、在教学中渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题、解决问题的能力,提高学生对数学的应用意识。

新教材的一个鲜明特点就是,不再仅仅给出一些数值计算的实例,让学生通过传统的计算方法,发现规律,而是给学生出示一些熟悉的问题情境,让学生从实际生活出发,体会运算定律的现实生活背景,这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。

本节课也一样,教材提供了这样一个主题图:工人叔叔正在给墙面贴瓷砖呢,横着一排贴9块瓷砖,竖着有两种颜色,其中黄色的贴4排,蓝色的贴6排,需要解决的问题是:一共需要贴多少块瓷砖?学生独立计算,分别用两种不同的方法计算:

(1)4×9+6×9=90(块);

(2)(4+6)×9=90(块)。

接着我让学生叙述等号左边和右边分别表示什么意思(根据情境)。目的是让学生用等值变形对算式的理解。接着让学生观察两个算式,让学生说出:这两个算是可以用“=”连接,即:(4+6)×9=4×9+6×9。学生继续观察等于号左边和右边的算式的特点,目的是结合学生熟悉的问题情境,为后面的学习奠定基础,帮助学生体会运算定律的现实背景。接着设计“悬念”,出示四组题目,把学生引到“两个算式的结果相等”的情况中来。先让学生猜想,然后验证,再让学生仿照上式编题,让每一个学生都不由自主的参与到研究中来。在编题的过程中,大多学生都编得正确,于是学生在参与探究中体验到了成就感,从而增强了他们学习的自信心和继续探究的欲望。接着,请同学们在生活中寻找验证的方法,分小组交流讨论,学生的思维活动一下活跃起来了,纷纷探究其中的奥秘。

用小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得的成功的机会。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐。自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律。

“给的现成”的少,学生“创造”的就多,这样学生学会的不仅仅是一条规律,更重要的是,学生学会了自主、主动参与,学会了进行合作、独立思考、研究、发现等,像一个数学家一样(这是我的鼓励语言)!这对于一个十来岁的孩子来说,起到的激励作用是无比巨大的。而爱思考、多思考、会思考的学习习惯,会让孩子一生受益。纵观整个教学过程,学生学得轻松,学得主动。

通过这节课的教学,我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有深度、广度,也为培养和发展学生思维的灵活性,提供了更加广阔的空间。本节课的教学较好的贯彻了新课程标准的理念,具体体现在以下几点:

一、主动探究、亲身经历和体验

学生的学习过程应该是学习文本批判、质疑和重新发现的过程,是在具体情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展的过程。本节的教学,我从主题图入手,引出(4+6)×9=4×9+6×9。设计的目的是从解决这个问题的两种算法中,得到乘法分配律的一个实例。接下来,出示四组题目,把学生引到“两算式的结果相等”的情况中来。然后让学生通过验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、验证、归纳出乘法分配律。整个过程中,我不是把规律直接呈现给学生,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个过程中,学生经历了一次严密的科学发现过程:观察――猜想――验证――结论,联系生活,解决问题。为学生的可持续学习奠定了基础。

二、多向互动,注重合作交流

在教学过程中,学生的认知水平、思维方式、智力水平、活动能力都是不一样的。因此,为了使不同层次的学生都能在学习中得到发展,我在本节课的教学中通过师生多向互动,特别是通过学生与学生之间的相互启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一定律的主动构建过程,使学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。

总之,在本节课中,虽然新的教学理念有所体现,但对于个别学生的参与积极性还没有充分调动起来,同学们虽然很投入,都似乎掌握了运算定律的运用,但在课堂练习时还是发现了一些问题,个别学生仍然出现了概念混淆,如:学生在计算形如a×(b+c)时,就把等于号右边的算式错误的写成:a×b+c,期间我还提醒大家注意,但实际运用中,很多同学还是忘记用括号里的两个加数a和b分别去乘括号外的乘数c。其实这个问题,也是我上课之前所发怵的原因,现在看来,对于这一问题,还必须在今后的练习过程中进一步加强理解、运用的训练,更有待我在今后的教学中不断地探索改进更好的教学方法,以求进一步提升课堂教学效率。

乘法分配律教学反思精选 篇5

乘法分配律是人教版四年级数学下册的内容,是一节比较抽象的概念课,是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。因此,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

所以,本课的教学目标,我定位在:

(1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

(2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,引出运算定律。

教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用“=”连接,即25×(4+2)=25×4+25×2。我将其首先呈现给学生,目的是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。

接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。

通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学会了像数学家一样进行研究、发现!这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。纵观教学过程,学生学得轻松,学得主动。

我通过这节课的教学感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

乘法分配律教学反思精选 篇6

教学乘法分配律之后,发现学生的正确率偏低,特别是在简算时该选用乘法结合律还是乘法分配律搞不清楚。针对这种情况,在教学中应该注意些什么呢?

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决“济青高速公路全长多少千米”这一问题,结合具体的生活情景,得到了(110+90)x2=110x2+90x2”这一结果,教学中只注重了等式的外形特点,即两个数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解两个算式是相等的,还要从乘法意义的角度理解,即左边表示200个2,右边也表示200个2。所以(110+90)x2=110x2+90x2.

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8)等。101×89①竖式计算;②(100+1)×89;③101×(80+9)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行简算,乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

4、多练。

针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如68×25+68+68×74,32×125×25等

乘法分配律教学反思精选 篇7

乘法分配律是教学的难点也是重点。这节课采用从生活中的问题入手,利用学生感兴趣的具体情境展开。这节课我力图将教学生学会知识,变为指导学生会学知识,将重视结论的记忆变为重视学生获取结论的体验和感悟,将模仿式的学习变为探究式的学习。学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。这样不仅让学生获得了数学基础知识和基本技能,而且更能培养学生主动探究、发现知识的能力。回顾整个教学过程,这节课的亮点体现在以下几个方面:

一、从身边引入熟悉的生活问题,激趣探究

我们在教学中要为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。在教学时,我先创设情景,提出问题:“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。我利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

二、为学生提供了自己独立探究的机会

数学教学应该是数学教学的活动。传统的教学活动往往只重视结论的记忆,而这节课我把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现,去探索。尤其是在学生初步感悟到两种算法相等关系的基础上,继续为学生创造一个思考的情景。我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。

三、为学生的学习方式的转变创设了条件

模仿学习,学生“知其然,而不知其所以然”,知识容易遗忘,而且不能灵活应用。改变学生的学习方式,让学生进行探索性的学习,不能是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。

乘法分配律教学反思精选 篇8

①1355+5587=55(13+87)=5513+5587

②8(125+9)=8125+9

③(100-7)25=10025+725

④9947=(100-1)47=10047-1

⑤35201=35(201-1)

⑥79125=125(80-1)=12580+1251

⑦79125=125(80-1)=12580-1

⑧1252532=1258+425

⑨88125=808125

⑩24335=(245)33=10033

学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。针对这些情况,在教学中应该注意什么呢?

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学时我们往往注重等式两边的外形特点,即a(b+c)=ab+ac缺乏从乘法意义角度的理解。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)3=23+73是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)3=23+73

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律的特征是两个数的和乘一个数或两个积的和。在练习题中(40+4)25与(404)25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25(8+4)和2584;25125254和25125+258;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?

3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解

如:12588;10189你能有几种方法?12588①竖式计算②125811③125(80+8)④(100+25)88等等。10189①竖式计算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的特色灵活选择适当的算法的目的.

4、多练

针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。

对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。

只有在理解的基础上反复练习,才能使孩子对于乘法分配律牢固掌握,我将在反思过程中制定出切实可行的计划,尽快使孩子消化吸收。

乘法分配律教学反思精选 篇9

《新课程标准》把以“学生发展为本”作为新课程的基本理念。提出“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”。然而,这些新的教学理念在实际的课堂教学中如何体现呢?

几年来,我在转变学生的学习方式方面进行了积极探索。下面,就“乘法分配律”一教学片断,谈谈自己对如何转变学生学习方式的。

[教学片断]

师:(出示课件)树勋中心小学购买舞蹈服装,每件上衣65元,每条裤子35元,购买12套衣服一共要多少元?(能用不同的方法帮助他们算算吗?)

生:(65 35)×12=1200(元)

生:65×12 35×12=1200(元)

师:每个算式的结果都是1200元,那么这两个算式有什么关系?

生:(65 35)×12=65×12 35×12

师:刚才我们是通过计算发现两个算式相等的,大家能根据题意说说两个算式为什么相等吗?

(学生小组讨论)

(过了一会儿,有几个同学举起了小手,教师指名回答。)

生:我们小组认为:我们知道一件上衣和一条裤子合起来叫一套衣服,就是65元和35元的和,买12套衣服的价钱就是12个65元和12个35元的和;每件上衣65元,12件上衣的价钱就是12个65元,每条裤子35元,12条裤子就是12个35元,合起来也是12套衣服的价钱,所以(65 35)×12=65×12 35×12。

师:哪位同学听懂了他说的意思?请用简单的语言说一遍。

生:12个65加12个35等于12个65与35的和。

师:请同桌互相说一遍。

师:照这样,你能再写出几组这样的等式吗?(学生独立思考。)

(过一会儿,一只只小手举起来了,教师指名回答。)

生1:(15 25)×8=15×8 25×8。

生2:8×(24 40)=8×24 8×40。

生3:(12 18)×15=12×15 18×15。

……

师:同桌检查一下,对方写的等式两边是否相等?

师:同学们仔细观察,对比上面的等式左右两边的式子有什么特征?你从中发现什么规律?小组内的同学可以互相商量、讨论。

过了5分钟左右,举起了几只小手。

生1:我们小组发现:等号左边的式子不是两个数的和乘一个数就是一个数乘两个数的和,等右左边的式子都是括号内的两个数与括号外的那个数相乘,最后把两个积相加起来。

生2:我们小组从乘法的意义理解发现:比如(15 25)×8=()×8 ()×8。因为15和25的和等于40,左边的式子可以理解为40个8,右边的式子可以理解为15个8加25个8一共是40个8,所以40个8等于15个8加25个8。

……

师;同学们刚才观察非常仔细,都代表本组讲出了你们发现的规律。

师:像(65 35)×12=65×12 35×12这样的等式,你能写出多少个?

生:无数个。

师:你们能不能像乘法交换律和乘法结合律那样也用一个字母式子来表示呢?

学生尝试用字母表示乘法分配律,教师巡视。

生1:我用的字母式子是(a b)×c=a×c b×c。

生2:我用的字母式子是c×(a b)=c×a c×b。

生3:我用的和生1相同。

……

师:你们真棒!你们发现的“两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。”是乘法运算中的一条定律,叫乘法分配律。乘法分配律常表示为(a b)×c=a×c b×c。

师:现在让大家用上面的字母式子记住乘法分配律,你们可以吗?

生:哈哈!这太简单了!

教后反思:

1、关注学生已有的知识经验

以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境——为树勋中心小学购买舞蹈服装。通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

2、提供自主探索的机会

一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生

的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。

3、展示知识的发生过程,引导学生积极主动探究

现代教育观认为:课堂教学不只是知识的传授过程,更是学生的发展过程。从数学学科的特点看,学生所学的数学知识是前人思维的结果。学习这些知识,不是简单地吸收,而必须通过自己的思维,把前人的思维结果转化为自己的思维结果。教师的任务是引导和帮助学生去进行再创造,而不是把现成的结论灌输给学生。让学生在探索未知领域的过程中,付出与前人发现这些知识所曾经付出的大体相同的智力代价,从而有效地实现知识训练智力的价值。例如在“乘法分配律”教学中,我先让学生根据提供的问题,用不同的方法解决,从而发现(65 35)×12=65×12 35×12这个等式,让学生观察,初步感知“乘法分配律。然后照样子写出几组这样的等式,引导学生再观察,让学生说明自己

发现的规律、并用不同的方法来表示这个规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅要让学生获得了数学基础知识和基本技能,而且让学生学习科学探究的方法,以培养学生

主动探究、发现知识的能力。

4.让学生不断在“反思”中学习,“体验”中学习

建构主义强调,学习不是简单地让学习者占有别人的知识,而是学习者主动地建构自己的知识经验,形成自己的见解。在学习过程中学习者不仅要不断监视自己对知识的理解程度,判断自己的进展与目标的差距,采取各种增进和帮助思考的策略,而且还要不断地反思自己的学习过程。由于数学对象的抽象性、数学活动的探索性决定了小学生不可能一次性地直接把握数学活动的本质,必须要经过多次的反复思考、深入研究和自我调整才可能洞察数学活动的本质特征。就小学数学课堂教学而言,反思的内容主要有:对自己的思考过程进行反思,对解题思路、分析过程、运算过程、语言的表述进行反思,对所涉及的数学思想方法反思等。在数学活动中,当学生在探索过程中遇到障碍或出现错误时,教师可以提出一些针对性的、具有启发性的问题引导学生主动地反思探索过程;当数学活动结束后,要引导学生反思整个探索过程和所获得结论的合理性,以获得成功的体验。在“乘法分配律”教学中,我先向学生我先让学生根据提供的问题,用不同的方法解决,从而发现(65 35)×12=65×12 35×12这个等式,让学生观察,是让学生初步感知这个规律。同时也体现了教学的差异性,给没有发现规律的同学以再次发现的机会。然后照样子写出几组这样的等式,引导学生再观察,让学生说明自己发现的规律、并用不同的方法来表示这个规律,来加深学生的数学体验。又如,学习了“乘法分配律”后,教师可让学生反思:“乘法分配律”是怎样总结出来的?从中你受到了什么启发?什么知识与“乘法分配律”有联系?学了“乘法分配律”后有什么用?这样既丰富了学生的数学体验,又提高了学生的“反思”的意识和能力。

本课中注意引导了学生在数学活动中体验数学,在数学中感悟数学,实现了运算律的抽象化与外化运用的认知飞跃,同时也体验到了学习数学的乐趣。

乘法分配律教学反思精选 篇10

《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。在设计本教案的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合自己所教案例,对本节课教学策略进行以下几点简要分析:

一、教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。学生能自由发挥,对所学内容很感兴趣,气氛热烈。到通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。

三、总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。

在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。

乘法分配律教学反思精选 篇11

1、在思考如何设计《乘法分配律练习课》之前,我收集了一些本校四年级学生的错题,进行分析,了解学生的学习现状,针对学生普遍存在的问题进行教学设计。

2、经过调查发现学生出现错误的根本原因在于不理解算式的意义,仅仅停留在题目表面,先找相同因数,再套用公式,不能按照算理正确地思考简算过程。所以我认为,这节练习课应该从最朴素的算理——乘法的意义出发,抓住问题本质,才能对症下药。教学中我通过两个判断练习,引导学生从乘法意义的角度理解乘法分配律,从学生的反馈来看,这样的设计教学效果比较合理科学的,学生在进行简算时已经有了检查的意识。而不再是盲目地套用格式。

3、通过将乘法分配律常见题型进行归类,不同题型采用了不同的小妙招来解决,题目形式变化,解决方法也不同,但只要符合“几个几加上几个几”的意义,紧扣每一步都相等,就能够借助乘法分配律进行简算。学生对这4个简算小妙招比较感兴趣,从练习反馈来看学习效果比较好。

本节课的教学设计合理、教学重难点突出,教学目标明确、教学效果比较好。当然也有一些不足之处:在计算大长方形的面积时,课件上呈现的数字要把单位带上,如果时间允许,最好给学生5分钟左右的集中练习的时间。

乘法分配律教学反思范文汇总


居安思危,思则有备,有备无患。幼儿园教师在工作过程中,都需要提前寻找一些资料。资料通常是指书籍、报刊、图表、图片等。参考资料有助于我们的工作进一步发展。所以,你有哪些值得推荐的幼师资料内容呢?你可以读一下小编整理的乘法分配律教学反思范文汇总,欢迎阅读,希望你能喜欢!

乘法分配律教学反思范文 篇1

教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,在教学中应该注意些什么呢?

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决“一共贴了多少块瓷砖?”这一问题,结合具体的生活情景,得到了(6+4)×9=6×9+4×9这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解(6+4)×9=6×9+4×9是相等的,还要从乘法的意义的角度理解,即左边表示10个9,右边也表示10个9,所以(6+4)×9=6×9+4×9。

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、 让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算125×88;101×89你能用几种方法? 125×88 ①竖式计算; ②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88; ⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

4、多练。

针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

乘法分配律教学反思范文 篇2

乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。

教学内容:教材第54~55页例题,完成“做一做”。

教学目标:

1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。

2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功

感,增强学习的兴趣和自信。

乘法分配律教学反思范文 篇3

乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。

一、抓住重点。让学生理解乘法分配律的意义。

在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。

我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。

二、考虑学生的学习情况,尊重他们的主观感受。

在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。

三、练习中注意乘法分配律的变式。

乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1) 和74×20+74.一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。

今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45*5+65*5和(45+65)*5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45*5+65*5=(45+65)*5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。

乘法分配律教学反思范文 篇4

《乘法分配律》是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的.计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……

1、关注学生已有的知识经验。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。

2、展示知识的发生过程,引导学生积极主动探究。让学生根据提供的问题,用不同的方法解决,引导学生观察,让学生说明自己发现的规律。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。

3、出示乘法分配律的几种不同的形式让学生进行练习。

通过这一系列的教学措施,一节课下来,总体感觉良好——觉得同学们掌握得还不错。于是,我布置了让学生们完成练习册中《乘法分配律》这一课的习题。

当我批改练习时我傻了眼,学生的作业大多是中,少部分得良和差(我的作业批改评定标准),为什么会是这样的结果,我进行反思,发现是讲时,例题出示的不多,当时学生都会做了,但是对于熟练掌握这个既是重点又是难的课程的确不是那么简单的,三种题型放在一起学生就很容易受到干扰,结果是张冠李戴,错得让我涕笑皆非。而为了让学生把这个知识点掌握牢固,我整整又用了两节课。

通过这个知识点的教学,我发现数学不多练是不行的。在学生理解之后,必须对其进行及时、有效的练习才可以使知识掌握的更加牢固。

乘法分配律教学反思范文 篇5

《乘法分配律》是一节比较抽象的概念课,是学生们学习了加法交换律和结合律,以及乘法的交换律和结合律的基础上进行教学的。本节课的教学重点是乘法分配律的特点和应用。开始导入我是利用小学教学热身赛展开的教学。9×37+9×63和9×(37+63)。左右两排学生做不同的题,让学生认识到这两道题难易程度的不同,用的时间也是不同的,体现了用括号的必要性和简便性,通过学生总结说特点引导他们猜想,然后对猜想进行验证,得出结论,并应用到实际中,培养学生们学以致用的好习惯。

上周去滨州听课,学到了“猜测-举例验证-总结-应用”的教学模式,充分体现了新课标的探究性学习,并在本课教学中得到了很好的利用,不完全归纳法,也在本课中用所应用。但是在引入时应该让学生们把这两个算式的特点和联系理解透彻了,学生们会很快的猜想出这条规律,整节课讲速度有些慢,导致了几个经典的练习题没有处理,创设情境激发学生的求知欲来导入新课,会收到更好的效果。

(80+4)×25=80×25+4×25此题的处理,我感到比较欣慰。当发现学生们(80+4)×25=80×25+4时,我灵机一动在黑板上写下了这个错误的算式,让和我做的一样的同学举手,大约有5、6个同学高兴地举起手,还有一个同学得意地说“刚才我还以为做错了呢?”看到这种情景我接着说:“不举手的同学你们想说点什么吗?”此句话给了这些没有举手的同学的信心,他们迫不及待地说出了正确的解法。这道题学生们非常容易做错,这样的处理会使学生加深印象,提高做题的准确率。

乘法分配律教学反思范文 篇6

《新课程标准》把以“学生发展为本”作为新课程的基本理念。提出“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”。然而,这些新的教学理念在实际的课堂教学中如何体现呢?

几年来,我在转变学生的学习方式方面进行了积极探索。下面,就“乘法分配律”一教学片断,谈谈自己对如何转变学生学习方式的。

[教学片断]

师:(出示课件)树勋中心小学购买舞蹈服装,每件上衣65元,每条裤子35元,购买12套衣服一共要多少元?(能用不同的方法帮助他们算算吗?)

生:(65 35)×12=1200(元)

生:65×12 35×12=1200(元)

师:每个算式的结果都是1200元,那么这两个算式有什么关系?

生:(65 35)×12=65×12 35×12

师:刚才我们是通过计算发现两个算式相等的,大家能根据题意说说两个算式为什么相等吗?

(学生小组讨论)

(过了一会儿,有几个同学举起了小手,教师指名回答。)

生:我们小组认为:我们知道一件上衣和一条裤子合起来叫一套衣服,就是65元和35元的和,买12套衣服的价钱就是12个65元和12个35元的和;每件上衣65元,12件上衣的价钱就是12个65元,每条裤子35元,12条裤子就是12个35元,合起来也是12套衣服的价钱,所以(65 35)×12=65×12 35×12。

师:哪位同学听懂了他说的意思?请用简单的语言说一遍。

生:12个65加12个35等于12个65与35的和。

师:请同桌互相说一遍。

师:照这样,你能再写出几组这样的等式吗?(学生独立思考。)

(过一会儿,一只只小手举起来了,教师指名回答。)

生1:(15 25)×8=15×8 25×8。

生2:8×(24 40)=8×24 8×40。

生3:(12 18)×15=12×15 18×15。

……

师:同桌检查一下,对方写的等式两边是否相等?

师:同学们仔细观察,对比上面的等式左右两边的式子有什么特征?你从中发现什么规律?小组内的同学可以互相商量、讨论。

过了5分钟左右,举起了几只小手。

生1:我们小组发现:等号左边的式子不是两个数的和乘一个数就是一个数乘两个数的和,等右左边的式子都是括号内的两个数与括号外的那个数相乘,最后把两个积相加起来。

生2:我们小组从乘法的意义理解发现:比如(15 25)×8=()×8 ()×8。因为15和25的和等于40,左边的式子可以理解为40个8,右边的式子可以理解为15个8加25个8一共是40个8,所以40个8等于15个8加25个8。

……

师;同学们刚才观察非常仔细,都代表本组讲出了你们发现的规律。

师:像(65 35)×12=65×12 35×12这样的等式,你能写出多少个?

生:无数个。

师:你们能不能像乘法交换律和乘法结合律那样也用一个字母式子来表示呢?

学生尝试用字母表示乘法分配律,教师巡视。

生1:我用的字母式子是(a b)×c=a×c b×c。

生2:我用的字母式子是c×(a b)=c×a c×b。

生3:我用的和生1相同。

……

师:你们真棒!你们发现的“两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。”是乘法运算中的一条定律,叫乘法分配律。乘法分配律常表示为(a b)×c=a×c b×c。

师:现在让大家用上面的字母式子记住乘法分配律,你们可以吗?

生:哈哈!这太简单了!

教后反思:

1、关注学生已有的知识经验

以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境——为树勋中心小学购买舞蹈服装。通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

2、提供自主探索的机会

一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生

的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。

3、展示知识的发生过程,引导学生积极主动探究

现代教育观认为:课堂教学不只是知识的传授过程,更是学生的发展过程。从数学学科的特点看,学生所学的数学知识是前人思维的结果。学习这些知识,不是简单地吸收,而必须通过自己的思维,把前人的思维结果转化为自己的思维结果。教师的任务是引导和帮助学生去进行再创造,而不是把现成的结论灌输给学生。让学生在探索未知领域的过程中,付出与前人发现这些知识所曾经付出的大体相同的智力代价,从而有效地实现知识训练智力的价值。例如在“乘法分配律”教学中,我先让学生根据提供的问题,用不同的方法解决,从而发现(65 35)×12=65×12 35×12这个等式,让学生观察,初步感知“乘法分配律。然后照样子写出几组这样的等式,引导学生再观察,让学生说明自己

发现的规律、并用不同的方法来表示这个规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅要让学生获得了数学基础知识和基本技能,而且让学生学习科学探究的方法,以培养学生

主动探究、发现知识的能力。

4.让学生不断在“反思”中学习,“体验”中学习

建构主义强调,学习不是简单地让学习者占有别人的知识,而是学习者主动地建构自己的知识经验,形成自己的见解。在学习过程中学习者不仅要不断监视自己对知识的理解程度,判断自己的进展与目标的差距,采取各种增进和帮助思考的策略,而且还要不断地反思自己的学习过程。由于数学对象的抽象性、数学活动的探索性决定了小学生不可能一次性地直接把握数学活动的本质,必须要经过多次的反复思考、深入研究和自我调整才可能洞察数学活动的本质特征。就小学数学课堂教学而言,反思的内容主要有:对自己的思考过程进行反思,对解题思路、分析过程、运算过程、语言的表述进行反思,对所涉及的数学思想方法反思等。在数学活动中,当学生在探索过程中遇到障碍或出现错误时,教师可以提出一些针对性的、具有启发性的问题引导学生主动地反思探索过程;当数学活动结束后,要引导学生反思整个探索过程和所获得结论的合理性,以获得成功的体验。在“乘法分配律”教学中,我先向学生我先让学生根据提供的问题,用不同的方法解决,从而发现(65 35)×12=65×12 35×12这个等式,让学生观察,是让学生初步感知这个规律。同时也体现了教学的差异性,给没有发现规律的同学以再次发现的机会。然后照样子写出几组这样的等式,引导学生再观察,让学生说明自己发现的规律、并用不同的方法来表示这个规律,来加深学生的数学体验。又如,学习了“乘法分配律”后,教师可让学生反思:“乘法分配律”是怎样总结出来的?从中你受到了什么启发?什么知识与“乘法分配律”有联系?学了“乘法分配律”后有什么用?这样既丰富了学生的数学体验,又提高了学生的“反思”的意识和能力。

本课中注意引导了学生在数学活动中体验数学,在数学中感悟数学,实现了运算律的抽象化与外化运用的认知飞跃,同时也体验到了学习数学的乐趣。

乘法分配律教学反思范文 篇7

多年来,我一直从事小学数学教学工作,每当教授学生学习运用乘法分配律进行简便计算时,心里多少都有些发怵,因为这是一节比较抽象的概念课,学生极易混淆概念。这节课是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是学习这几个定律中的难点,它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。于是,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行仔细观察,比较和归纳,大胆提出自己的猜想并且举例进行验证。

乘法分配律是四年级下册的教学内容,对本课的教学目标我定位在:

1、从学生已有的生活经验出发,通过口算、观察、类比,归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

2、在教学中渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题、解决问题的能力,提高学生对数学的应用意识。

新教材的一个鲜明特点就是,不再仅仅给出一些数值计算的实例,让学生通过传统的计算方法,发现规律,而是给学生出示一些熟悉的问题情境,让学生从实际生活出发,体会运算定律的现实生活背景,这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。

本节课也一样,教材提供了这样一个主题图:工人叔叔正在给墙面贴瓷砖呢,横着一排贴9块瓷砖,竖着有两种颜色,其中黄色的贴4排,蓝色的贴6排,需要解决的问题是:一共需要贴多少块瓷砖?学生独立计算,分别用两种不同的方法计算:

(1)4×9+6×9=90(块);

(2)(4+6)×9=90(块)。

接着我让学生叙述等号左边和右边分别表示什么意思(根据情境)。目的是让学生用等值变形对算式的理解。接着让学生观察两个算式,让学生说出:这两个算是可以用“=”连接,即:(4+6)×9=4×9+6×9。学生继续观察等于号左边和右边的算式的特点,目的是结合学生熟悉的问题情境,为后面的学习奠定基础,帮助学生体会运算定律的现实背景。接着设计“悬念”,出示四组题目,把学生引到“两个算式的结果相等”的情况中来。先让学生猜想,然后验证,再让学生仿照上式编题,让每一个学生都不由自主的参与到研究中来。在编题的过程中,大多学生都编得正确,于是学生在参与探究中体验到了成就感,从而增强了他们学习的自信心和继续探究的欲望。接着,请同学们在生活中寻找验证的方法,分小组交流讨论,学生的思维活动一下活跃起来了,纷纷探究其中的奥秘。

用小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得的成功的机会。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐。自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律。

“给的现成”的少,学生“创造”的就多,这样学生学会的不仅仅是一条规律,更重要的是,学生学会了自主、主动参与,学会了进行合作、独立思考、研究、发现等,像一个数学家一样(这是我的鼓励语言)!这对于一个十来岁的孩子来说,起到的激励作用是无比巨大的。而爱思考、多思考、会思考的学习习惯,会让孩子一生受益。纵观整个教学过程,学生学得轻松,学得主动。

通过这节课的教学,我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有深度、广度,也为培养和发展学生思维的灵活性,提供了更加广阔的空间。本节课的教学较好的贯彻了新课程标准的理念,具体体现在以下几点:

一、主动探究、亲身经历和体验

学生的学习过程应该是学习文本批判、质疑和重新发现的过程,是在具体情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展的过程。本节的教学,我从主题图入手,引出(4+6)×9=4×9+6×9。设计的目的是从解决这个问题的两种算法中,得到乘法分配律的一个实例。接下来,出示四组题目,把学生引到“两算式的结果相等”的情况中来。然后让学生通过验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、验证、归纳出乘法分配律。整个过程中,我不是把规律直接呈现给学生,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个过程中,学生经历了一次严密的科学发现过程:观察――猜想――验证――结论,联系生活,解决问题。为学生的可持续学习奠定了基础。

二、多向互动,注重合作交流

在教学过程中,学生的认知水平、思维方式、智力水平、活动能力都是不一样的。因此,为了使不同层次的学生都能在学习中得到发展,我在本节课的教学中通过师生多向互动,特别是通过学生与学生之间的相互启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一定律的主动构建过程,使学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。

总之,在本节课中,虽然新的教学理念有所体现,但对于个别学生的参与积极性还没有充分调动起来,同学们虽然很投入,都似乎掌握了运算定律的运用,但在课堂练习时还是发现了一些问题,个别学生仍然出现了概念混淆,如:学生在计算形如a×(b+c)时,就把等于号右边的算式错误的写成:a×b+c,期间我还提醒大家注意,但实际运用中,很多同学还是忘记用括号里的两个加数a和b分别去乘括号外的乘数c。其实这个问题,也是我上课之前所发怵的原因,现在看来,对于这一问题,还必须在今后的练习过程中进一步加强理解、运用的训练,更有待我在今后的教学中不断地探索改进更好的教学方法,以求进一步提升课堂教学效率。

乘法分配律教学反思范文 篇8

乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。

1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

结合学生的掌握情况我觉得教学此内容需要注意以下几点:

1、区分乘法结合律与乘法分配律的特点,多进行对比练习。乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

3、多练。针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

《乘法分配律》教学反思11

乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

最新乘法分配律教学反思模板系列


经验时常告诉我们,做事要提前做好准备。在日常的学习工作中,幼儿园教师都会提前准备一些能用到的资料。资料的定义比较广,可以指生活学习资料。参考资料会让未来的学习或者工作做得更好!你知不知道我们常见的幼师资料有哪些呢?由此,有请你读一下以下的“最新乘法分配律教学反思模板系列”,更多相关信息请继续关注本网站。

乘法分配律教学反思模板 篇1

首先结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学生学得轻松,学得主动。

通过这节课的教学我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

乘法分配律教学反思模板 篇2

乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。

教学内容:教材第54~55页例题,完成“做一做”。

教学目标:

1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。

2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功

感,增强学习的兴趣和自信。

乘法分配律教学反思模板 篇3

1、在思考如何设计《乘法分配律练习课》之前,我收集了一些本校四年级学生的错题,进行分析,了解学生的学习现状,针对学生普遍存在的问题进行教学设计。

2、经过调查发现学生出现错误的根本原因在于不理解算式的意义,仅仅停留在题目表面,先找相同因数,再套用公式,不能按照算理正确地思考简算过程。所以我认为,这节练习课应该从最朴素的算理——乘法的意义出发,抓住问题本质,才能对症下药。教学中我通过两个判断练习,引导学生从乘法意义的角度理解乘法分配律,从学生的反馈来看,这样的设计教学效果比较合理科学的,学生在进行简算时已经有了检查的意识。而不再是盲目地套用格式。

3、通过将乘法分配律常见题型进行归类,不同题型采用了不同的小妙招来解决,题目形式变化,解决方法也不同,但只要符合“几个几加上几个几”的意义,紧扣每一步都相等,就能够借助乘法分配律进行简算。学生对这4个简算小妙招比较感兴趣,从练习反馈来看学习效果比较好。

本节课的教学设计合理、教学重难点突出,教学目标明确、教学效果比较好。当然也有一些不足之处:在计算大长方形的面积时,课件上呈现的数字要把单位带上,如果时间允许,最好给学生5分钟左右的集中练习的时间。

乘法分配律教学反思模板 篇4

乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。

1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

结合学生的掌握情况我觉得教学此内容需要注意以下几点:

1、区分乘法结合律与乘法分配律的特点,多进行对比练习。乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

3、多练。针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

《乘法分配律》教学反思11

乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

乘法分配律课件10篇


每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。编写完整的教案是实现有效教学和提高学生学习成绩的需要,写一篇教案课件要具备哪些步骤?栏目小编为您准备了以下最新关于“乘法分配律课件”的范文,愿这些参考资料对你有所启发成就更好的你!

乘法分配律课件 篇1

乘法分配律

一、教学目标:

(一)知识目标:

使学生在解决实际问题的过程中发现并理解乘法分配律。

(二)智能目标:

使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

(三)情感目标

使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重点:在解决实际问题的过程中发现并理解乘法分配律

教学难点:自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。

二、教法学法:启发式教学

三、教学准备:

多媒体课件投影仪主动参与,乐于探究

四、教学过程

(一)创设问题情境

五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,我们学校教舞蹈的老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)

【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。

(二)展开探索过程

1、初步感知

(1)提出要求:仔细观察,从图中你获得了哪些信息?

买这些些服装,叶老师一共要付多少元钱呢?你能列出综合算式吗?

(2)学生独立列式,教师巡视

(3)交流反馈:你是怎么想的,怎样列式

板书:65×5+45×5(65+45)×5

请生交流解题思路,并比较哪种解法更简便。

(4)列成等式

通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?

小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。

2、类比展开

(1)提出类比问题:如果叶老师选择选择的是另两种服装,买的数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?

(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!

(3)学生小组合作完成,交流反馈,相机板书:

32×6+65×6(32+65)×6

32×8+65×8(32+65)×8

32×6+45×6(32+45)×6

32×8+45×8(32+45)×8

(4)观察算式,引导列成等式,仿照等式随意举例

像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。

举例,小组交流,挑选几组板书。

【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。

3、体验感悟

(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?学生有自己的语言描述发现的规律。

(2)修改算式,感悟规律

通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。

课件出示:

(3+4)×63×6+4×6

3×17+3×53×(17+5)

20×(5+13)20×5+5×13

(13+7)×413×4+7

(13+7)×413×4+7

交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。

【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。

4、揭示规律

(1)游戏“交朋友”

课件出示:(80+20)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)

出示:6×(10+20),(A+100)×5,(42+45)×▲,请生帮它们交朋友。

(2)揭示规律

像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表

示??)

用字母表示:〔a+b〕×c=a×c+b×c

用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8 9×18+9×282

【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。

(三)巩固内化

1、根据乘法分配律,在__里填入合适的数

(1)、(15+23)×2=____×2+_____×2

(2)、(37+12)×16=37×____+12×____

(3)、___×___+___×___= ( 16+26)×8

(4)、(125+11)×8=____×____+____×_____

(5)、276×38+276×62=____×(___+___)

如果计算的话,(4)、(5)你会选择左边的算式还是右边的算式进行计算,为什么?

2、判断下面各题是否正确,把错误的改正过来

(1)2×15+4×15=(2+4)×15??????()

订正:

(2)5×(20+6)=5×20+6????????()

订正:

(3)8×23+8×27=8×23+27????????()

订正:

(4)9×(6×4)=9×6+9×4????????()

订正:

3、应用题

一块长方形的桌面,长68厘米,宽32厘米。周长是多少厘米?(用两种方法解答,并说说你喜欢哪种方法)

*4、用简便方法计算(任选一题)

①(125+9)×8 ②128×31-28×31 ③43×5+46×5+11×5

小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。

【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。

(四)总结回顾

今天这节课,你有什么收获,从中你得到什么启发?

【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。

(五)课堂作业

六、说板书设计

乘法分配律

例:短袖衫裤子夹克衫乘法分配律:

32元45元65元两个数的和与一个数相乘,可以把这65×5+45×5=(65+45)×两个数分别和这个数相乘,再相加。=325+225=110×5

=550(元)=550(元)

其他购买方案:

32×6+65×6=(32+65)×6

32×8+65×8=(32+65)×8

32×6+45×6=(32+45)×6

32×8+45×8=(32+45)×8

〔a+b〕×c=a×c+b×c

《乘法分配律》教学反思教学乘法分配律之后,发现学生的学习效果很不理想,特别是乘法分配律的'运用,正确率很低。针对这种情况,我想,在教学中应该注意以下几个问题:

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。教学中通过“朝三暮四”的故事解决“这只猴子20天要吃多少个栗子?”这一问题,结合具体的故事情景,得到了(3+4)×20=3×20+4×20这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等

的?”这里不仅要从解题思路的角度理解(3+4)×20=3×20+4×20是相等的,还要从乘法的意义的角度理解,即左边表示7个20,右边也表示7个20,所以(3+4)×20=3×20+4×20。

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算125×88;101×89你能用几种方法?125×88 ①竖式计

算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

4、多练。

针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等

乘法分配律课件 篇2

[教学内容]练习四(第50-51页)

[教学目标]

1、练习用乘法结合律、分配律进行简算。

2、用乘法解决实际问题。

[教学重、难点]

用乘法结合律、分配律进行简算。解决实际问题。

[教学准备]计算器

[教学过程]

一、用乘法结合律、分配律进行简算

做第1题:独立完成,订正时说说简算方法。

做第3题:小组活动:比一比

看哪个小组连的又对又快,在做题的过程中进一步理解乘法分配律适用的条件。

二、花圃中的乘法

让学生独立完成,重点理解列式的算理,即第1个问题为什么是计算周长,第2个问题为什么是计算面积,体会周长与面积的不同含义。

三、观察与思考:

本题是一个乘数的变化引起积的变化,渗透了一些函数的思想。

先呈现情境图,让学生观察,再根据图上给出的信息解决所提出的问题。然后引导学生思考所列算式中乘数与积的变化规律。接着,可让学生再举例来验证自己的发现。

第课时:

乘法分配律课件 篇3

教学内容:

探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的试一试、练一练等)

重点:指导学生探索乘法的分配律。

难点:发现并归纳乘法分配律

关键:指导观察分析算式的特征。

教学目标:

1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。

2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

3、会用乘法分配律进行一些简便计算。

教具准备

实物投影仪或挂图(课文插图)

教学过程:

一、导入谈话:

教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。

板书:探索与发现(三)

今天,又有什么发现呢?让我们一起走上探索之路。

二、探索交流、发现规律

1、呈现课文插图(实物投影或挂图)

教师:一共贴了多少块瓷砖?你怎么算?

2、先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。

3、反馈交流情况。

由小组派代表汇报交流结果(有选择地板书)。

学生A:69+49

=54+36

=90(块)

学生B:(6+4)9

=109

=90(块)

要求学生结合插图说明算式的意义。

4、指导学生结合观察算式的特点。

5、举例验证。

让学生根据算式特征,再举一些类似的例子。

如:(40+4)25和4025+425

4264+4236和42(64+36)

讨论交流:

(1)交流学生的举例是否符合要求:

(2)交流不同算式的共同特点;

(3)还有什么发现?(简便计算)

6、字母表示。

教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

学生先独立完成,然后小组交流。最后教师板书。

(a+b)c=ac+bc

7、提示课题。

教师在未完成的板书中添上:乘法分配律。

三、应用规律,解决问题

课文第46页的试一试。

1、(80+4)25

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

(3)鼓励学生独自计算。

2、3472+3428

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求。

(3)简便计算过程,并得出结果。

四、巩固练习

1、课文第46页的练一练。

第1题,简单的应用乘法分配律进行计算。

第2题,注意指导一些算式的计算方法。

9911:可以看成(100-1)11=1100-11

或看成99(10+1)=990+99

3829+38应该把算式看作:3829+381

第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。

第一个问题一共有多少瓶?可以直接扳书让学生进行练习,然后进行交流。

第二个问题付1500元够吗?学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。

2、选用课时作业设计。

[板书设计]

乘法结合律

3(54)=6015254=1500

(35)4=6015(254)=1500

乘法结合律:(ab)c=a(bc)

乘法分配律课件 篇4

一、说教材

(一)教学内容在教材中的地位和作用

本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材将乘法分配律与传统的相遇问题有机地结合在一起,合理整合知识,让学生在解决实际问题的过程中理解乘法分配律,注重引导学生运用猜想、验证、比较、归纳等方法解决问题,提高教学效率。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。

(二)教学重点、难点的确定

新的数学改革强调,现实的和探索性的数学学习活动要成为数学学习内容的有机组成部分。所以,我把本课的重点确定为引导学生发现乘法分配律及理解含义上;因乘法分配律不是单一的乘法运算,还涉及到加法运算,为此在理论算术中又称之为乘法的分配性质,理解起来有一定的难度,所以,我把本节课的难点也确定为理解掌握乘法分配律上。

(三)学情分析

学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习"乘法分配律"不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。

二、说教学目标

根据《大纲》要求,教学内容和学情,本节课我制定如下教学目标。

(一)知识目标:

学会解答相遇问题,在解答实际问题的过程中理解乘法分配律。

(二)智能目标:

借助已有经验和具体运算,初步学会用猜想、验证、比较、归纳等数学方法学习知识。

(三)情感目标:

使学生欣赏到数学运算简洁美,体验"乘法分配律"的价值所在,从而提高学习数学的兴趣和学习数学的主动性。

三、说教法与学法

(一)教学方法

在设计求平均数的教学时,利用问题情境,以解决问题为线索,让学生在独立思考、合作探究的过程中,充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。

(二)学法指导

本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练,积极参与教学的整个过程。

(三)教学准备

多媒体课件

四、说教学程序 (共分四个环节)

一、创设情境,激趣引入。

师:你了解我国高速公路的一些情况吗?山东境内有哪几条主要的高速公路?你知道济青高速公路的情况吗?

学生在小组内交流课前收集的有关资料,师简要介绍我国及山东省高速公路发展情况。(板书课题)

出示情境图,引导学生观察。你从图中得到了哪些信息?根据图中的信息你能提出什么数学问题?(引导学生提出有关乘法的问题)

学生交流,师适当板书:济青高速公路全长约多少千米?

【青岛版教材的一大特点是:()突出问题意识的培养。这一环节中让学生自己发现问题——提出问题——解决问题,培养学生收集和处理数学信息的能力。极大地提高了学生的学习兴趣,带入学生进入学习过程。】

紧接着进入第二环节:

二、合作探索,发现规律

本环节意在引导学生通过已有经验和具体运算,在观察、猜想、比较、归纳、验证、与交流的数学活动中,理解乘法分配律。具体可分四步进行:

1、解决问题

师::"济青高速公路全长约多少千米?"这个问题怎么解决?

学生先独立思考,小组探究,全班交流:求济青高速公路全长就是求两辆车两小时行驶的路程和。师根据学生的交流,进一步借助课件或画出线段图,表示出解决这个问题的两种思路。学生独立列式计算,集体交流后,师适当板书。一种思路是先求每辆车分别行驶的路程,再求公路的全长。110×2+90×2=400(千米)。一种是先求两辆车1小时行驶的路程和,再求2小时行驶的路程和。(110+90)×2=400(千米)

2、观察猜想

师:观察、比较上面两个算式,你有什么发现?

学生思考交流,师引导学生重点从计算结果、算式的结构和计算方法上进行比较。

师:根据前面所学的定律,结合刚才的发现,你有什么想法?

学生交流,提出猜想。(110+90)×2和110×2+90×2可能相等。

3、验证猜想:

你们能想办法验证自己的猜想吗?

学生小组合作,举例验证,并进行记录,全班汇报交流。

师:你们真了不起!刚才你们发现的规律:两个数的和与一个数相乘,可以把这两个加数分别与这个数相乘,再把积相加,这个规律叫做乘法分配律。学生仿照(110+90)×2和110×2+90×2写算式。验证揭示了这些例子共同特点,就是两个数的和乘一个数等于和里的每一个加数……在举例验证的过程中提示学生可以使用计算器。

4、用字母表示规律,

你能用字母把它表示出来吗? 学生尝试表示,师板书。

再次凸现乘法分配律的含义:(a+b)·c=a·c+b·c.

三、巩固练习

1、自主练习第一题,学生独立完成,订正时,指生交流是怎么链接的,为什么这样链接?

2、第二题,学生独立完成,交流时说说这样填写的理由。

3、第三题,学生独立判断对错,在小组内交流结果,说说错的原因并将错误的算式进行纠正。

四、总结评价

师:这节课上你有什么收获?你能评价一下你和小组同学的表现吗?

板书设计: 济青高速公路

方法一 110×2+90×2=400

方法二 (110+90)×2=400

乘法分配律:(a+b)。c = a.c+b.c

综观上述设计,在创设情景中发现并提出问题——然后在解决问题的过程中发现规律 ——通过猜想验证巩固规律 ——简单运用规律。我执教青岛版小学数学四年级上册已有两年,在课堂教学中实践了上述教学流程,并不断地充实、完善。极大地激发了学生求知欲,培养了学生自主、合作、探究的能力,使数学课堂"活"起来。通过这样精心的安排,体现了数学学科的特点,呈现了数学思维规律的探索过程。

乘法分配律课件 篇5

教学目标:

1、借助画图的方式理解、掌握乘法分配律并会用字母表示。

2、能够运用乘法分配律进行简便运算。

3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。

4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。

教学重、难点:

理解并掌握乘法分配律。难点是乘法分配律的推理及运用。

教学过程:

一、情境导入:

出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?

二、探究发现,归纳总结。

(一)借助图形,感知模型。

1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?

请把想象的图画出来。交流学生作品后,课件出示

60米 30米

20米

原面积 增加的部分

2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?

评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。

(二)借助图形,抽象模型。

1、出示几何图形:用两种方法解决问题。

60米 ( )米

20米

原面积 增加的部分

刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?

2、交流:你想增加几米?怎样算?结论是什么?

师相机板书。

引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。

3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。

( )米 ( )米

( )米

原面积 增加的部分

4、交流:你是怎么猜测和验证的?结论是什么?

教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c

讨论:这个规律在数学上叫——?(板书课题——乘法分配律)

(三)借助图形,逆用模型。

1、出示计算题:

(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。

引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?

2、46×25+54×25、98×20+98×80

请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。

(四)借助图形,拓展模型。

1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?

你们能解决这个问题吗?试着算一算。

反馈交流:说说你们是怎么解决的?

我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。

2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?

谁能用字母来表示这个新规律呢?

师板书:(a-b)×c=a×c-b×c

三、科学练习:

乘法分配律课件 篇6

教学内容

P36页例3,做一做,练习六习题。

教学目标

1、知识与技能:引导学生探究和理解乘法分配律。

2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

教学重点

乘法分配律的意义和应用。

教学难点

乘法分配律的反应用。

教学过程

一、目标导学

(一)导入新课

1、复习导入

(8+2)×1258×125+2×125

2、揭示课题:乘法分配律

(二)展示目标(见教学目标1、2)

二、自主学习

(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)

1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?

2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?

3、计算这两道题你发现了什么?能用一句话概括吗?

4、这是乘法的什么运算律?用字母怎样表示?

5、会用简便算法计算4×25+6×25吗?

(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)

(三)自学检测

下面哪些算式运用了乘法分配律?

117×(3+7)=117×3+117×7

24×(5+12)=24×17

(4+5)×a=4×a+5×a

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1、解答各小组自学中遇到不会的问题。

2、针对自学提纲5题请不同方法同学汇报。

3、结合“自学提纲”引导学生归纳总结:(并板书)

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。

四、达标训练(1、2题必做,3题选做、4题思考题)

1、下面哪个算式是正确的?正确的打√,错误的打×。

56×(19+28)=56×19+28()

32×(7+3)=32×7+32×3()

64×64+36×64=64×(64+36)()

2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数

⑴25×(200+4)⑵35×201

25×200+25×435×200+35

⑶265×105—265×5⑷25×11×4

265×(105—5)11×(25×4)

3、用乘法分配律计算。

103×20xx×5524×205

4、在()里填上适当的数。

167×2+167×3+167×5=167×()

28×225—2×225—6×225=()225

39×8+6×39—39×4=()×()

五、堂清检测

(一)出示检测题(1-2题必做,3题选做,4题思考题)

1、用简便方法计算。

24×75+24×25125×22—125×14

(25+20)×435×99+35

2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?

3、计算。

89×10135×36+35×63+35

4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?

(二)堂清反馈:

作业布置

练习册相关习题。

板书设计

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25(2)4×25+2×25

=6×25=100+50

=150(人)=150(人)

(4+2)×25=4×25+2×25

(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

乘法分配律课件 篇7

教学目标

1.使学生理解乘法分配律的意义.

2.掌握乘法分配律的应用.

3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用

教学难点:乘法分配律的反应用.

教具:教学课件一套

教学过程:

一、比赛激趣,提出猜想

(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

7×28+7×72

7×(28+72)

(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

这两道题运算顺序不同,但结果相同,可以用一个等式表示:

7×28+7×72=7×(28+72)

(3)命名猜想。

这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

二、引导探究,发现规律。

1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。

2、商场“五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)

(1)看到这幅图画,你了解到了什么信息?你想提什么问题?

(2)你能用两种方法列出综合算式吗?

(3)学生独立列式,教师巡视

(4)交流反馈:你是怎么想的,怎样列式计算

板书:65×5+45×5(65+45)×5

(5)观察这两个算式,你有什么发现?

3、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?

4、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

用字母表示:〔a+b〕×c=a×c+b×c

用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

(5)大屏幕出示关于乘法分配律的总结,学生齐读。

三、探索发展,应用规律

(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

(8+4)×2534×72+34×28

(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

四、巩固内化

1、做“想想做做”第1题

学生独立填写,指名报,全班共同校对。

明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?

2、做“想想做做”第2题

学生自己判断。然后请生说说判断的依据。

3、做“想想做做”第3题

让每位学生都用两种方法计算长方形的周长,指名板演。

明确:这两种算法有什么联系?符合什么规律?

小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。

4、做“想想做做”第4题

让学生各自按运算顺序计算,指定两人板演,共同订正。

提问:每组两道算式有什么联系?哪一题的计算比较简便?

小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。

五、总结回顾

乘法分配律课件 篇8

教学内容:人教社教材四年级下册P26页例7

教学目标:

1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。

2、会应用乘法分配律,使某些运算简便。

3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。

教学重点:

让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。

教学难点:理解和掌握乘法分配律的推导过程。

教学设计思路:

1、通过买衣服的情境转入乘法分配律。

2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。

3、会用乘法分配律进行简单的计算。

教学过程:

一、创设情境,生成问题

1、生活引入,激发兴趣

今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。

出示:两件上衣(价格分别是100元、80元)

两条裤子(价格分别是70元、50元)

2、提出问题,独立思考

出示:(1)一共有几种搭配方法?

(2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。

二、探索交流,建构规律

1、生选择搭配方案并计算。

2、组内研讨,并出示:

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?

3、汇报交流:

(1)探讨第一种方案。

师:哪一个同学想先来给项老师推荐他的方案?

(预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(100 70)×5

B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)

(2)探讨第二种方案。

(3)探讨第三种方案。

(4)探讨第四种方案。

教师板书:

一套 ×套数 = 5件上衣 5条裤子

(150 100)× 5 = 150×5 100×5

(150 70)× 5 = 150×5 70×5

(100 100)× 5 = 100×5 100×5

(100 70)× 5 = 100×5 70×5

4、生列举例子。

(1)出示:活动要求

A、写出三个这个的算式。

B、交流:你怎么来说明你写的算式左右两边是相等的?

(2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。

5、用字母表示乘法分配律。

问:谁能用一个算式表示全班所有同学的算式?

6、学生归纳概括:乘法分配律的意义。

三、巩固应用,训练提升

1、在□里填上适当的数。

(15 20)×12=□×12 □×12

25×(4 9)=□×4 □×9

8×(10 5)=□×□ □×□

30×24=30×□ 30×□

2、把左右两边相等的算式用线连接起来。

48×12 52×12 15×18 26×18

(15 18)×26 25×40 25×4

25×(40 4) (48 52)×12

14×(45-5) 11×4 25×4

(11×25)×4 14×45-14×5

四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?

乘法分配律课件 篇9

1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。

2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。

3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

(1)如何求济青公路的全长,有几种解法,如何列式计算。

(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?

(3)什么叫乘法分配律,如何用字母表示?

5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)

学习中你有哪些收获、困惑和体会,请在小组内交流一下。

师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。

课堂生成预设:

(1)济青高速公路全长大约多少千米?

教师追问:第一种算法是先算什么,再算什么?第二种算法呢?

预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;

预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)

(2)相遇时大巴车比中巴车多行多少千米?

(110-90)×2 110×2-90×2

=20×2 =220-180

=40(千米) =40(千米)

教师追问:你能说说两种算式的意思么?

预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;

预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。

(3)观察、比较两种算法的过程和结果,你有什么发现?

预设一:第一种算法是先加(或减)再乘;

预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。

(4)据此,你有什么猜想?

预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

(5)怎样验证你的猜想呢?

(师用线段图帮助学生理清思路)

学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。

通过观察,有何发现?引导学生回答:

举例验证:(125+12)×8 = 125×8+12×8

(40-4)×25 = 40×25-4×25

(8+16)×125 = 8×125+16×125

(80-8)×125 = 80×125-8×125

…… ……

(6)通过验证,你能得出什么结论?

结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。

(板书课题)你会用字母表示这个规律吗?

(用字母表示:(a± b) c=ac±bc)

预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的.积相加,结果不变。

预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。

预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

预设四:这个规律叫乘法分配律,可以用字母表示为:

(a± b) c=ac±bc

课堂预设:

举例验证:(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

…… ……

教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

设计意图:将乘法分配律适当拓展

教师引导:怎么样?学会了吗?想不想挑战一下自己?

(1) 指4名学困生板演,其余同做在练习本上。

(2) 展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。

课堂预设:(以第一题为例)

(80+70)×5 ( 80+70)×5

=80×70+70×5 =80×5+70×5

(1)你认为谁的答案对,为什么?谁的答案不对,为什么?

(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。

(3)用同样的方法评议其余3题。

(4)同桌互改

(5)统计错题情况,让小组代表说说错误原因。

(6)学生各自订正错题。

预设一:我知道了什么是乘法分配律。

预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。

预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!

同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。

板书设计

乘法的分配律

济青高速公路全长大约多少千米? 相遇时大巴车比中巴车多行多少千米?

(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2

验证:

(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25

(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125

结论:用字母表示:(a± b) c=ac±bc)

(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

乘法分配律课件 篇10

一、说教材:

教学目标及重难点:

根据《大纲》要求,教学资料和学情,本节课我确定了如下教学目标及重难点。

教学目标:

1、知识与本事

(1)会用乘法分配律进行一些简便计算。

(2)在探索的过程中,发现乘法分配律,并能用字母表示。

2、过程与方法

(1)经过探索乘法分配律的活动,进一步体验探索规律的过程。

(2)经历共同探索的过程,培养解决实际问题和数学交流的本事。

3、情感、态度与价值观

(1)增加学生之间的了解、同时体会到小伙伴合作的重要。

(2)在这些学习活动中,使学生感受到他们的身边处处有数学。

(3)在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

教学重点:充分感知并归纳乘法分配律。

教学难点:理解乘法分配律的意义。

二、说教法、学法

1、教学方法。

在设计乘法分配律的教学时,依据学生的认知发展水平和已有的知识经验。我采用自主学习、合作交流、当堂训练的教学模式。充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为进取主动参与的学习。

2、学法指导。

新课程标准指出学生是学习的主人,教师只是学习的组织者,引导者和合作者,学生始终参与教学活动中。所以在本节课教学过程中,我根据教学资料以学生自主学习、自主探索为主,让学生去解决实际问题,在解决问题过程中引导学生经过观察、比较、概括的方法总结出“乘法分配律”。使学生都能够动手、动脑、动口,进取参与教学的整个过程。

三、说教学过程

本节课的教学我是这样安排的:“创设情境,激趣导入;观察发现,总结规律;运用规律,尝试练习;扩展延伸;全课小结”共五个环节。

(一)创设情境,激趣导入:

本节课是规律的学习,就资料本身而言枯燥,单调,学生很难感兴趣,所以我从男女生的比赛开始,一是调动了学生的学习兴趣。更重要的是:经过比赛的形式让学生亲身经历感知到用相同的数,相同的运算符号,组成的结果也相同的算式,由于运算顺序不一样,使计算的难易程度是不一样的。在引导学生找这些式子的相同点和不一样点时,把学生的学习心向引导到对运算律的研究上去。初步感知了乘法分配律,为接下来归纳总结规律打下了基础。

(二)观察发现,总结规律:

经过例题的教学,学生会在观察、比较后发现其中隐藏的规律,肯定为这一发现感到欣喜不已并有表达的欲望,为了锻炼学生的语言表达本事就让学生先交流,但受学生的抽象概括本事的制约,表达的肯定不是很清楚,这时教师立刻让学生练习课前练习题来比较、观察,一来让学生明白用语言表达困难时能够借助式子用行为表达,二来也是以此来验证规律是否成立。接下来让学生把众多的的案例概括起来――即用符号表达。这种表达方式除了能直观、简洁地显现运算律的本质资料。学生在用图形、字母表示运算律时,也能充分体会这种表达方式的优越性,从而既加强对运算律的理解,又培养符号意识,发展符号感。最终教师把文字规律呈现出来,一是规范学生的语言表达,二是进一步巩固规律。

(三)练习的设计

理解了乘法分配律,我让学生经过“课堂活动”第1题的练习,再次体验乘法分配律在解决问题过程中的应用。之后设计了一组紧扣规律的简单填空练习,让学生在运用中进一步体会到乘法分配律中“分配”的意义。紧之后经过一组确定题加深对乘法分配律的理解和运用。最终的拓展延伸练习,将本节课的知识进行迁移,使学生体会到更多数的和与一个数相乘,两个数的差与一个数相乘这样的类型题也能够用类似的方法进行简便计算,使学有余力学生的本事进一步得到提高。

《小数除法》教学反思怎么写通用


教师的情感和价值观作为一个整体设计和实现目标,很多教师都有提前准备教案的好习惯。撰写教案能帮助教师更好的结合教学情境与教育对象的特点,写教案时有什么注意事项呢?下面由幼儿教师教育网给您带来的“《小数除法》教学反思怎么写”,相信您能从本文找到帮助!

《小数除法》教学反思怎么写【篇1】

本节课从孩子们熟悉的买东西入手,再比较一下哪种牛奶便宜,来激发孩子探究的欲望,让他们感觉生活离不开数学,数学也离不开生活。在探究哪种牛奶便宜时,孩子们的方法是多种多样的,从而再感受算法多样化。每一种做法都渗透着一种思想。通过这节课的教学使我更加认识到:要给学生充足的时间让他们自由的发挥、想像、创造。我们要相信每个学生都会思考、表现、创造。学生都有自我发展的需要,我们要给他们创造展示自我的平台,让他们去体会成功的乐趣。

本节课优点:

1、学生能够利用自己已有的知识来初步解决简单的计算,并能够自己利用竖式计算的方法准确的算出结果。

2、学生学习的兴趣较浓,能够跟着老师的步伐前进。

本节课不足:

1、在要求学生用竖式计算时,个别同学对计算方法掌握的并不好。

2、对于补“0”和用“0”占位的方法上,个别同学还需要继续加强。

3、教学时,忽略了个别学生,比较片面,整体把握性不好,有待于加强。

《小数除法》教学反思怎么写【篇2】

这节课我是这样界定的教学目标:使学生会用竖式计算首位能除尽除数是整数的小数除法和首位不能除尽除数是整数的小数除法的计算方法懂得商的小数点与被除数的小数点对齐的道理,并能正确地进行计算。

课前我先给学生出了几个整数除法算式,通过做这几个除法题让学生回忆起整数除法的计算法则。接着再把这几个整数除法算式转换成被除数是小数的小数除法算式。让学生试算后讨论下面三个问题:

1、如何计算除数是整数的小数除法?

2、被除数的小数点与商的小数点有什么关系?

3、列小数除法竖式时应注意些什么?

通过小组合作交流在解决这三个问题的基础上,让学生解决实际生活中的一个数学问题,服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?学生能很容易的列出除法算式,但在解决尚有一点困难,我就借此机会同过板书给学生板眼首尾不能除进出数是整数的小数除法竖式的写法来突破本节课的一个难点。紧接着趁热打铁出示了两组练习题让学生进行巩固练习,在学生基本掌握本节课得知试点后出示除数是整数的小数除法的计算法则。

一节课下来学生的积极性很高,欠优生爬黑板都能正确的列竖式把题目作对,可以看出本节课学生掌握得很不错。但课后自己好好想想觉得还有以下几点需要在以后的教学工作中注意:

1、课堂的导入要简练尽量的.少浪费时间。本节课我是由整数除法导入,然后让学生说一说整数除法的计算法则,这对于学生来说有点难度,计算法则学生心理都很明白,但让他们说出来就很困难。在这个地方太浪费时间,导致后面的课没有上完。

2、练习要有层次性,有梯度。

3、评价不及时。虽说是五年级的学生他们也需要表扬。采取什么方式,才能使学生更积极投入到课堂当中是我现在亟待解决的问题。

一、把握知识内在联系,找准新知识的最佳生长点

除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据214.515=14.3利用商不变的规律直接写出21.451.5、2.1450.15 、0.21450.015的商。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。

二、抓住本质,化繁为简,创造性地处理教材

计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,完全没有必要计算时在小数点的问题上过多纠缠,增加学生的学习难度。教学中,抓住除数是小数的除法的本质,不在竖式计算上设置人为的障碍,降低学生学习的难度,才能使学生学得更轻松。被除数和除数的小数位数不同,更明显地体现了商不变性质的应用,有助于学生更加深刻地理解算法的本质。计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。

《小数除法》教学反思怎么写【篇3】

《小数除法》是九年义务教育六年制小学数学第九册的重点知识之一,同时也是本期学习的一个难点。

本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法进行计算。教学中我认为成功的关健在于:教师的“教”应立足于学生的“学”。由于除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。为了更好地让学生掌握本节知识,在深钻教材的基础上,结合本班学生的知识基础和能力基础,在教学时针对这些情况我设计了以下专项训练:

1、练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。

2、练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。

3、小数除法中学生易出错的地方有:整数部分不够商,要在被除数的个位商0;除到被除数末尾还有余数,要在余数后面添0再除;哪一位上不够商,要商0占位等几种情况。教学中把这几种有“0”的类型的题进行了比较,归纳总结其相同点和不同点,区分出每种类型中的0的意义的不同,在学生的脑袋里建立起0的不同意义的印象

学生在学习的过程中总是存在一定的差异,而且任何学生知识经验的提升都是一个自主建构的过程,是任何外力无法替代的,在本单元的教学中,我强调学生的独立思考,尽量让每一个学生对于新的问题产生独特的体验,以此为基础,学生之间的交流互助才会有思维的碰撞,也只有在思维的碰撞中,学生才会有真正的发展。我想有些看起来很缺乏现代教育思想,很传统的东西有时会使学生觉得会更扎实些。学生创新能力也离不开老师的引导,离不开对知识的迁移、分析、归纳、联想,从中发现新的方法,使新知识感到不新。在让学生通过联想中唤起对已有知识的回忆,沟通知识之间的内在联系,从而开阔思路,产生新的设想,提高创造性能力。

当然在开放的过程中,教师的作用仍然是不容忽视的,反思一单元的教学,我认为教师的引导作用再加强一点,也许可以收到更好的效果。另外,加强学生练习的强度,也是提高计算能力的一个有效途径。

《小数除法》教学反思怎么写【篇4】

在第一轮的赛课活动中,我讲了一节《小数除法》。在备课的时候,我将教材小数除法的意义,先讲了。因为我想,小数除法的第一课时算理是比较难的,应该将重点放在算理上。小数除法的意义在学整数除法的意义的时候已经有所感知,只需要拿出一点时间复习一下就可以了!

在教学的时候,对于教学安排的是这样的:学生应该先学除数是整数的小数除法,这部分知识是除数是小数的小数除法的基础,学生不但要会算,还要熟练的掌握才行!因为是基础,我把除数是整数的小数除法中的几种情况都放在一起讲了:一般情况、整数部分商0的,小数部分十分位、百分位不够除用0占位的,整数除以整数商是小数的,以及除到被除数的末尾不够除,根据小数的性质添0继续除的。学生在这样地教学安排中,可以循序渐进地一步步熟悉除数是整数的小数除法!这种教学内容,在课堂中,比较适应学生的学习,取得了良好的效果!这次视导,这样做,做到了以学生为本!

教学计算的课比较枯燥的,要把比较枯燥的课上得有趣,我也是动了一番脑筋,首先是从学生熟悉的生活实际入手,让学生在体会北京的“京剧、烤鸭、四合院、胡同”的同时,已经进入了新课的内容!学生在学习新课的时候,我还是本着学生会的不教,让他们先尝试,在尝试的过程中,发现问题,提出问题,大家一起解决问题!学生提出问题后,让会的学生先解答,在解答的过程中不断地有人提出新的问题,大家一起解决,在比较困难的地方,教师要发挥自己的主导作用,比如在说计算过程的时候,教师先问:“先从被除数的哪部分除起?”区分了整数与小数除法的不同!在不够商1的时候,要怎么办,把问题推给学生,学生根据以前的知识,迁移类推,就总结出了“不够商1,0占位”,在教学除到被除数的末尾仍有余数+的时候,学生就出现了两种答案,一种是除到末尾有余数,一种是添0继续除!两方的学生开始辩论,说出自己的理由,在学生的争辩中,学生学会了计算这样的除法!

在上完这节课后,反思自己的课和其他老师的计算课相比,还有一些地方做的不到位:1、激励性语言不多,对学生的评价不够及时。2、板书后让学生练习时板书不够规范,强调不够。我在今后上课后将在这方面努力

《小数除法》教学反思怎么写【篇5】

最近组织学生复习小数乘除法,改了几次作业,只觉得计算错误挺多。细细一看,原来出现这样的错误不仅仅是所谓的粗心,更有一些学生是因为的算理、算法没有完全掌握导致的。现撷取部分学生作业中的错误如下:

错误一:乘除法混淆;

如口算 4.5×0.01= 4.5÷0.01= 这两题时,常常有学生将答案写反了。我想出现这样的错误,是因为学生对于小数乘、除法的算法不太明确:小数乘法是先看成整数乘法计算,最后根据因数中小数的位数点小数点;小数除法,先根据商不变的规律将除数变成整数,再进行计算。还有的学生在计算一个小数除以整数时,在竖式上杠掉了被除数的小数点。这些都是因为没有很好的理解商不变规律对计算小数除法的作用。

错误二:商中间有0;

在让学生计算3.66÷1.2时,不少学生得数网为3.5,观察他们的竖式计算过程,发现原来是个位上商3后,同时落下6和0两个数字。其实,这个算法与前面研究的整数除法中商中间有0的情况是相似的。数学学习是循序渐进的过程,每一个前期所学的知识都会对后续学习产生影响。

相对分数、小数而言,整数知识更便于学生理解。教师执教时也可以以此作为铺垫,引导学生对有价值的旧知进行回顾,从而产生正迁移。

在老师看来,小数乘、除法这种纯计算的知识,没什么好讲的,但对学生来说,越是看起来简单的知识,越是抽象。学数学理解是关键!

《小数除法》教学反思怎么写【篇6】

这节课我是这样界定的教学目标:使学生会用竖式计算首位能除尽除数是整数的小数除法和首位不能除尽除数是整数的小数除法的计算方法懂得商的小数点与被除数的小数点对齐的道理,并能正确地进行计算,小数除法教学反思。

课前我先给学生出了几个整数除法算式,通过做这几个除法题让学生回忆起整数除法的计算法则。接着再把这几个整数除法算式转换成被除数是小数的小数除法算式。让学生试算后讨论下面三个问题:

1、如何计算除数是整数的小数除法?

2、被除数的小数点与商的小数点有什么关系?

3、列小数除法竖式时应注意些什么?

通过小组合作交流在解决这三个问题的基础上,让学生解决实际生活中的一个数学问题,服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?学生能很容易的列出除法算式,但在解决尚有一点困难,我就借此机会同过板书给学生板眼首尾不能除进出数是整数的小数除法竖式的写法来突破本节课的一个难点,教学反思《小数除法教学反思》。紧接着趁热打铁出示了两组练习题让学生进行巩固练习,在学生基本掌握本节课得知试点后出示除数是整数的小数除法的计算法则。

一节课下来学生的积极性很高,欠优生爬黑板都能正确的列竖式把题目作对,可以看出本节课学生掌握得很不错。但课后自己好好想想觉得还有以下几点需要在以后的教学工作中注意:

1、课堂的导入要简练尽量的少浪费时间。本节课我是由整数除法导入,然后让学生说一说整数除法的计算法则,这对于学生来说有点难度,计算法则学生心理都很明白,但让他们说出来就很困难。在这个地方太浪费时间,导致后面的课没有上完。

2、练习要有层次性,有梯度。

3、评价不及时。虽说是五年级的学生他们也需要表扬。采取什么方式,才能使学生更积极投入到课堂当中是我现在亟待解决的问题。

《小数除法》教学反思怎么写【篇7】

人教版第九册数学第二单元的《小数除法》是教学中学生比较难掌握的单元,复习小数除法教学反思。特别是学生在做除数是多位数的除法试商计算,学生在试商过程中比较难试商。为了解决这个问题。我特意设计了这节课的教学,在教学完,我有以下反思:

1、学生是自由度发挥到最大时才能充分发挥其才华。上课伊始,我首先叫学生整理了第二单元的所有内容。然后给学生自由,让学生充分发挥自己的才能,打开书,看看数学书上怎样教学小数除法的计算方法?然后像昨天我给小数乘法编顺口溜(小数乘小数,先乘二整数,乘得积以后,再定积小数。)的方法自己也给小数除法编编顺口溜,看谁编的越快越好。5分钟过后,学生纷纷抢答。顺口溜:小数除以小数,除数化成整数,被除数同样变,有余数继续除。全班哈哈大笑。同时增加了小数除法的认识。顺口溜:小数除以小数,按整数方式除。商的小点对被点,整数不够商0除。再看有没有余数,如有添0继续除。还有很多同学都要说,我就叫他们写下来交给我。这样我打开昨晚做好的课件《试商有规律》进行教学试商的方法。再让学生说说自己有没有更好的试商方法。有的学生说出了:想乘法做除法。还有的同学想出了:简便运算的方法也可以应用做除法。例如:23.4÷0.25=23.4×434.5÷0.125=34.5×8这样也可以使除法计算简便,教学反思《复习小数除法教学反思》。学生的才能只有让他们自由发挥,才能使学生发挥才智。

2、面对教育教学中出现的新事物、新问题,很多老师喜欢凭经验、拍脑袋做决定,不是充分发挥学生的积极性,不跟学生研究做决定,不给学生思考的机会,不放手让学生自己寻找最佳答案。我觉得:只有学生自己想出来的,才能记得牢。我们老师强加给学生的,可能学生下课了就忘了。以前我有这个强加给学生的意识,生怕学生自己不会编,又怕浪费时间,生怕拖堂。这一切,都是我的错,以后的教学中,我一定放手让学生解决。凡是学生能解决的,老师一定不越俎代庖。

3、这节课我设计了比赛做除法计算,效果很好。我马上发了一张试卷(第二单元),第二节课考试,很多同学获得了100分,同学们都自豪的说:自己想的方法就是好,要不然没这么快,也没这么快能考好。这节课给我找到了最大的收获:一个好汉三个帮,一个篱笆三个桩,三个臭皮匠赛过诸葛亮。让学生自己动脑写出来,哪怕是错了,也可以慢慢修改,只有自己经历了才能记得牢。这也让我看到了希望。

《小数除法》教学反思怎么写【篇8】

在讲“小数乘法”时感觉,乘法多了一个小数点会有许多麻烦,批改作业时,感觉学生的思维已成定性,经常会有些孩子忘记点上小数点或点的位数不对。面多学生出现的遗漏想过很多方法,好不容易有些安慰,没想和同事的一次聊天,又让自己心里沉甸甸……同事说:小数除法更难。从此心里就压上了这块石头,不敢放松,担心稍有疏忽就带来更多的麻烦。“小数除法”这一单元无论对于学生还是于我来说都感到陌生,因此对这一单元的教学我一点不敢懈怠。先读了一遍这节教材,再对着教材把教参认认真真读了一遍,用不同的符号标注出了自己在教学时应该注意的地方,以便在教学中能更好地帮助学生理解、掌握小数除法的知识要点。随后,还好好分析这单元知识与旧知识的联系,认真比较了小数除法与整数除法的相似性,以及我班学生的知识基础和能力基础。真到上课了,我也不敢有一点大意,课堂上注重唤醒学生对整数除法计算方法的积极回忆,加强整数除法和小数除法的比较;注重联系实际生活中的问题,创设一些现实情境,在解决问题中提高对计算方法的掌握水平我将学生的练习拿来分析,发现学生中错得较多的题主要就是被除数添“0”再除的情况,原来都是“0”惹的祸。仔细思考这些由0引起的烦,其原因主要有以下几点:

一、是学生整数除法的基础打得不牢,练习的比较少,可能是前面的教学有疏忽的地方。

二、是课堂上有对算理的理解,但是强调不够,应该抽更多的学生来交流竖式中每一步所表示的含义,而且对算理的理解只在第一节课做得较好,在后面的若干节课中都把它弱化了,造成学生不求甚解的情况。

三、是部分学生的学习习惯较差,做题老是丢三落四的,不是忘了打小数点,就是忘了商0,或者是忘了被除数和除数同时扩大相同的倍数。

四是训练的量少了,教材在编排时相应的练习较少,课后补充的题也较少,学生的计算能力不强。

认识到这些后,我对这部分的教学想了一点点计策:

首先就是把这几种有“0”的类型的题进行了比较,归纳总结其相同点和不同点,区分出每种类型中的0的意义的不同,在学生的脑袋里建立起0的不同意义的印象。

二是强化对算理的理解,每次做完题都让学生来说说每一步计算的理由,表示的是几个几除以几,或是几个十分之几除以几…。

三是让学生尽量能验算,以便更好的检查自己计算中的错误。

四是加大计算的练习量,在课堂上补充了一些计算题给学生比赛算,既达到了训练计算能力的效果,又增强了课堂的趣味性。

五是发挥同伴的互助作用,尤其是小组同学之间的互帮互助,一是可以相互竞争,同时也可以相互学习解疑,这样也减轻了老师的负担,促进全班学生的共同进步。

也让我明白,教学中我们教师不能用成人的眼光去看待问题从而忽视一些细节问题,应更多的从学生的角度去思考问题,充分估计学生在学习过程中可能出现的问题,灵活应对,采取相应措施去补救。我想,这才真正诠释好了新课程倡导的“组织者、引导者、合作者”的教师角色内涵。

《小数除法》教学反思怎么写【篇9】

《小数除法》在本册教材中是一个重点也是一个难点,小数除法是在学生已经掌握了整数的相关运算,并且学习了小数乘法的基础上,对小数除法进行教学的,从而使学生建立完整的整数与小数四则运算的知识体系。通过对小数除法计算的教学,我体会如下:

一、处理好本单元内容中重、难点之间的关系

小数除法根据小数点处理方法不同,可以分成除数是整数的小数除法和除数是小数的小数除法。一个数除以小数是本册内容的教学重点,也是一个难点。由于除数是小数的除法通过商不变的性质转化成除数是整数的小数除法来计算,所以要以小数除以整数计算为基础,抓住商的不变规律和小数点位置移动引起小数大小变化的规律来突破教学难点。

二、重视算理教学,突破算法

联系数的含义进行算理指导,帮助学生理解、掌握小数除法的计算法则。小数除法的重点是突出小数点的处理问题,而商的小数点为什么要和被除数的小数点对齐要涉及到数的含义来帮助理解就容易得多。

三、抓住新旧知识的连接点,运用类比迁移方法学习新知

小数除法的计算法则是以整数除法中被除数和除数同时乘上相同的数(0除外)商不变,以及小数点位置移动引起小数大小变化的规律等知识为基础来说明的。小数除法的试商方法,除的步骤和整数除法基本相同。注意复习和运用整数除法的有关知识,为新知识的学习奠定基础。

四、作业中存在的问题及改进措施

1、小数点位数移动不同步。通过移动除数小数点变成整数,所有的学生都知道,也都能顺利完成,关键是忘了同样移动被除数的小数点,特别是当被除数小数位数不够补“0”的情况。或者移动的位数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。

2、商的个位不够商1,商0打点的情况模糊不清,特别是被除数的个位右下角没打点,就写上0.(如:课本18面做一做的情况24÷15)

3、商的小数点没有与移动后被除数小数点对齐

强调算理,多进行点商小数点的练习,并对学生作业中错例进行分析评讲。

4、验算时用商乘以移动小数点后的'除数。

5、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。(如:课本18面做一做的情况1.26÷18)

学生的理解也没有真正到位,看似“简单”的问题却出现了纷繁的错误也就再所难免了。

因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学如果能从学生的新知生长点上去展开重点引导,在学生的迷茫处给予及时指点,这样或许效果会更好些。

《小数除法》教学反思怎么写【篇10】

本节课的重点是:把除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据被除数和除数同时乘或除以相同的数(0除外),商不变的性质,把除数是小数的除法转化成除数是整数的除法进行计算。除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补0。针对这些情况我分类进行教学。

首先解决把除数转化成整数后,被除数仍是小数和被除数末尾还要补0这两种情况。我贴近学生的实际,根据需要学生自己来探索知识,创设情境谁打电话的时间长?,让学生发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。

其次,遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的规律性错误。比如当学生在处理商的小数点时受到小数加减法的影响,我鼓励学生大胆地发表自己的意见,学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。

最后,我又自编了除数转化成整数后,被除数是整数的习题,进行专项训练。如:2.70.3 3.62.5等。

《小数除法》教学反思怎么写【篇11】

1、“温故而知新”这个词足以说明复习的重要性。以往的复习课我们都是让学生做题,然后针对做题中存在的问题进行讲解。利用这种方法复习能起到一定的作用,但缺少了系统性。

以往在复习计算时,总是出示一些计算题让学生计算,然后交流如何计算,紧接着便是大量的练习,整个过程学生一直是在进行机械的计算,可以说动脑思考的成分很少。而复习课的基本含义之一是“重新学习,根据这一基本含义,我进行了如下设计:请同学们帮老师解决一个问题。这两天老师正在退饭钱,已经退了一部分,但还是有4元钱要退给班中的5位同学。请同学们算一算老师应退给他们平均每人几元钱?说说你是怎样计算的?请把竖式计算的过程说一说。体会生活中如何根据实际情况求近似值。学生解决问题的过程其实也是对知识的一个再学习的过程,只不过,在这个再学习的过程中,学生学习的目的不仅仅是学习“列竖式计算、按要求求近似值、按生活实际求近似值”,而是通过学习,让其体会到“小数除法计算;按要求求近似值与根据生活实际求近似值”之间的区别。

充分解决”0”的问题,不够商1“0”占位,末尾补“0”,中间“0”占位的问题在本节课中再次得以体现和补充学习。

2、复习是使学生对所学知识加深理解和巩固,提高计算和解题能力的重要措施,是综合性的。激发学生整理知识的心理需要,让学生自己整理,汇报比较,为学生提供充分的从事数学活动和交流的机会,有利于知识网络的建构。学生积极展示自己的作品,讨论“你对你们组的作品满意吗?认为它好在哪里?”“对于这个问题,大家怎么看?”学生坦诚的说“我做这样类型题目的特别容易在这里弄错”“我认为这样做就可以避免这样的错误”,从自身学会反思,学会从他人处获取经验,从而促使全体学生真正地、主动地参与学习的全过程,让学生在自我评价中,学会自我肯定,自我反思。全面地了解学生,可帮助教师找准复习的起点,有的放矢。学生借助材料激活已有的知识积淀,并以此为复习基点展开整理,有利于面向全体,因材施教。重视学习材料从学生的实际生活中提取,让学生认识到数学的作用和价值,增强学习数学的兴趣,提高其数学应用意识和应用能力,真正落实素质教育。

3、信任学生,尊重学生,是突出主体的重要内容。让学生用自己喜欢的方式进行整理,给学生留下较大的思维空间,学生可以发挥自己的想象力和创造力,激发学生对复习知识的兴趣和乐趣。分析学生的错例后,让学生自主进行知识的建构,形成良好的自我认识,自我评价。

“思想”是数学的灵魂,“方法”是数学的行为。数学思想方法,这是一条暗线,并未直接写在教材上,教学中又要予以渗透。从数学哲学的角度讲,数学科学中最有生命力统摄力的是数学观和数学方法论,即数学思想方法;从数学教育哲学的角度讲,决定一个学生数学修养的高低,最为重要的标志是看他能否用数学的思想方法去解决数学问题以至日常生活问题。一个人一生中直接应用的数学知识也可能并不多,但是理解和掌握数学思想方法,将会终生受益。学生只有把数学知识上升到数学思想方法,才能有效地提高数学修养,乃至学生的整体素质。

相关推荐

  • 乘法分配律教学反思精选11篇 以下是幼儿教师教育网编辑为大家精心准备的乘法分配律教学反思精选,欢迎学习和参考,希望对你有帮助。严于己,而后勤于学生,教师想成功开展教学活动中,应当准备好教案。教案有利于教学思路清晰,过程流畅。...
    2023-04-28 阅读全文
  • 乘法分配律教学反思范文汇总 居安思危,思则有备,有备无患。幼儿园教师在工作过程中,都需要提前寻找一些资料。资料通常是指书籍、报刊、图表、图片等。参考资料有助于我们的工作进一步发展。所以,你有哪些值得推荐的幼师资料内容呢?你可以读一下小编整理的乘法分配律教学反思范文汇总,欢迎阅读,希望你能喜欢!教学乘法分配律之后,发现学生的正确...
    2023-03-26 阅读全文
  • 乘法分配律教案 每位教师在授课前须要备好教案课件,现在开展琢磨教案课件也并不晚。制定教案必须根据学生的基础情况和需求。小编为您准备的“乘法分配律教案”是经过精心设计的一份特别惊艳之作,非常感激您的阅读!...
    2023-06-17 阅读全文
  • 最新乘法分配律教学反思模板系列 经验时常告诉我们,做事要提前做好准备。在日常的学习工作中,幼儿园教师都会提前准备一些能用到的资料。资料的定义比较广,可以指生活学习资料。参考资料会让未来的学习或者工作做得更好!你知不知道我们常见的幼师资料有哪些呢?由此,有请你读一下以下的“最新乘法分配律教学反思模板系列”,更多相关信息请继续关注本网...
    2023-03-25 阅读全文
  • 乘法分配律教案集合 老师在新授课程时,一般会准备教案课件,不过教案课件里知识点要设计好。教案是教师不断提高教育教学水平的有效方法。我们为您筛选的“乘法分配律教案”一定符合您的期待,我们提供的方案仅供参考您可以根据自己的实际情况进行调整!...
    2024-06-13 阅读全文

以下是幼儿教师教育网编辑为大家精心准备的乘法分配律教学反思精选,欢迎学习和参考,希望对你有帮助。严于己,而后勤于学生,教师想成功开展教学活动中,应当准备好教案。教案有利于教学思路清晰,过程流畅。...

2023-04-28 阅读全文

居安思危,思则有备,有备无患。幼儿园教师在工作过程中,都需要提前寻找一些资料。资料通常是指书籍、报刊、图表、图片等。参考资料有助于我们的工作进一步发展。所以,你有哪些值得推荐的幼师资料内容呢?你可以读一下小编整理的乘法分配律教学反思范文汇总,欢迎阅读,希望你能喜欢!教学乘法分配律之后,发现学生的正确...

2023-03-26 阅读全文

每位教师在授课前须要备好教案课件,现在开展琢磨教案课件也并不晚。制定教案必须根据学生的基础情况和需求。小编为您准备的“乘法分配律教案”是经过精心设计的一份特别惊艳之作,非常感激您的阅读!...

2023-06-17 阅读全文

经验时常告诉我们,做事要提前做好准备。在日常的学习工作中,幼儿园教师都会提前准备一些能用到的资料。资料的定义比较广,可以指生活学习资料。参考资料会让未来的学习或者工作做得更好!你知不知道我们常见的幼师资料有哪些呢?由此,有请你读一下以下的“最新乘法分配律教学反思模板系列”,更多相关信息请继续关注本网...

2023-03-25 阅读全文

老师在新授课程时,一般会准备教案课件,不过教案课件里知识点要设计好。教案是教师不断提高教育教学水平的有效方法。我们为您筛选的“乘法分配律教案”一定符合您的期待,我们提供的方案仅供参考您可以根据自己的实际情况进行调整!...

2024-06-13 阅读全文
Baidu
map