解直角三角形教案
发布时间:2023-03-29 直角三角形教案解直角三角形教案集锦11篇。
教案课件是每个老师在开学前需要准备的东西,每个老师对于写教案课件都不陌生。写好教案,完整课堂教学不再是梦,网络有没有优质的教案课件以资借鉴呢?幼儿教师教育网特别编辑了“解直角三角形教案”,有需要的朋友就来看看吧!
解直角三角形教案 篇1
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程:
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:得到一个什么图形?(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:那么,这样的三角形我们叫它什么三角形?
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究等腰直角三角形。
二、动手操作,探索新知。
1、斜边
45
直角边
认识各部分名称和各个角的度数。
投影出示一个等腰直角三角形让学生试说。
边说边课件演示。
45
90
接着让学生指着折成的等腰直角三角形同桌
直角边
互相说各部分名称和每个角的度数。
解直角三角形教案 篇2
一、教材分析
(一)、教材的地位与作用
本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的'对学生进行这方面的能力培养。
(二)教学重点
本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。
(三)、教学难点
由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。
(四)、教学目标分析
1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。
2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。
3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。
二、教法设计与学法指导
(一)、教法分析
本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。
教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。
(二)、学法分析
通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。
学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。
(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。
三、教学过程设计
本节课我将围绕复习导入、探究新知、巩固练习、课堂小结、学生作业这五个环节展开我的教学,具体步骤是:
(一)复习导入
师:前面的课时中,我们学习了直角三角形的边角关系,下面老师来看看大家掌握得怎样?
1、直角三角形三边之间的关系?(a2+b2=c2,勾股定理)
2、直角三角形两锐角之间的关系?(∠A+∠B=900)
3、直角三角形的边和锐角之间的关系?
生:学生回忆旧知,逐一回答。
目的:温故而知新,使学生能用直角三角形的边角关系去解直角三角形。
师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的实际问题了,这节课我们学习“解直角三角形及其应用”,此环节用时约5分钟。
(二)探究新知
在这一环节中,我分如下三步进行教学,第一步:例题引入新课,得出解直角三角形的概念。
例1(课件展示)、如图,一棵大树在一次强烈的地震中于离地面10米折断倒下,树顶在离树根24米处,大树在折断之前高多少?
师:a或c还可以用哪种方法求?
生:学生讨论得出方法,分析比较,从而得出——使用题目中原有的条件,可使结果更精确。
师:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?
生:学生讨论分析,得出结论。
目的:使学生体会到(课件展示)“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”,此步骤用时约10分钟。
第三步:师生共同总结出解直角三角形的条件及类型。
师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?
生:学生交流讨论归纳(课件展示):解直角三角形,只有下面两种情况:
(1)已知两条边;
(2)已知一条边和一个锐角。
目的:培养学生善总结,会总结的习惯和方法,使不同层次的学生得到不同的发展,此步骤用时约3分钟。
(三)课堂练习:
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形教案 篇3
教学内容:等腰直角三角形(活动课)
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程:
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:得到一个什么图形?(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:那么,这样的三角形我们叫它什么三角形?
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究等腰直角三角形。
解直角三角形教案 篇4
一、说教材
今天我执教的这一课是二年级第二学期第五单元中《锐角、钝角、直角三角形》这一课。
教学目标:
知识与技能目标:知道三角形可以按角分为锐角三角形、钝角三角形和直角三角形以及它们的特征。能辨别锐角三角形、钝角三角形和直角三角形。
过程与方法目标:培养学生观察能力、动手操作能力和合作交流能力。
情感与价值观目标:提高学生对三角形的学习兴趣,感受三角形在生活中无处不在。
教学重点:
能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。
教学难点:
辨别锐角三角形、钝角三角形和直角三角形。
二、说教学过程
这节课由引入、新授、练习和总结四部分组成。
首先是从生活中引入三角形,让学生介绍和观察一些生活中的三角形,感受到三角形在生活中无处不在,以此引出课题。新授部分主要是由以下几个环节构成。
第一个环节通过学生动手操作来判断教师给出的6个三角形的三个角分别是什么角,并填写表格。这里不仅要学生把表格填写完整,还要学生总结出判断一个角是什么角的方法,首先用眼睛观察,如果明显比直角大或比直角小的就马上能够判断了,如果跟直角很接近或者拿不定主意的时候才要用直角量具去验证。填写表格不单单是记录数据,更重要的是让学生数形结合对锐角、钝角和直角三角形初步有所感知。
第二个环节是让学生通过观察刚才填写的表格来发现其中的规律,总结出这6个三角形中,每个三角形至少有2个锐角,最多有一个直角,最多有一个钝角。并且让学生通过验证自己带来的三角形,得出所有的三角形都有这样的特点。
第三个环节是根据刚才找到的三角形的角的特点,来给三角形分类。并且总结出三角形按角分类可以分成锐角、钝角和直角三角形三类。然后通过学生对刚才自己带来的三角形和老师出示的三角形进行判断,巩固三类三角形的定义,并总结出判断三角形属于什么三角形的方法。
第四个环节就是通过三角板和三角尺的比较,和改变三角板摆放的位置,让学生发现判断一个三角形是什么三角形只跟三角形角的特点有关,跟三角形的大小和它摆放的位置没有关系。最后的练习部分有两个练习,第一个练习是给出三角形的一个角让学生判断是什么三角形。给出一个直角和一个钝角时学生很容易就判断出来,但是给出一个锐角的时候,由于前面学习的负迁移,学生很容易脱口而出是锐角三角形,然后通过实际的演示、谜底的揭晓,让学生认识到判断一个三角形是锐角三角形必须要知道三个角都是锐角才行,给出一个锐角是不能判断它是什么三角形的。第二个练习其实是这节课的一个综合运用,学生不仅是要知道判断一个三角形是什么三角形的方法,还要以最快的速度来判断,也就是一开始讲的,明显比直角大或者小的角用眼睛就可以判断,比较像直角或者拿不定主意的时候一定要用直角量具去测量。最后总结的时候,还让学生把今天学到的知识跟自己的实际生活联系起来,整个一堂课从生活中提炼出数学知识,再把数学知识回归到生活中去。
解直角三角形教案 篇5
一、 教材简析:
本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。
同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。
二、教学目的、重点、难点:
教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。
重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。
2、正确选择边与角的关系以简便的解法解直角三角形
难点:把实际问题转化为数学问题。
学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。
三、教学目标:
1、知识目标:
(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。
(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、
45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。
(3)运用三角函数解决与直角三角形有关的简单的实际问题。
(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、
2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。
3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.
四、、教法与学法
1、教法的设计理念
根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。
2、学法
学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。
解直角三角形教案 篇6
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形教案 篇7
一、教材分析
(一)教材地位
直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用、《解直角三角形的应用》是第28章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。
(二)教学目标
这节课,我说面对的是初三学生,从人的认知规律看,他们已经具有初步的探究能力和逻辑思维能力。但直角三角形的应用题型较多,他们对建立直角三角形模型上可能会有困难。针对上述学生情况,确定本节课的教学目标如下:
1、通过观察、交流等活动,会建立直角三角形模型。
2、经历解直角三角形中作高的过程,懂得解直角三角形的三种基本模型,进一步渗透数形结合思想、方程思想、转化(化归)思想,激发学生的学习兴趣。
(三)重点难点
1、重点:熟练运用有关三角函数知识。
2、难点:如何添作辅助线解决实际问题。
二、教法学法
1、教法:采用“研究体验式”创新教学法,这其实是“学程导航”模式下的一种教法,主要是教给学生一种学习方法,使他们学会自己主动探索知识并发现规律。
2、学法:主要是发挥学生的主观能动性。学生在课前做好预习作业,课堂上则要积极参与讨论,课后根据老师布置的课外作业进行巩固和迁移。
三、教学程序
(一)准备阶段
我主要的准备工作是备好课,在上课前一天布置学生做好预习作业。
预习作业:
1、如图,Rt⊿ABC中,你知道∠A的哪几种锐角三角函数?能给出定义吗?
2、填表:锐角α三角函数
3、已知:从热气球A看一栋高楼顶部的仰角α为300,看这栋高楼底部的俯角β为600,若热气球与高楼的水平距离为m,求这栋高楼有多高?
4、如图:AB=200m,在A处测得点C在北偏西300的方向上,在B处测得点C在北偏西600的方向上,你能求出C到AB的距离吗?
5、如图:梯形ABCD中,BC∥AD,AB=13,且tan∠BAE=,求BE的长。
(二)课堂教学过程
1、预习作业的交流
小组交流预习作业并由学生代表展示。
2、新知探究
(1)教师出示问题
1、如图:要在木里县某林场东西方向的两地之间修一条公路MN。已知点C周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东450方向上,从A向东走600米到达B处,测得C在点B的北偏西600方向上。问:MN是否穿过原始森林保护区?为什么?
追问:你还能求出其他问题吗?若提不出问题,可给出问题:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
(2)出示问题
2、如图,一艘轮船以每小时20千米的速度沿正北方向航行,在A处测得灯塔C在北偏西300方向,航行2小时后到达B处,在B处测得灯塔C在北偏西600方向。当轮船到达灯塔C的正东方向D处时,求此时轮船与灯塔C的距离(结果保留根号)。
追问:如果改变若干条件,你能设计出其他问题吗?
(3)出示问题
3、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得OB=km,台风中心从B点以40km/h的速度向正北方向移动。经5h后到达海面上的点C处,因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动。以O为原点建立如图所示的直角坐标系。
如:(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为(结果保留根号)。
(2)已知距台风中心20km的范围内均会受到台风的侵袭。如果某城市(设为点A)位于O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?
3、巩固练习
飞机在高空中的A处测得地面C的俯角为450,水平飞行2km,再测其俯角为300,求飞机飞行的高度。(精确到0.1km,参考数据:1.73)
4、课堂小结
请学生围绕下列问题进行反思总结:
(1)解直角三角形有哪些基本模型?
(2)本节课涉及到哪些数学思想?
(3)你觉得如何解直角三角形的实际问题?
5、布置作业
复习第29章《投影与视图》具体见试卷
6、课堂检测
1、如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离。
2、如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO。
3、如图所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4m,背水坡AB的坡度是1︰1,迎水坡CD的坡度1︰1.5,求坝底宽BC。
四、设计思路
本节课通过预习作业中3、4、5三个问题,引出了解直角三角形的三种基本模型,说明了解直角三角形应用的广泛性,从而体现了学习直角三角形应用知识的必要性。教学中坚持以学生为主体,注重所学内容与现实生活的联系,注重使学生经历观察、交流等探索过程。并通过追问与设计问题的形式,让学生解直角三角形的任务中发现了新问题,并让学生带着问题探索、交流,在思考中产生新认识,获得新的提高。在突破难点的同时培养学生勤于思考,勇于探索的精神,增加学生的学习兴趣和享受成功的喜悦。
解直角三角形教案 篇8
教学建议
1.知识结构:
本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.
2.重点和难点分析:
教学重点和难点:直角三角形的解法.
本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.
3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.
锐角三角函数的定义:
实际上分别给了三个量的关系:a、b、c是边的长、、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.
当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.
如:已知直角三角形ABC中,,求BC边的长.
画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式
,
由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得
.
即得BC的长为.
又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.
画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是
也就是
这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得
.
由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.
4. 直角三角形的解法可以归纳为以下4种,列表如下:
5. 注意非直角三角形问题向直角三角形问题的转化
由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例.
例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)
这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个解直角三角形的问题.
在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:
解:作于D,在Rt中,有
;
又,在Rt中,有
∴
又,
∴
于是,有
由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如
(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.
(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.
(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.
(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.
6. 要善于把某些实际问题转化为解直角三角形问题.
很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为解直角三角形问题.
我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?
据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为
,
另一条直角边为螺钉推进的距离,所以
,
设螺纹初始角为,则在Rt中,有
∴.
即,螺纹的初始角约为 .
这个例子说明,生产和生活中有很多实际问题都可以抽象为一个解直角三角形问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.
一、教学目标
1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;
3.通过本节的.学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.
二、重点·难点·疑点及解决办法
1.重点:直角三角形的解法。
2.难点:三角函数在解直角三角形中的灵活运用。
3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。
4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。
三、教学步骤
(一)明确目标
1.在三角形中共有几个元素?
2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?
(1)边角之间关系
(2)三边之间关系
(勾股定理)
(3)锐角之间关系 。
以上三点正是解直角三角形的依据,通过复习,使学生便于应用。
(二)整体感知
教材在继锐角三角函数后安排解直角三角形,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的。综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。
(三)教学过程()
1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)。
3.例题
【例1】 在中,为直角,所对的边分别为,且,解这个三角形。
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。
解:(1),
(2),
∴
(3)
∴
完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。
【例2】 在Rt中,,解这个三角形。
在学生独立完成之后,选出最好方法,教师板书。
解:(1),
查表得;
(2)
(3),
∴。
注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。
4.巩固练习
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力。
[参考答案]
1.(1);
(2)由求出或;
(3),
或;
(4)或。
2.(1);
(2)。
说明:解直角三角形计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出解直角三角形的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。
(四)总结扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。
2.幻灯片出示图表,请学生完成
四、布置作业
教材P.32习题6.4A组3。
[参考答案]
3.;
五、板书设计
解直角三角形教案 篇9
等腰直角三角形
教学内容:等腰直角三角形(活动课)
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程():
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:“得到一个什么图形?”(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:“那么,这样的三角形我们叫它什么三角形?”
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究“等腰直角三角形”。
二、动手操作,探索新知。
1、
投影出示一个等腰直角三角形让学生试说。
边说边课件演示。
2、把刚才折成的等腰直角三角形再对折,看看又得到什么图形?
3、展开后把4个三角形都剪下来,重叠在一起,发现了什么?
4、取出其中一个等腰直角三角形指出已有的底和高。
提问:“斜边上的高你能不能画出来?”
出示探究要求:
①动手画出斜边上的高,同桌互相检验。
②量出斜边和斜边上高的长度,填在表格里。
③根据表格里的.数据,小组讨论,说说有什么发现?
④交流发现。
5、电脑演示并出示结论。
学生齐读:等腰直角三角形斜边上的高等于斜边的一半。
6、拼图游戏
(1)拿出2个完全一样的等腰直角三角形拼以前学过的平面图形。
(2)拿出4个完全一样的等腰直角三角形拼以前学过的平面图形。
学生小组合作拼图,到实物投影上展示。
(3)电脑演示拼成的没学过的平面图形。
三、合作交流,探求一题多解。
1、出示题目:已知等腰直角三角形的直
角边长是20厘米,求它的面积是多少?
2、出示题目:已知等腰直角三角形的斜边
长是20厘米,求它的面积是多少?
角形拼一拼、摆一摆。)
各小组汇报交流,说说想法。
教师板书各种解法。
四、
20厘米应用创新,总结升华。
1、一个边长为20厘米的正方形,连接
每边的中点,又得到一个正方形,求
涂色部分的面积是多少?
(学生互相探讨,交流解法。)
20厘米2、再连接空白部分正方形每边的中点,
所得的小正方形面积与空白正方形面
积有什么联系?与原正方形面积有什
么联系?你能求出它的面积吗?
(各小组之间互相讨论,说说想法。)
3、依次连接正方形每边的中点,每次得
到的新正方形面积与原正方形面积有什
么联系?从中你能发现什么规律?
(各小组之间互相讨论,交流发现的规律。)
五、回忆所学,谈谈收获。
本课我们学习了什么内容,你有什么收获?
解直角三角形教案 篇10
第一方面:教材分析
1、本节的地位作用
《解直角三角形》,是前面学过的相似及函数问题的`延续和综合应用,同时也是高中继续学习解斜三角形的重要预备知识。它的学习还蕴含着数学建模和转化化归的数学思想,所以,本节内容无论在本单元,还是整个初中教材甚至中考中都具有重要的地位。
2、学习目标
由于本节课是第一课时,主要是使学生理解直角三角形的边角关系,并能运用关系解直角三角形和与之相关的实际问题,所以我参考课标提出的阶段性要求,确立本节的教学目标是:
(1)会根据直角三角形已知元素,解直角三角形。
(2)通过对解直角三角形的学习,我们能感知未知元素与已知元素的关系,体会知识点之间的内在联系。
(3)培养学生问题意识,渗透转化思想和数学建模意识。
3、本节课重点是解直角三角形,这是因为它和相似等知识一样,是以后会解题的重要工具,将被广泛的应用。
难点是选择合适的边角关系。这是因为在解直角三角形时,需要学生根据已知条件,结合图形,经过分析,选择准确简单的关系式,而学生刚学三角函数,应用还不灵活,所以感到困难。
第二方面:教法分析
本节课我选用了引导发现法和归纳总结法,并应用了媒体教学。这是因为课标提出“教学活动是师生之间,学生之间交往互动与共同发展的过程,教师是教学活动的引导者与合作者。”这两种方法可以让老师成为导演,学生扮演演员,充分发挥学生的主体地位。而媒体的使用可以满足学生的好奇心,课堂容量增大,最大限度的提高课堂效率。
第三方面:学法指导
为了充分发挥导学案的以案导学的作用,在学案中我根据学习内容的需要,增加了“老师温馨提示”栏目,让学生在课前预习时降低学习难度,能够跳一跳,摘到桃子。在教学时,我注意引导学生养成及时归纳、总结规律方法,有目的学习的好习惯。
第四方面:教学程序设计
本节课的教学我按照学案导学的“学——研——展——教——达”的教学模式展开。
1、在学这个教学环节,我在课前下发学案,让学生在学案的引领下,充分感知本节课要学习的内容,记录预习疑惑,及查阅相关资料。及时发现自身学习本节内容的不足之处,在上课时能够积极思考,合作,交流,展示。
2、在研这个环节,我精心设计问题,将本节的唯一知识点———解直角三角形,遵照“由特殊到一般”的原则转变为探索性问题的问题点、能力点,既学案中第二个大问题的里4个小问题,通过对知识点的教师设疑、学生质疑、解释、归纳总结等一系列师生研讨活动,得出解直角三角形的定,挖掘出它的内涵和外延,从而激发学生主动思考,逐步培养学生探究精神以及对教材的分析,归纳,演绎的能力,让学生学会看书,学会自学,进而突出本节重点。
3、在展这个环节我以本节例题即学案中的例1为基础,采用变式训练,逐渐增加问题难度,让学生在不同的问题中,多角度领悟本节重点知识——解直角三角形问题的实质,通过“兵教兵,兵强兵,兵练兵”的方法,让学生充分展示和反馈,帮助学生理解解直角三角形的注意事项,及怎样选择合适的边角关系式,怎样引辅助线,怎样写解题过程等问题,达到突破本节难点的目的。
4、在教这个环节我在学生理解解直角三角形方法的基础上,应用它解决生活中的实际问题,即学案上拓展提升问题,它实质也是本节例题的一个变式训练,培养学生一题多变,一题多解的思维方式,让学生体会数学知识的螺旋上升美。并且我精选了贴近学生生活情境的实际背景,寓德育与数学一体,生活与数学一体。激发学生的学习兴趣,提升学生的创新思维和合作意识,让数学思维好的同学吃的饱,使不同的人在数学上有不同的发展。
5、通过达标检测这个环节,及时反馈本节学生存在的问题,当堂点评,充分发挥小组的合作精神。
6、作业紧紧围绕巩固本节所学内容展开,有一定的梯度,让不同程度的学生都有所收获。板书设计本着重点突出的原则,让学生对本节课的主要知识一目了然,加深印象。
第五方面:设计理念
在设计本节课时,我力求让学生意识到:要解决老师课堂上提出的问题,看书不看详细不行,只看书不思考不行,思考不深不透还不行,如本节的复习提问部分,我虽然在导学案中给出了,但我在提问时却换了一个方式提问,目的让学生真正理解学案内容。而不是照着学案念,在讲授本节课时,我尽量实现自己角色的转变,让自己从讲台走下来,成为“平等中的首席”。
总之,我尽量创设适当和适合的教育情境,因为我知道,如果将15克盐放在我面前,无论如何都难以下咽,但是,把它放在鲜美的汤中,在享受佳肴时,15克盐早已被吸收。情境之余知识,犹如汤之余盐,盐要溶入汤中,才能被吸收;知识需要溶入情境中,才能显示出活力和美感!
解直角三角形教案 篇11
教学目标:
1.认识和辨别锐角三角形、直角三角形和钝角三角形。
2.知道三角形可以按角分为锐角三角形、直角三角形和钝角三角形。
3.通过操作、观察、比较、分类等数学活动培养学生主动探究数学知识的意识。
4.在活动中培养小组合作的意识,学习用自己的语言表达数学概念的本领。
教学重点:
能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。
教学难点:
辨别锐角三角形、钝角三角形和直角三角形。
教学准备:
多媒体、三角尺、彩纸、卡纸、记号笔。
教学过程:
一、复习引入阶段
(1)师:指出下面各是什么角?角有什么共同的特征?(一个顶点和两条直边)
(2)我们已经学习过了线段和角,如果把角的两条边看作线段,把角的两个端点连起来会出现什么图形?(三角形)那你能告诉老师,这些在三角形里的角分别是什么角吗?(PPT边演示,边提问)
(3)同学们说得真不错,今天我们就一起进一步学习研究三角形。(板书课题:三角形)
二、探究阶段
(1)老师请你们动手在小卡片上任意的画一个三角形,画完后标一标你画的那个三角形内的每个角分别是什么角。
(2)老师请同学上来展示一下他画的作品。
(3)观察黑板上你们画的三角形,想一想,是不是可以把它们分分类呢?可以怎么分?(小组内讨论一下)
(4)师:请一个学生代表上台汇报他们小组的发现和讨论出的分类结果。
设疑:这样的分类能把我们所画的三角形全分完吗?有没有第四类?看看你手中画的三角形,有没有不属于这三类中的任何一类?有没有两处都可以放的三角形?如果没有,请几位同学也将自己画的三角形展示在黑板上,并归类,你能找到相应的位置吗?
(5)就像我们的同学都有自己的名字一样,你能给每一类的三角形取一个名字吗?理由?(直角是这类三角形与其它两类三角形的主要特征)你能给其余两类三角形取个名字吗?名字可以任意取,但是要求取的名字要能反映出该类三角形的主要特征。(锐角三角形、钝角三角形)
(6)补充课题。锐角三角形、直角三角形、钝角三角形
(7)定义
师:那谁能根据我们前面分类时的标准尝试着定义什么是锐角三角形、直角三角形和钝角三角形呢?
板书:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。
(8)小结
刚才我们通过观察、比较发现了三角形的形状、大小虽然各不相同,但是根据三角形角的特征只能将其分成锐角三角形,直角三角形和钝角三角形这三种。
(9)三角形的关系
我们可以用集合图表示这三种三角形之间的关系。把所有三角形看做一个整体,用一个圆圈表示,好像是一个大家庭;因为三角形按角来分可以分成三类,那就好像是包含三个小家庭。(边说边把集合图展示在黑板上)每种三角形就是整体的一部分,反过来说,这三种三角形正好组成了所有的三角形。
(10)判断三角形(ppt):生活中的三角形
(11)开放性练习:
①游戏:如果只让你看到三角形中的一个角,你能迅速判断出它是什么三角形吗?这些可能是什么三角形?
(老师手拿小信封,遮去部分,露一个角)
结果:(1)一个直角直角三角形
(2)一个钝角钝角三角形
(3)一个锐角(三种都可能)
师小结:我们在判断时不能盲目的去猜,而应运用概念去思考,以作出正确的判断。
②出示一个直角梯形,只允许剪一刀,你能剪成两个什么样的三角形呢?请你动手折一折。
学生动手操作尝试,老师媒体演示。
三、全课总结,谈收获。
你今天这节课有什么收获?
yjs21.cOm更多幼儿园教案编辑推荐
解直角三角形教案必备15篇
感谢您提出的要求栏目小编为您找到了一篇符合的“解直角三角形教案”,诚恳地邀请您留意阅读该文。老师的工作职责之一就是制作教案和课件,因此我们老师需要付出认真的努力来编写。一份优秀的教案是成功教学的重要保证。
解直角三角形教案 篇1
一、教学目标
(一)知识教学点
使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
(二)能力训练点
通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
(三)德育渗透点
渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点和疑点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.
三、教学过程
(一)明确目标
1.在三角形中共有几个元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系
如果用表示直角三角形的一个锐角,那上述式子就可以写成.
(2)三边之间关系
a2+b2=c2(勾股定理)
(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)整体感知
教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.
(三)重点、难点的学习与目标完成过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题
例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好
完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.
例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.
在学生独立完成之后,选出最好方法,教师板书.
4.巩固练习
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.
说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.
(四)总结与扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2.出示图表,请学生完成
abcAB
1√√
2√√
3√b=acotA√
4√b=atanB√
5√√
6a=btanA√√
7a=bcotB√√
8a=csinAb=ccosA√√
9a=ccosBb=csinB√√
10不可求不可求不可求√√
注:上表中“√”表示已知。
四、布置作业
解直角三角形教案 篇2
教学目标:
1.认识和辨别锐角三角形、直角三角形和钝角三角形。
2.知道三角形可以按角分为锐角三角形、直角三角形和钝角三角形。
3.通过操作、观察、比较、分类等数学活动培养学生主动探究数学知识的意识。
4.在活动中培养小组合作的意识,学习用自己的语言表达数学概念的本领。
教学重点:
能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。
教学难点:
辨别锐角三角形、钝角三角形和直角三角形。
教学准备:
多媒体、三角尺、彩纸、卡纸、记号笔。
教学过程:
一、复习引入阶段
(1)师:指出下面各是什么角?角有什么共同的特征?(一个顶点和两条直边)
(2)我们已经学习过了线段和角,如果把角的两条边看作线段,把角的两个端点连起来会出现什么图形?(三角形)那你能告诉老师,这些在三角形里的角分别是什么角吗?(PPT边演示,边提问)
(3)同学们说得真不错,今天我们就一起进一步学习研究三角形。(板书课题:三角形)
二、探究阶段
(1)老师请你们动手在小卡片上任意的画一个三角形,画完后标一标你画的那个三角形内的每个角分别是什么角。
(2)老师请同学上来展示一下他画的作品。
(3)观察黑板上你们画的三角形,想一想,是不是可以把它们分分类呢?可以怎么分?(小组内讨论一下)
(4)师:请一个学生代表上台汇报他们小组的发现和讨论出的分类结果。
设疑:这样的分类能把我们所画的三角形全分完吗?有没有第四类?看看你手中画的三角形,有没有不属于这三类中的任何一类?有没有两处都可以放的三角形?如果没有,请几位同学也将自己画的三角形展示在黑板上,并归类,你能找到相应的位置吗?
(5)就像我们的同学都有自己的名字一样,你能给每一类的三角形取一个名字吗?理由?(直角是这类三角形与其它两类三角形的主要特征)你能给其余两类三角形取个名字吗?名字可以任意取,但是要求取的名字要能反映出该类三角形的主要特征。(锐角三角形、钝角三角形)
(6)补充课题。锐角三角形、直角三角形、钝角三角形
(7)定义
师:那谁能根据我们前面分类时的标准尝试着定义什么是锐角三角形、直角三角形和钝角三角形呢?
板书:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。
(8)小结
刚才我们通过观察、比较发现了三角形的形状、大小虽然各不相同,但是根据三角形角的特征只能将其分成锐角三角形,直角三角形和钝角三角形这三种。
(9)三角形的关系
我们可以用集合图表示这三种三角形之间的关系。把所有三角形看做一个整体,用一个圆圈表示,好像是一个大家庭;因为三角形按角来分可以分成三类,那就好像是包含三个小家庭。(边说边把集合图展示在黑板上)每种三角形就是整体的一部分,反过来说,这三种三角形正好组成了所有的三角形。
(10)判断三角形(ppt):生活中的三角形
(11)开放性练习:
①游戏:如果只让你看到三角形中的一个角,你能迅速判断出它是什么三角形吗?这些可能是什么三角形?
(老师手拿小信封,遮去部分,露一个角)
结果:(1)一个直角直角三角形
(2)一个钝角钝角三角形
(3)一个锐角(三种都可能)
师小结:我们在判断时不能盲目的去猜,而应运用概念去思考,以作出正确的判断。
②出示一个直角梯形,只允许剪一刀,你能剪成两个什么样的三角形呢?请你动手折一折。
学生动手操作尝试,老师媒体演示。
三、全课总结,谈收获。
你今天这节课有什么收获?
解直角三角形教案 篇3
一、说教材
今天我执教的这一课是二年级第二学期第五单元中《锐角、钝角、直角三角形》这一课。
教学目标:
知识与技能目标:知道三角形可以按角分为锐角三角形、钝角三角形和直角三角形以及它们的特征。能辨别锐角三角形、钝角三角形和直角三角形。
过程与方法目标:培养学生观察能力、动手操作能力和合作交流能力。
情感与价值观目标:提高学生对三角形的学习兴趣,感受三角形在生活中无处不在。
教学重点:
能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。
教学难点:
辨别锐角三角形、钝角三角形和直角三角形。
二、说教学过程
这节课由引入、新授、练习和总结四部分组成。
首先是从生活中引入三角形,让学生介绍和观察一些生活中的三角形,感受到三角形在生活中无处不在,以此引出课题。新授部分主要是由以下几个环节构成。
第一个环节通过学生动手操作来判断教师给出的6个三角形的三个角分别是什么角,并填写表格。这里不仅要学生把表格填写完整,还要学生总结出判断一个角是什么角的方法,首先用眼睛观察,如果明显比直角大或比直角小的就马上能够判断了,如果跟直角很接近或者拿不定主意的时候才要用直角量具去验证。填写表格不单单是记录数据,更重要的是让学生数形结合对锐角、钝角和直角三角形初步有所感知。
第二个环节是让学生通过观察刚才填写的表格来发现其中的规律,总结出这6个三角形中,每个三角形至少有2个锐角,最多有一个直角,最多有一个钝角。并且让学生通过验证自己带来的三角形,得出所有的三角形都有这样的特点。
第三个环节是根据刚才找到的三角形的角的特点,来给三角形分类。并且总结出三角形按角分类可以分成锐角、钝角和直角三角形三类。然后通过学生对刚才自己带来的三角形和老师出示的三角形进行判断,巩固三类三角形的定义,并总结出判断三角形属于什么三角形的方法。
第四个环节就是通过三角板和三角尺的比较,和改变三角板摆放的位置,让学生发现判断一个三角形是什么三角形只跟三角形角的特点有关,跟三角形的大小和它摆放的位置没有关系。最后的练习部分有两个练习,第一个练习是给出三角形的一个角让学生判断是什么三角形。给出一个直角和一个钝角时学生很容易就判断出来,但是给出一个锐角的时候,由于前面学习的负迁移,学生很容易脱口而出是锐角三角形,然后通过实际的演示、谜底的揭晓,让学生认识到判断一个三角形是锐角三角形必须要知道三个角都是锐角才行,给出一个锐角是不能判断它是什么三角形的。第二个练习其实是这节课的一个综合运用,学生不仅是要知道判断一个三角形是什么三角形的方法,还要以最快的速度来判断,也就是一开始讲的,明显比直角大或者小的角用眼睛就可以判断,比较像直角或者拿不定主意的时候一定要用直角量具去测量。最后总结的时候,还让学生把今天学到的知识跟自己的实际生活联系起来,整个一堂课从生活中提炼出数学知识,再把数学知识回归到生活中去。
解直角三角形教案 篇4
第一方面:教材分析
1、本节的地位作用
《解直角三角形》,是前面学过的相似及函数问题的`延续和综合应用,同时也是高中继续学习解斜三角形的重要预备知识。它的学习还蕴含着数学建模和转化化归的数学思想,所以,本节内容无论在本单元,还是整个初中教材甚至中考中都具有重要的地位。
2、学习目标
由于本节课是第一课时,主要是使学生理解直角三角形的边角关系,并能运用关系解直角三角形和与之相关的实际问题,所以我参考课标提出的阶段性要求,确立本节的教学目标是:
(1)会根据直角三角形已知元素,解直角三角形。
(2)通过对解直角三角形的学习,我们能感知未知元素与已知元素的关系,体会知识点之间的内在联系。
(3)培养学生问题意识,渗透转化思想和数学建模意识。
3、本节课重点是解直角三角形,这是因为它和相似等知识一样,是以后会解题的重要工具,将被广泛的应用。
难点是选择合适的边角关系。这是因为在解直角三角形时,需要学生根据已知条件,结合图形,经过分析,选择准确简单的关系式,而学生刚学三角函数,应用还不灵活,所以感到困难。
第二方面:教法分析
本节课我选用了引导发现法和归纳总结法,并应用了媒体教学。这是因为课标提出“教学活动是师生之间,学生之间交往互动与共同发展的过程,教师是教学活动的引导者与合作者。”这两种方法可以让老师成为导演,学生扮演演员,充分发挥学生的主体地位。而媒体的使用可以满足学生的好奇心,课堂容量增大,最大限度的提高课堂效率。
第三方面:学法指导
为了充分发挥导学案的以案导学的作用,在学案中我根据学习内容的需要,增加了“老师温馨提示”栏目,让学生在课前预习时降低学习难度,能够跳一跳,摘到桃子。在教学时,我注意引导学生养成及时归纳、总结规律方法,有目的学习的好习惯。
第四方面:教学程序设计
本节课的教学我按照学案导学的“学——研——展——教——达”的教学模式展开。
1、在学这个教学环节,我在课前下发学案,让学生在学案的引领下,充分感知本节课要学习的内容,记录预习疑惑,及查阅相关资料。及时发现自身学习本节内容的不足之处,在上课时能够积极思考,合作,交流,展示。
2、在研这个环节,我精心设计问题,将本节的唯一知识点———解直角三角形,遵照“由特殊到一般”的原则转变为探索性问题的问题点、能力点,既学案中第二个大问题的里4个小问题,通过对知识点的教师设疑、学生质疑、解释、归纳总结等一系列师生研讨活动,得出解直角三角形的定,挖掘出它的内涵和外延,从而激发学生主动思考,逐步培养学生探究精神以及对教材的分析,归纳,演绎的能力,让学生学会看书,学会自学,进而突出本节重点。
3、在展这个环节我以本节例题即学案中的例1为基础,采用变式训练,逐渐增加问题难度,让学生在不同的问题中,多角度领悟本节重点知识——解直角三角形问题的实质,通过“兵教兵,兵强兵,兵练兵”的方法,让学生充分展示和反馈,帮助学生理解解直角三角形的注意事项,及怎样选择合适的边角关系式,怎样引辅助线,怎样写解题过程等问题,达到突破本节难点的目的。
4、在教这个环节我在学生理解解直角三角形方法的基础上,应用它解决生活中的实际问题,即学案上拓展提升问题,它实质也是本节例题的一个变式训练,培养学生一题多变,一题多解的思维方式,让学生体会数学知识的螺旋上升美。并且我精选了贴近学生生活情境的实际背景,寓德育与数学一体,生活与数学一体。激发学生的学习兴趣,提升学生的创新思维和合作意识,让数学思维好的同学吃的饱,使不同的人在数学上有不同的发展。
5、通过达标检测这个环节,及时反馈本节学生存在的问题,当堂点评,充分发挥小组的合作精神。
6、作业紧紧围绕巩固本节所学内容展开,有一定的梯度,让不同程度的学生都有所收获。板书设计本着重点突出的原则,让学生对本节课的主要知识一目了然,加深印象。
第五方面:设计理念
在设计本节课时,我力求让学生意识到:要解决老师课堂上提出的问题,看书不看详细不行,只看书不思考不行,思考不深不透还不行,如本节的复习提问部分,我虽然在导学案中给出了,但我在提问时却换了一个方式提问,目的让学生真正理解学案内容。而不是照着学案念,在讲授本节课时,我尽量实现自己角色的转变,让自己从讲台走下来,成为“平等中的首席”。
总之,我尽量创设适当和适合的教育情境,因为我知道,如果将15克盐放在我面前,无论如何都难以下咽,但是,把它放在鲜美的汤中,在享受佳肴时,15克盐早已被吸收。情境之余知识,犹如汤之余盐,盐要溶入汤中,才能被吸收;知识需要溶入情境中,才能显示出活力和美感!
解直角三角形教案 篇5
2.5 直角三角形(2) 〖教学目标〗 ◆1、掌握直角三角形斜边上中线性质,并能灵活应用. ◆2、领会直角三角形中常规辅助线的添加方法. ◆3、通过动手操作、独立思考、相互交流,提高学生的逻辑思维能力以及协作精神. 〖教学重点与难点〗 直角三角形的性质及其应用是初中几何部分比较重要的内容,是实验几何向论证几何过渡之后学生学习几何知识的一个新的起点,有着承上启下的作用,而“直角三角形斜边中线等于斜边一半”这一性质无论在几何计算中还是在相关的推理论证中都起到很重要的作用。 ◆教学重点:“直角三角形斜边上中线等于斜边的一半”这一性质的灵活应用. ◆教学难点:在直角三角形中如何正确添加辅助线. 〖教学准备〗:三角板,多媒体课件 〖教学过程〗: 二度备课: 先复习上节课所学的知识:如直角三角形的`定义及性质,判定一个三角形是直角三角形的方法。再让学生猜一猜:直角三角形斜边上的中线与斜边的一半有何数量关系,从而引出课题。 1、 直角三角形斜边上的中线等于斜边的一半 学生实验:每个学生任意画一个直角三角形,并画出斜边上的中线,然后利用圆规比较中线与斜边的一半的长短。 教师提问:让学生猜测直角三角形斜边上的中线与斜边一半的大小关系。 教师板书性质后可以演示一下教师预先准备好的证明过程给学生看,但不要求学生掌握。 课后反思: 培养学生的探索能力以及养成良好的合作交流能力。 课堂练习。 (1)直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为llll。 (2)已知,在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC=llll。 课后反思: 初步让学生巩固“直角三角形斜边上的中线等于斜边的一半”这一性质。 2、 直角三角形性质应用举例 例 如图2-18,一名滑雪运动员沿着倾斜角为30°的斜边,中A滑行至B。 已知AB=200m,问这名滑雪运动员的高度下降了多少m? 30° A B C 教师先引导学生理解题意后分析:书上分析。 教师板演解题过程: 解:如图作Rt△ABC的斜边上的中线CD,则CD=AD=1/2AB=1/2×200=100( 在直角三角形中,斜边上的中线等于斜边的一半) A ∵∠B=30°(已知) D ∴∠A=90°-∠B=90°-30° 30° C B (直角三角形两锐角互余) ∴∠DCA=∠A=60°(等边对等角) ∴∠ADC=180°-∠DCA-∠A=180°-60°-60°=60°(三角形内角和等于180°) ∴△ABC是等边三角形(三个角都是60°的三角形是等边三角形) ∴AC=AD=100 答:这名滑雪运动员的高度下降了100m。 课堂练习: P37、课内练习3、 师生小结 今天学习的直角三角形性质也是以后在直角三角形中一条常用的辅助线。 4、 布置作业 书上作业题 1、2、3、4、5
解直角三角形教案 篇6
一、教材分析
(一)教材地位
直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用、《解直角三角形的应用》是第28章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。
(二)教学目标
这节课,我说面对的是初三学生,从人的认知规律看,他们已经具有初步的探究能力和逻辑思维能力。但直角三角形的应用题型较多,他们对建立直角三角形模型上可能会有困难。针对上述学生情况,确定本节课的教学目标如下:
1、通过观察、交流等活动,会建立直角三角形模型。
2、经历解直角三角形中作高的过程,懂得解直角三角形的三种基本模型,进一步渗透数形结合思想、方程思想、转化(化归)思想,激发学生的学习兴趣。
(三)重点难点
1、重点:熟练运用有关三角函数知识。
2、难点:如何添作辅助线解决实际问题。
二、教法学法
1、教法:采用“研究体验式”创新教学法,这其实是“学程导航”模式下的一种教法,主要是教给学生一种学习方法,使他们学会自己主动探索知识并发现规律。
2、学法:主要是发挥学生的主观能动性。学生在课前做好预习作业,课堂上则要积极参与讨论,课后根据老师布置的课外作业进行巩固和迁移。
三、教学程序
(一)准备阶段
我主要的准备工作是备好课,在上课前一天布置学生做好预习作业。
预习作业:
1、如图,Rt⊿ABC中,你知道∠A的哪几种锐角三角函数?能给出定义吗?
2、填表:锐角α三角函数
3、已知:从热气球A看一栋高楼顶部的仰角α为300,看这栋高楼底部的俯角β为600,若热气球与高楼的水平距离为m,求这栋高楼有多高?
4、如图:AB=200m,在A处测得点C在北偏西300的方向上,在B处测得点C在北偏西600的方向上,你能求出C到AB的距离吗?
5、如图:梯形ABCD中,BC∥AD,AB=13,且tan∠BAE=,求BE的长。
(二)课堂教学过程
1、预习作业的交流
小组交流预习作业并由学生代表展示。
2、新知探究
(1)教师出示问题
1、如图:要在木里县某林场东西方向的两地之间修一条公路MN。已知点C周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东450方向上,从A向东走600米到达B处,测得C在点B的北偏西600方向上。问:MN是否穿过原始森林保护区?为什么?
追问:你还能求出其他问题吗?若提不出问题,可给出问题:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
(2)出示问题
2、如图,一艘轮船以每小时20千米的速度沿正北方向航行,在A处测得灯塔C在北偏西300方向,航行2小时后到达B处,在B处测得灯塔C在北偏西600方向。当轮船到达灯塔C的正东方向D处时,求此时轮船与灯塔C的距离(结果保留根号)。
追问:如果改变若干条件,你能设计出其他问题吗?
(3)出示问题
3、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得OB=km,台风中心从B点以40km/h的速度向正北方向移动。经5h后到达海面上的点C处,因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动。以O为原点建立如图所示的直角坐标系。
如:(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为(结果保留根号)。
(2)已知距台风中心20km的范围内均会受到台风的侵袭。如果某城市(设为点A)位于O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?
3、巩固练习
飞机在高空中的A处测得地面C的俯角为450,水平飞行2km,再测其俯角为300,求飞机飞行的高度。(精确到0.1km,参考数据:1.73)
4、课堂小结
请学生围绕下列问题进行反思总结:
(1)解直角三角形有哪些基本模型?
(2)本节课涉及到哪些数学思想?
(3)你觉得如何解直角三角形的实际问题?
5、布置作业
复习第29章《投影与视图》具体见试卷
6、课堂检测
1、如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离。
2、如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO。
3、如图所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4m,背水坡AB的坡度是1︰1,迎水坡CD的坡度1︰1.5,求坝底宽BC。
四、设计思路
本节课通过预习作业中3、4、5三个问题,引出了解直角三角形的三种基本模型,说明了解直角三角形应用的广泛性,从而体现了学习直角三角形应用知识的必要性。教学中坚持以学生为主体,注重所学内容与现实生活的联系,注重使学生经历观察、交流等探索过程。并通过追问与设计问题的形式,让学生解直角三角形的任务中发现了新问题,并让学生带着问题探索、交流,在思考中产生新认识,获得新的提高。在突破难点的同时培养学生勤于思考,勇于探索的精神,增加学生的学习兴趣和享受成功的喜悦。
解直角三角形教案 篇7
二、基础知识:
1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,
2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗
杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆
3、如图:B、C是河对岸的两点,A是对岸岸边一点,测得∠ACB=450,
BC=60米,则点A到BC的距离是 米。
3、如图所示:某地下车库的入口处有斜坡AB,其坡度I=1:1.5,
则AB=
三、典型例题:
例2、右图为住宅区内的两幢楼,它们的高AB=CD=30米,两楼间的距
线的夹角为300时,求甲楼的影子在乙楼上有多高?
例3、如图所示:某货船以20海里/时的速度将一批重要货物由A处运往正西方的B处,
经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台
风中心正以40海里/时的速度由A向北偏西600方向移动,距离台风中心200海
里的圆形区域(包括边界)均会受到影响。
(1)问B处是否会受到台风的影响?请说明理由。
(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?
四、巩固提高:
的.位置升高 米。
2、如图:A市东偏北600方向一旅游景点M,在A市东偏北300的
公路上向前行800米到达C处,测得M位于C的北偏西150,
A、sin450 B、sin600 C、cos300 D、cos600
A向外移动到A,使梯子的底端A到墙根O的距离等于3米,
5、如图所示:某学校的教室A处东240米的O点处有一货物,经过O点沿北偏西600
方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。
(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?
(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的
解直角三角形教案 篇8
2 .5 风 炭宝宝竹炭――呵护您的健康 教学目标 1、了解风是怎样形成的 2、知道风向、风速的表示方法和度量单位 3、学会用风向标、风速仪测定风向和风速的方法 4、了解风对人类活动和动物行为的影响 重点难点分析 重点:风的观测 难点:风的形成;目测风向、风速 教学过程 ◇视频片段《赤壁之战》引入课题《追寻风的足迹》。 演示并思考】把充满气体的气球充气口松开,会感到气球内的空气一涌而出,这是为什么? 一、风 1、风是空气的水平运动。 风是从高气压区流向低气压区的。 2、风的两个基本要素:风向和风速 1)风向是指风吹来的方向。 天气观测和预报中常使用8种风向。 表示方法:用一短线段表示。 用纸飞机测风向 【为什么做】 风向和风速是测量风的两个基本要素。观测风向的仪器叫风向标,由箭头、水平杆和尾翼三部分组成。那么风向标是怎样指示风向的呢?风向是由风向标箭头的方向来指示,还是由箭尾的方向来指示呢?风向又是怎么规定的呢?就让我们用纸飞机测风向这个简单的模拟实验来解决吧! 【怎样做】 折一纸飞机,中间用铅笔穿过(要让纸飞机能在铅笔上轻松转动)。用手握住铅笔,将纸飞机放在开启的电风扇前,观察纸飞机的机头和尾翼的指向。注意:此时人要站在纸飞机的后方。并借助指南针判断风向。 【学到了什么】 通过实验,使我们对风和风向有了一个直观的认识:纸飞机的箭头指向风来自的方向。同理,在气象观测中,风向是由风向标的箭头指向的。 同时也使我们明白:实验可以使我们更简洁明了地了解事物,也培养了我们的观察能力。 【进一步的研究】 (1)用纸飞机测风向的实验使你明白了风向标指示风向的事实。你是否在想:这是运用了什么原理呢?为什么风向标会有一定的指向呢?下面的文字,会帮助你有一个了解。 风向标是一种应用最广泛的测量风向仪器的主要部件。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。 地面风指离地平面10─12 米高的风。风的来向为风向,一般用十六方位或360°表示。以360°表示时,由北起按顺时针方向度量。 (2)你知道了风向的`测量方法,一定很想知道风速大小的测量方法。其实你也可以用简单的模拟实验来测量风速。请认真阅读下面的文字,你就会用生活中常见的小风车(参见三维风车式风速仪)或风压板来简单比较风速的大小了,动手试一试。 风向:指风吹来的 方向 ;天气观测和预报中常使用8种风向,即:东、南、西、北、东北、西北、东南、西南(图2―10)。 符号 代表东风。 (2)风速:指单位时间里空气在水平方向上移动的距离,其单位是:米/秒、千米/时或海里/小时表示。 测试风速的仪器叫风速计,它利用风杯在风作用下的旋转速度来测量风速。 风速仪有以下几种:①风杯风速表②桨叶式风速表③热力式风速表。 风速常用风级表示。 【阅读】各风级的名称、风速和目测结果 (3)风对人类的生活有很大的影响,有些动物的行为也和风有关。 【小结】
解直角三角形教案 篇9
【探究目标】 1.目的与要求能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题. 2.知识与技能能根据直角三角形中的角角关系、边边关系、边角关系解直角三角形,能运用解直角三角形的.知识解决有关的实际问题. 3.情感、态度与价值观通过解直角三角形的应用,培养学生学数学、用数学的意识和能力,激励学生多接触社会、了解生活并熟悉一些生产和生活中的实际事物. 【探究指导】 教学宫殿 在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图19―46: 角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即 ; 边角关系:锐角三角函数,即 解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边. 用解直角三角形的知识解决实际问题的基本方法是: 把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系. 借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题. 当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解. 在解直角三角形的过程中,常会遇到近似计算,如没有特殊要求外,边长保留四个有效数字,角度精确到1′.
解直角三角形教案 篇10
1教学目标
(一)知识目标
1、使学生理解直角三角形中五个元素的关系,及什么是解直角三角形;2、会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
(二)能力训练点
1、通过综合运用勾股定理,直角三角形的两个锐角互余及边角之间的关系解直角三角形,逐步培养学生分析问题、解决问题的能力;2通过数行结合的运用,培养学生添加适当辅助线的能力。
(三)情感目标
渗透数形结合的数学思想,培养学生学以致用的良好的学习习惯.
2学情分析
九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养。
为实现本节既定的教学目标,根据教材特点和学生实际水平对本节教学采用的基本策略是:
①创设问题情境,激发学生思维的主动性。
②以实际问题为载体,结合简单教具及多媒体提供的图象,引导学生建立数学模型,把实际问题抽象为数学问题。
③把实际问题中提供的条件转化为数学问题中的数量,掌握探索解决问题的思想和方法。
④课堂尽量为学生提供探索、交流的空间,发动学生既独立又合作的愉快的学习。
由于大部分学生的阅读分析能力相对较弱,教学中引导学生讨论、交流,罗列出问题中的所有已知条件、未知条件,探索已知与未知之间的数量关系,进而结合勾股定理、三角函数关系式寻求解决的方案,从而达到解决的目的。
有效的数学学习活动,不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课的例题与练习题的已知、未知都有所不同,合理引导,利用这种“不同”让学生在探究学习中得到提高,获得知识,也是本节课追求的主要目标。
我打算采用“创设情境———自主探究———合作交流———达标训练———反思归纳”的流程来进行本节课的教学。
3重点难点
1.重点:直角三角形的解法.
2.难点:把实际问题抽象为数学问题,建立数学模型;三角函数在解直角三角形中的灵活运用;j解直角三角形时,在已知的两个元素中,为什么至少有一个元素是边.
4教学过程4、1第一学时教学活动活动1【讲授】教学活动
1.我们已经掌握了Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又可启发引导学生思考,为什么两个已知元素中必有一条边呢?从而激发学生的学习、探索热情。
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师让学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题评析
例1在Rt△ABC中,∠C为直角,AC= BC=,解这个三角形.
例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 =35,解这个三角形(精确到0、1).
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.
议一议
在直角三角形中,
(1)已知a,b,怎样求∠B的度数?
(2)已知a,c,怎样求∠B的度数?
(3)已知b,c,怎样求∠B的度数?
你能总结一下已知两边解直角三角形的方法吗?与同伴交流。
.
(三)巩固练习
在△ABC中,∠C为直角,AC=4,BC=4,解此直角三角形。课本74页。
1、找四名学生板演,重视过程的规范性和完整性;2、学生独立完成,教师简评。
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.
试一试
(四)总结与扩展
引导学生小结:
1、在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2、解决问题要结合图形(没有图形时要先画草图)。
解直角三角形教案 篇11
一、教材分析
(一)、教材的地位与作用
本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的'对学生进行这方面的能力培养。
(二)教学重点
本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。
(三)、教学难点
由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。
(四)、教学目标分析
1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。
2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。
3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。
二、教法设计与学法指导
(一)、教法分析
本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。
教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。
(二)、学法分析
通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。
学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。
(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。
三、教学过程设计
本节课我将围绕复习导入、探究新知、巩固练习、课堂小结、学生作业这五个环节展开我的教学,具体步骤是:
(一)复习导入
师:前面的课时中,我们学习了直角三角形的边角关系,下面老师来看看大家掌握得怎样?
1、直角三角形三边之间的关系?(a2+b2=c2,勾股定理)
2、直角三角形两锐角之间的关系?(∠A+∠B=900)
3、直角三角形的边和锐角之间的关系?
生:学生回忆旧知,逐一回答。
目的:温故而知新,使学生能用直角三角形的边角关系去解直角三角形。
师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的实际问题了,这节课我们学习“解直角三角形及其应用”,此环节用时约5分钟。
(二)探究新知
在这一环节中,我分如下三步进行教学,第一步:例题引入新课,得出解直角三角形的概念。
例1(课件展示)、如图,一棵大树在一次强烈的地震中于离地面10米折断倒下,树顶在离树根24米处,大树在折断之前高多少?
师:a或c还可以用哪种方法求?
生:学生讨论得出方法,分析比较,从而得出——使用题目中原有的条件,可使结果更精确。
师:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?
生:学生讨论分析,得出结论。
目的:使学生体会到(课件展示)“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”,此步骤用时约10分钟。
第三步:师生共同总结出解直角三角形的条件及类型。
师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?
生:学生交流讨论归纳(课件展示):解直角三角形,只有下面两种情况:
(1)已知两条边;
(2)已知一条边和一个锐角。
目的:培养学生善总结,会总结的习惯和方法,使不同层次的学生得到不同的发展,此步骤用时约3分钟。
(三)课堂练习:
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形教案 篇12
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程:
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:得到一个什么图形?(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:那么,这样的三角形我们叫它什么三角形?
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究等腰直角三角形。
二、动手操作,探索新知。
1、斜边
45
直角边
认识各部分名称和各个角的度数。
投影出示一个等腰直角三角形让学生试说。
边说边课件演示。
45
90
接着让学生指着折成的等腰直角三角形同桌
直角边
互相说各部分名称和每个角的度数。
解直角三角形教案 篇13
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形教案 篇14
一、教学目标
(一)知识教学点
巩固用三角函数有关知识解决问题,学会解决坡度问题。
(二)能力目标
逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。
(三)德育目标
培养学生用数学的意识,渗透理论联系实际的观点。
二、教学重点、难点和疑点
1.重点:解决有关坡度的实际问题。
2.难点:理解坡度的有关术语。
3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。
三、教学过程
1.创设情境,导入新课。
例 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。
同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。这时,教师应根据学生想学的心情,及时点拨。
通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义。
解直角三角形教案 篇15
一、 教材简析:
本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。
同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。
二、教学目的、重点、难点:
教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。
重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。
2、正确选择边与角的关系以简便的解法解直角三角形
难点:把实际问题转化为数学问题。
学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。
三、教学目标:
1、知识目标:
(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。
(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、
45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。
(3)运用三角函数解决与直角三角形有关的简单的实际问题。
(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、
2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。
3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.
四、、教法与学法
1、教法的设计理念
根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。
2、学法
学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。
三角形的分类教案锦集
教案课件的编制是教学工作中非常重要的一部分,不仅关系到教学步骤,还涉及到教学的课程标准。每位老师都应该认真考虑自己的教案课件,因为教案是教学过程中的有效监控工具。想要做好教案课件的编写,可以参考一些网络文章,从中获取灵感和方法。希望大家能够努力提升自己的教学水平,为学生带来更好的教育体验!
三角形的分类教案【篇1】
教学目标:
锐角三角形、钝角三角形等腰三角形和等边三角形,体会每一类三角形的特点。
合作交流的能力。动手操作的能力。
锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
教学难点:
通过分类活动,体会每一类三角形的特点。教法:主动探究法。学法:小组合作交流法
教学准备:
学生、老师剪下附页3中的图1。教学过程
一、预习检查
针对预习作业中的题目在小组内进行讨论,特别是做错的题目组内交流订正。
二、情景导入呈现目标
问题引入:上学期我们学习角的分类,可以把角分为什么?产生质疑,引入新课。
三、探究新知
(一)、自主学习:完成课本22页的各项要求。
1、我们以前学过那些角?
2、从情境图入手。这是什么图形?是由什么组成的?这些三角形一样吗?
3、你能给这些三角形分类吗?
(二)说一说、认一认
1、认识笑笑的分法。笑笑为什么这样分呢?
2、观察第三类三角形有什么共同特点。归纳出三个角都是锐角的三角形是锐角三角形。
3、观察第一类让学生发现其中有一个直角,其他两个角时锐角,归纳出有一个角是直角的三角形是直角三角形。
4、观察第二类让学生发现其中有一个钝角,其他两个角时锐角,归纳出有一个角是角的三角形是角三角形。
四、当堂训练
_____三角形和_____三角形;三角形按边分类分为_____三角形、_____三角形和_____三角形。
三个角都是锐角的三角形叫()三角形:(三角形;(三角形;(三角形;
3、锐角三角形的三个角都是_____角;直角三角形中必定有一个是_____角;钝角三角形中也必定有一个角是_____角。
条对称轴,等边三角形有()条对称轴,不等边三角形()条对称轴。
填一填。进行23页练一练第2题。我们来做一个猜一猜的数学游戏。猜一猜被信封遮住的可能是什么三角形。
7、练一练的第一题学生独立完成,师巡视。集体订正。
8、学生独立练习做练一练的第
解疑、个别汇报、老师点拨。
五、课堂总结
通过这节课的学习,你有什么新的收获或者还有什么疑问?独立思索小组交流总结方法教师点拨。
六、拓展提高
如果把一个梯形,一条边不断地变小,一直小到一个点,就是什么形状?一直大到和下底相等,就是什么形状?
七、布置作业完成数学同步练习册。
板书设计三角形的分类
按角分类:按边分类:
先独立做,最后组内交流。
课后反思:
1、对教材内容的处理。
根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容的学习环节做了适当的调整。 2、教学策略的选用
(1)运用了动手操作活动,强化学生的生活体验。教材这部分知识所对应的分类现象,学生具有了一定的生活体验,因此在进一步强化这种体验的过程中我进行了思考和认知,使知识从学生的生活中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。
(合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析、解决问题的方法,这样既有利于发展学生的理解、分析、概括、想象等创新思维能力,又有利于学生表达、动手、协作等时间能力的提高,促进学生全面发展,力求实现教学过程与教学结果并重,知识与能力并重的目标。也正是由于这些认识来自于学生自身的体验,因此血红色呢过不仅“懂了”,而且信了,从内心上认同这些观点,进而能主动的内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。
三角形的分类教案【篇2】
一、教材简析
“三角形的分类”是在学生认识了直角、锐角、钝角和三角形的基础上开展学习的,这一认识为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的知识支撑。教材分为两个层次:按角分为锐角、钝角和直角三角形及按边分为等腰、等边和一般三角形。学好这部分内容,为学习其他多边形积累了知识经验,这进一步学习三角形的有关知识打下了基础。
二、教学目标
(1)学生通过观察、操作、比较、发现三角形中角和边的特征,学会按一定标准给三角形分类,感受三角形与日常生活的联系。
(2)培养学生的观察、比较、抽象、概括能力。
(3)激发学生的主动参与意识,自我探索意识和创新精神。
本课的教学重点是学会按角和边的特征给三角形分类;教学难点是让学生理解并掌握各种三角形的特征。教学准备有:多媒体课件,彩色卡纸,三角形平面图、三角板、量角器、直尺、数据表格等。
三、教法学法
根据新课程教材的特点与学生的实际情况,我坚持以学生自主观察、探索、思考、发现为主,教师引导为辅,结合现代化教学手段让学生在观察三角形的过程中能结合自己以前所学的知识进行创新,从而获得新知,达到教学目的。
四、教学过程
情境导入:将我们班上的学生进行分类,该怎么分,让学生说出自己的想法师再紧接引导:在三角形这个大家庭里,你若仔细观察,会发现它们的角和边各有特点,这节课咱们就根据三角形角和边的特点给它们分类。简单明了的明确本节课的学习任务。
1、探究新知
在这个环节中,我通过让同桌合作,并借助学具一起探讨三角形分类方法,让学生充分经历看一看、比一比、量一量的亲身体验,学生学习兴致很高,几分钟下来,几乎一个标准分下来,而且还能准确的说明理由,巧妙的抓住“角”的特征。
(1)课件出示钝角、锐角、直角图形,让学生一一口答区分。
(2)紧接着课件出示多个带上编号的三角形。
让学生数一数这些三角形中锐角、直角、钝角的个数,并填入准备好的表中。以利于学生观察。(表格见课件)
(3)让学生汇报交流成果,老师边提问边引导学生自己总结规律。课件出示:从表面上,一个三角形最多有几个锐角?最少有几个锐角?最多有几个直角?几个钝角?通过讨论结出结论:
即:有一个角是直角的三角形,叫做直角三角形。
有一个角是钝角的三角形,叫做钝角三角形。
三个角都是锐角的三角形,叫做锐角三角形。
(4)用数学。把深刻的数学与平时的生活有机的联系起来,使数学学习充满了生命力。课件出示习题:认一认,说一说,各是什么三角形?学生通过自己动眼、动手、动口、动脑参与获取了新知,感受到了成功的喜悦,此时兴致盎然,趁热打铁,我在给予他们赞赏和鼓励的同时将教学内容引至下一个知识点。接下来是教学按边分类的三角形。
(1)教师出示教具:将准备好的彩色卡纸剪好的三张三角形模型,指名学生带上直尺上台来分别量一量这三个三角形的三条边。
(2)学生量完汇报:有三种情况,即三条边都相等,有两条边相等,三条边都不相等。
(3)师生共同归纳:我们把两条边相等的三角形叫做等腰三角形,相等的两条边叫腰,另一条边叫底;把三条边都相等的三角形叫做等边三角形;强调这两种情况属于特殊三角形。而等边三角形是特殊的等腰三角形。三条边都不相等的三角形也就是一般三角形。(课件出示)
3、巩固练习:
(1)画一个等边三角形和一个等腰三角形,分别量一量等腰三角形和等边三角形的各个角,谈谈自己有什么发现?
(2)猜一猜,可能是什么样的三角形?(教师左手拿一个三角形,右手拿一张纸遮住三角形的一个或两个角,只露出一个角或两个角,让学生猜一猜可能是什么样的三角形?以起到让学生加深理解锐角、钝角、直角三角形的特征的效果。
4、拓展练习:是让学生找一找身边的三角形,并把它的名字告诉同伴,让学生在用数学的同时,从中感受、体验到一个探索者的成功乐趣,从而增强学习动力和信心。
五、说板书设计
整堂课要求板书简单明了,将三角形按角、边分类的要点,展现在黑板上,以易于学生识记领会。
三角形的分类教案【篇3】
教学目标:
1.通过观察、操作、比较,发现三角形角的特征,会给三角形按角进行分类,理解并掌握三角形的种类特征,能解决一些生活中的实际问题。
2.在分类中进一步提高观察能力、操作能力,体会分类标准的严密性。
教学重点:三角形的分类标准
教学难点:以角为标准进行分类
教具准备:一支彩笔、一把尺子、一个双面胶、一把剪刀、手工纸两张、一个磁铁。每个小组准备一张A4纸。
设计过程:
预设的教师活动
可能的设计活动
设计说明
一、谈话导入
同学们,我们已经学过了哪些角?
课件出示锐角、直角、钝角。能说这些角的名称吗?
(课件演示)老师在每个角上添上一条线段把它们变成变成了什么图形?
什么是三角形呢?
请同学们用水彩笔和尺子任意画一个三角形。画好后用剪刀把它剪下来。
二、新授
1.小组内把剪下来的三角形分类。
如果和他们分法相同,请有序的的把三角形帖在它的同类三角形一起。
2.揭题:三角形的分类
3.小组讨论每类角的共同特征。
4.比较锐角三角形、直角三角形、钝角三角形的相同点和不同点。
6.如果我们把三角形看成一个大集体,这个大集体有几名成员。课件出示集合图。
三、巩固练习
1.
判断题。
①任意一个三角形,至少有两个角是锐角。
②最大的角是锐角的三角形一定是锐角三角形。
③直角三角形中有2个直角。1个锐角。
④一个三角形中只能有一个直角或者一个钝角。
2.猜一猜被信封遮住的是锐角三角形、直角三角形还是钝角三角形?
说说你的理由。
3.用一张正方形纸折出4个完全一样的直角三角形。
4.找出物品中哪些是我们今天学过的三角形。
5.用信封里的三角形拼成美丽的图形或图案,每组四名学生合作。还有四名学生到黑板上来拼。
生:直角、锐角、钝角、平角、周角
生:三角形
由三条线段围成的图形叫做三角形
组长来展示分类的情况。组长说这样分的理由。
组1:根据三角形大小来分。
组2:根据纸的颜色给三角形分类
组3:根据三角形的角的特点来分
揭示特征把三角形取名。锐角三角形、直角三角形、钝角三角形
相同点是:每个三角形都有2个锐角。
不同点是:它们的最大角不一样,有锐角、有直角、有钝角。所以三角形的名称是由三角形中的最大角决定的。
学生自由读题,用手势表示对与错。错题学生要说出自己的理由。
用一张正方形纸折出4个完全一样的直角三角形,有两种折法,一是,把正方形对角对折再对折,二是,把正方形对边对折成长方形,再沿着长方形的对角线对折。
通过复习角的知识,让学生对知识进行迁移,根据角的特点给三角形进行分类作好铺垫。
学生通过画、剪三角形让学生更深的理解封闭图形,也培养了学生的动手操作能力。
小组内进行分一分,说一说自己的分类的标准是什么。培养学生的小组合作的意识。
重视培养学生的观察能力的培养。
通过判断检验学生对知识的掌握情况和灵活运用知识的能力。
让学生猜一猜是什么三角形?培养了学生观察能力和逻辑思维的推理能力。通过折长方形,,不仅培养了学生的操作能力,还培养了学生数学思维的发散能力。
找找生活中的物品中哪些是今天我们认识的三角形。让学生体会学数学是有用的,数学就在我们的身边。让学生更爱数学、更喜欢数学。通过拼图让学生得到了数学美的熏陶。
三角形的分类教案【篇4】
教学内容:义务教育课程标准实验教科书数学四年级下册第83页至第84页及做一做。
教学目标:
1、通过观察、操作、比较发现三角形角和边的特征,会给三角形分类,理解并掌握三角形的种类特征,能解决一些简单的问题。
2、培养学生观察能力、操作能力和形象灵活的思维能力。
3、激发学生的主动参与、合作学习意识、自我探究意识和创新精神。
教学重、难点:
1、会按角和边的特征给三角形分类。
2、区别和掌握各种三角形的特征。
今天,老师带大家坐轮船到岛上旅游,课件出示图片:这艘船是由许多三角形组成的,,他们都有三个角和三条边,这节课我们就从这角和边两方面给三角形分类。
1、观察三角形学具,讨论分类方案。
②学生实物展示台汇报,教师根据汇报在白板上拖动三角形分类,并逐个出示其特征介绍锐角三角形、直角三角形、钝角三角形的特征。对有争议三角形(如接近直角的角)用工具(三角尺或量角器)验证。
②教师根据学生汇报在白板上拖动三角形分类,并逐个出示其特征介绍等腰三角形和等边三角形的特征
③用集合圈表示等腰三角形、等边三角形的关系。
利用素材库画等腰三角形,并进行顶角变化演示,认识与锐角、直角、钝角三角形的关系。
三、游戏应用。
1、蚂蚁搬家。
2、猜猜猜。
3、在方格图上按要求围三角形。
四、课堂总结。
同学们,我们生活中到处都有三角形的利用,点击“链接网络图片”,只要大家做个有心人,多观察,多思考,一定会学到更多有关三角形的知识。
三角形的分类教案【篇5】
教学目标:
1.通过观察、操作、比较,发现三角形角的特征,会给三角形按角进行分类,理解并掌握三角形的种类特征,能解决一些生活中的实际问题。
2.在分类中进一步提高观察能力、操作能力,体会分类标准的严密性。
教学重点:三角形的分类标准
教学难点:
以角为标准进行分类
教具准备:
一支彩笔、一把尺子、一个双面胶、一把剪刀、手工纸两张、一个磁铁。每个小组准备一张A4纸。
教学过程:
一、谈话导入
同学们,我们已经学过了哪些角?
课件出示锐角、直角、钝角。能说这些角的名称吗?
(课件演示)老师在每个角上添上一条线段把它们变成变成了什么图形?
什么是三角形呢?
请同学们用水彩笔和尺子任意画一个三角形。画好后用剪刀把它剪下来。
二、新授
1.小组内把剪下来的三角形分类。
如果和他们分法相同,请有序的的把三角形帖在它的同类三角形一起。
2.揭题:三角形的分类
3.小组讨论每类角的共同特征。
4.比较锐角三角形、直角三角形、钝角三角形的相同点和不同点。
6.如果我们把三角形看成一个大集体,这个大集体有几名成员。课件出示集合图。
三、巩固练习
1.判断题。
①任意一个三角形,至少有两个角是锐角。
②最大的角是锐角的三角形一定是锐角三角形。
③直角三角形中有2个直角。1个锐角。
④一个三角形中只能有一个直角或者一个钝角。
2.猜一猜被信封遮住的是锐角三角形、直角三角形还是钝角三角形?
说说你的理由。
3.用一张正方形纸折出4个完全一样的直角三角形。
4.找出物品中哪些是我们今天学过的三角形。
5.用信封里的三角形拼成美丽的图形或图案,每组四名学生合作。还有四名学生到黑板上来拼。
三角形内角和教案十五篇
在教学过程中,老师教学的首要任务是备好教案课件,又到了写教案课件的时候了。 教案课件能够准确地反映出教学过程中的创造和智慧,对于写教案课件有哪些疑问呢?这篇文章是幼儿教师教育网从网络上认真筛选的优质“三角形内角和教案”文章,我们会不断更新和改进还请您多多关注我们的网站!
三角形内角和教案【篇1】
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
让学生说说在这节课上的收获!
三角形内角和教案【篇2】
1、知识与技能:
(1)理解和掌握三角形的内角和是180°。
(2)运用三角形的内角和知识解决实际问题和拓展性问题。
2、过程与方法:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感态度与价值观:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。
1、猜谜语:
形状似座山,稳定性能坚。三竿首尾连,学问不简单。
师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?
3、引出课题。
师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)
3、验证。
让学生用自己喜欢的方式验证三角形的内角和是不是180°。
师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?
A、学生上台演示。
B、请大家三人小组合作,用剪拼的方法验证其它三角形。
师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(5)数学小知识。
5、巩固知识。
(1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数。
2、判断。
3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、求四边形、五边形内角和。
四、总结。
三角形内角和教案【篇3】
冀教版七年级下册数学
9.2《三角形内角和外角》
——三角形内角和定理证明教学设计
一.教材分析:
(一)教材的地位和作用:
这节内容是在前面学生对“三角形内角和是180°”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。
三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用。
(二)教学目标:
1.知识与技能目标:掌握三角形内角和定理的证明,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。
2.过程与方法目标:
(1)对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。
(2)通过一题多证、一题多变体会思维的多向性。
(3)引导学生应用运动变化的观点认识数学。
3.情感与态度目标:通过一题多证激发学生勇于探索的精神,感悟逻辑推理的价值。
(三)教学重难点:
1.重点:探索证明三角形内角和定理的不同方法
2.难点:应用运动变化的观点认识数学,从拼图过程中发现并正确引入辅助线是本节课的关键。
二.教学方法:引导发现法、尝试探究法。
三.教学过程:
一、创设情景、提出问题:
在小学,我们已经知道三角形内角和是180°,那它是怎么来的呢?你能给出说理吗?
二、探究新知
(一)动手操作、探索解法:
画出一个三角形,并将它的内角剪下,做拼角实验
归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线,为书写证明过程做好铺垫。
(二)议一议,开阔思野:
1.‘搬三个角’的特点:把角‘搬’到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。
在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生思考。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:过A点作DE∥BC
C D A E
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。
2.应指出辅助线通常画为虚线,并在证明前交代说明。添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
四.教学反思 :C D
本课以撕纸法验证得出“三角形内角和是180°”后,启发学生还可利用添加辅助线的方法去证明三角形内角和定理。
课堂教学充分发挥课件辅助教学的作用,将知识形象化、生动化、具体化。重视数学思想方法的引导,并及时指导归纳总结。
为了突出重点、突破难点,我对教材做了少量的补充和扩展,利用多媒体直观形象、节省时间的特点,动画演示再现学生拼图过程、解题过程,引导学生从动态角度直观地思考问题,帮助学生理解运动变化的观点。
三角形内角和教案【篇4】
教学内容:
四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。
教学目标:
1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。
2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。
3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。
教学重点:
让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。
教学难点:
探究和验证“三角形内角和等于180°”。
教学准备:
学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。
教学过程:
一、创设情境,产生疑问
1、理解内角和含义。
2、故事激趣
提问:三兄弟围绕什么问题在争吵?你有什么看法?
二、自主学习,合作探究
1、提出猜想。
(1)计算三角板的内角和。
(2)提出猜想。
提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?
指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。
引导:需用更多的三角形验证。
2、进行验证。
(1)验证教师提供的'三角形。
测量:任意三角形的内角和。
①小组合作:用量角器量出信封里不同三角形的内角和。
②交流测量结果。
③提问:根据测量结果,你能得出什么结论?
拼一拼:把一个三角形的三个角拼在一起。
①思考:除了量,还可以用什么方法验证呢?
②同桌合作:尝试把三个内角拼成一个平角。
③反馈不同的拼法。
④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?
解释误差问题。
(2)验证学生自己画的三角形。
学生任意画一个三角形,用自己喜欢的方法去验证。
交流:自己画的三角形验证出来内角和是1800吗?有谁验证
出来不是1800的吗?
提问:你又能得到什么结论?还有怀疑吗?
3、得出结论。
指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。
说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。
解决争吵:学生用三角形内角和的知识劝解三兄弟。
三、巩固应用,深刻感悟
1、算一算:求三角形中未知角的度数。
2、拼一拼:用两块相同的三角尺拼成一个三角形。
思考:拼成的三角形内角和是多少?
3、画一画:(1)你能画出一个有两个锐角的三角形吗?
(2)你能画出一个有两个直角的三角形吗?
(3)你能画出一个有两个钝角的三角形吗?
四、全课总结,课后延伸
1、学生自主总结一节课的收获。
2、介绍帕斯卡。
3、用三角形拼成四边形、五边形、六边形,引发新的问题。
三角形内角和教案【篇5】
教学目标:
1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。
计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。
3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。
教学重点:
知道三角形的内角和是形状无关。
教学难点:
经历操作活动,推理、归纳出三角形的内角和。
教学资源:
多煤体课件,各种三角形,三角板,量角器,剪刀。
教学活动:
一、创设情境,导入新课。
1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?
现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。
二、合件交流,操作发现。
你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是(课件出示学习单)。
2.组织学生小组合作:
请同学们以。②同桌交流,你们有什么发现?
3.组织学生汇报交流:
①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是老师板书:三角形的内角和是,就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)
4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。
三、实践应用,拓展延伸。
°,∠°。
。
四、反思总结,自我建构。
这节课你有什么收获?
这节课我们就研究到这儿,同学们再见!
三角形内角和教案【篇6】
1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。
4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
三角形内角和教案【篇7】
各位评委:
我说课的主题是“角色扮演,引导学生猜想验证”,说课的内容是《三角形的内角和》。
一、说说我对教材与学情的分析
《三角形的内角和》是北师大版四年级下册第二单元的教学内容,是在学生学习了三角形的概念及特征、分类之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础。教材的小标题为“探索与发现”,强调说明这一部分的内容要求学生通过自主探索来发现有关三角形的性质。学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。
二、聊聊我对教学目标及重难点的确定
以建构主义理论以及有效教学的理念为指导,结合对教材和学情的分析,我将本节课的教学目标定为下列几点:
1、通过量、剪、拼等活动发现、验证三角形的内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法。
3、在探究中体验成功的喜悦,激发主动学习数学的兴趣。
教学重点:经历“三角形的内角和是180°”的形成、发展和应用的全过程。
教学难点:验证“三角形的内角和是180°”以及对这一规律的灵活运用。
学具准备:量角器、三角尺、剪刀和准备一个喜欢的三角形。
三、谈谈我的主要教学流程
本节课我设计采用支架式教学方法,以猜想→验证→应用→评价四个活动环节为主线,引导学生通过自主探究学习实现对“三角形内角和是180°”这一知识规律的数学理解。同时,每一个活动环节都让学生尝试扮演一种角色,激发他们投入课堂活动的兴趣。
1.大胆设疑,提出猜想(猜想家)
在这节课之前,有不少学生通过各种渠道了解了三角形的内角和是180°。因此,第一个环节我就让学生根据已有的知识经验进行大胆设疑,提出猜想,做一个猜想家。
首先,我向学生出示一个长方形,向学生讲解长方形的四个内角,引导学生将这四个内角的度数相加算出长方形的内角和是360°。
接着,我把长方形拆成两个三角形,让学生指出其中一个三角形的三个内角,设问:这个三角形的三个内角和是多少?让学生说说各自的看法和理由,并引导提出“是不是所有的三角形的内角和是180°”的猜想。通过这一环节,学生首先获得对“三角形内角和是什么”这一陈述性知识的数学理解。
2.科学验证,探索规律(科学家)
有了大胆的猜想,就要进行科学的验证,第二个角色就是扮演科学家,对刚才的猜想进行科学验证,自主探索。
第二个环节的活动步骤如下:
(1)提供实验活动需要操作的工具,如:量角器、三角尺、剪刀等,让学生说说:“要知道三角形的内角和,怎样利用好这些工具?”
(2)明确提出操作要求:先在自己准备的三角形上作好内角的符号,选择合适的工具开展实验,遇到操作困难可以与同伴商量或请老师帮助解决。
(3)学生操作后在小组内交流,出示交流提纲:
A、通过实验操作,你发现三角形的内角和有什么特点?你是怎样发现的?
B、你认为三角形的内角和与三角形的大小、形状有关吗?为什么?
(4)集体交流,小结规律:
在组织学生交流实验的过程与成果时,我会挑选出研究不同形状或不同大小的三角形的学生进行实验汇报,并在学生提出疑问时进行合理的解释与调控,尤其是要对一些通过量一量得出180度左右的结论进行“误差解释”。最后与学生一起小结归纳出:“三角形的内角和是180°,而且与它的大小、形状无关”这一数学规律,从中感悟由特殊到一般的证明方法。
3.联系生活,实践应用(实践家)
有效教学理论指出练习要考虑它的实效性。在这个环节,我设计让学生扮演实践家,通过三个有层次有针对性的练习实践把探索得出的知识应用于生活问题之中。
第一,基本运用。即书本中“试一试”的第3题和“练一练”的第1、第2题。通过这个3练习让学生形成运用三角形内角和的知识求出未知角度数的基本技能。
第二,综合运用。即书本中“做一做”的第3题,这道题在让学生知道其中一个角等于60度的情况下,综合运用三角形内角和是180度和三角形分类知识来进行解决。
第三,拓展延伸。我设计了让学生求四边形和五边形等多边形的内角和的问题,让学生通过量、拼、分等办法尝试求多边形内角和,并找出其中的规律。
4.自我反思,评价延伸
在这个环节,我会让学生自己说说:“这节课你有什么收获?”“在扮演三个角色时,哪一个角色完成得最好,为什么?”
为了突出本课的重点,我设计了简洁明了的板书:
三角形的内角和
量角撕拼折角拼图
三角形的内角和是180度。
三角形内角和教案【篇8】
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三、自主探索、研究问题、归纳总结:
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(4)根据学生的反馈情况教师进行操作演示。
撕拼法:
1、教师取出三角形教具,把三个角撕下来,拼在一起,
3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
三角形三个内角和等于180?
意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四、巩固练习,知识升华。
1、完成课本第28页的“试一试”第三题。
锐角三角形中的两个内角和能小于90吗?
3、有一个四边形,你能不用量角器而算出它的四个内角和吗?
意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教案【篇9】
1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。
2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。
3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。
让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。
1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)
(1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?
1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。
2、观察这两个三角形的度数,你有什么发现?
生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)
生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?
那么另一个三角板的三个内角的总度数是多少?
4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)
5、这个直角三角形的内角和是多少度?另一个呢?
6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。
7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。
*“剪一剪”的方法:
我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)
你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?
还有其他方法吗?
*“折一折”的方法:
②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)
*推理:
你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)
这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)
(1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。
(2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)
2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?
哪个组愿意把你们的研究成果向大家展示?
4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。
师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?(板书:三角形的内角和是180°)。
(1)每个三角形的内角和都是少度?
(2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢
(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?
你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。
(2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)
你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?
(3)如果五边形,你还能求出他的度数吗?
通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?
师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。
三角形内角和教案【篇10】
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题2此实验给我们一个什么启示?
问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
三角形内角和教案【篇11】
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想研究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形内角和教案【篇12】
教学过程:
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
师:也就是这个三角形各角的度数。它们的和怎样?
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
师:从刚才两个三角形内角和的计算中,你发现什么?
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
1。猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2。操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
3课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:为什么用测量计算的方法不能得到统一的结果呢?
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
四、应用三角形的内角和解决问题。
3、游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
三角形内角和教案【篇13】
学习目标:
(1) 知识与技能 :
掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2) 过程与方法 :
通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:
通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。
一.自主预习
二.回顾课本
1、三角形的内角和是多少度?你是怎样知道的?
2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的步骤
①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?
①平角,②两平行线间的同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?
① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。
② 如图1,延长BC,过C作CE∥AB
③ 如图2,过A作DE∥AB
④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
三、巩固练习
四、学习小结:
(回顾一下这一节所学的,看看你学会了吗?)
五、达标检测:
略
六、布置作业
三角形内角和教案【篇14】
教学内容:
教材第“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(
(
5、结论:修改板书,把“?”去掉,写“是”。
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(。
(三角形。
2、判断
(
(
(
(
(
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形内角和教案【篇15】
《三角形内角和定理》说课稿
内丘县内丘镇中学 乔素霞
尊敬的各位评委、各位老师,大家好:
我是内丘县内丘镇中学的教师乔素霞,今天我说课的内容是《三角形内角和定理》。下面我将围绕本节课“教什么?”“怎么教?”“为什么这么教?”三个问题从教材分析、学情分析、教学设计、教学过程、教学反思等几个方面逐一分析说明。
一.教材分析
1.本节课所处的地位和作用
本节课是冀教版数学八年级下册第二十四章第五节《三角形内角和定理》的第一课时。其教学内容为三角形内角和定理的证明和简单运用。它是在学生对一些几何结论有了直观认识,并会简单说理的基础上,进一步认识几何图形以及规范证明过程的重要内容之一。三角形的内角和定理揭示了组成三角形的三个内角之间的数量关系,是求角的度数的有力工具,在实际生产生活中有着广泛的应用。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。因此,本节课起着承上启下的作用。
2.教学目标
本着教学目标应科学简明,体现全面性、综合性和发展性的原则,制定目标如下:
(1)知识与技能
掌握三角形内角和定理的证明和简单运用;初步体会辅助线在证明中的作用。
(2)过程与方法
经历利用剪拼三角形验证三角形内角和定理,探索其证明思路的过程,使学生掌握一定的探索方法;通过渗透“化归”的数学思想,使学生体会解决数学问题的基本思路。(3)情感态度与价值观
培养学生合作交流意识和探索精神;培养学生有条理的思考问题和合乎情理的表达问题的能力。3.教学重点和难点
教学重点:三角形内角和定理的证明与简单运用。
教学难点:引导学生添加辅助线解决问题,并进行有条理的表达。二.学情分析
初二学生已具备了一定的学习能力,操作、归纳、推理能力。他们思维活跃,对新知识有较强的探求欲望,但是对于严密的推理论证,在知识结构和能力上都有所欠缺。
三. 教学设计 1.教法
本节课主要采用“情境创设”、“设疑诱导”等教学方法,同时利用多媒体课件作为辅助教学手段。
2.学法(1)动手操作(2)合作交流(3)自主学习3.设计思路
《新课标》指出:“教师要成为学生数学活动的组织者、引导者、合作者;要善于激发学生的学习潜能,鼓励学生大胆创新与实践。”因此我设计了以学生活动为主线,以突出重点、突破难点,发展学生素养为目的教学过程。采用创设情境、启发诱导、动手操作、合作交流等方法,在教师的引导下,通过同学间的互相探讨、启发,在自主探索中发现新知、发展能力。
四.教学过程
情境引入→活动探究→实践运用→小结反思 1.创设情境,引入新课
新课标下的数学课程倡导从学生实际出发,发挥学科自身优势,激发学生的学习兴趣,促使学生主动地学习。因此我通过一段动画引入课题,由动画中三个小动物的争论引出三角形内角和大小的问题,让学生作出评判:到底谁的内角和大?在学生评理说理中自然导入三角形内角和的学习探究。由此引入新课,既提出了数学问题,又激发了学生学习数学的兴趣。
2.活动探究,获取新知
要求学生把事先准备好的三角形纸板的三个内角剪下,然后将剪下的三个内角随意的拼接在一起,使三者顶点重合,问能发现怎样的现象。学生分组动手操作,在探讨各种拼图的方法后派代表展示拼接的图形,教师借助多媒体展示其中的具有代表性的拼接方法。通过学生的观察、猜想、度量得到结论:三角形三个内角的和是180°。但是有的学生提出质疑:有时候量出三角形三个内角的度数和要高于或低于180°。此时,教师适时说明:通过观察剪拼得到的结论虽然有一定的合理性,但是会存在误差,命题的正确性必须经过严密的推理来验证。通过实际操作让学生体会到证明的必要性。
由剪拼三角形得到三角形内角和为180°,到添加辅助线证明这个定理,对学生来说有一定的难度,因此在教学时,我对教材做了铺设台阶,化解难点的处理。先让学生指出这个命题的条件和结论,并画出图形,结合图形写出已知、求证。目的是让学生逐步学会用符号表示命题,发展他们的数学符号表达能力。然后对照刚才的拼图过程,尝试用几何图形来表示出所拼接的实物图。此环节应留给学生充分的思考、讨论、体验的时间,让学生在交流中互取所长。
几何图形描绘出来之后,师生一起探究证明思路,先引导学生观察在刚才的拼接过程中∠1和哪个角相等?这两个角具有怎样的位置关系?由它们的位置关系与等量关系我们可以得到射线CE与线段AB具有怎样的位置关系?通过学生的思考、交流引导他们说出探究1中添加辅助线的方法:延长BC到点D,过点C作射线CE∥AB.这样就可以借助平行线的性质将∠A移到∠1的位置,将∠B移到∠2的位置。(此时,教师即可给出学生辅助线的定义、作用,以及作辅助线的注意事项),然后由学生尝试写出证明过程,教师巡回指导。有一部分学生写证明过程有困难,可给予有针对性的帮助。完成之后让多名学生口答自己的证明过程,培养他们说理有据,有条理的表达自己想法的良好意识。师生共同评议,订正,在交流中发现问题、解决问题,共同提高。(学生的证明过程出现了两种不同的方法:有的学生把三个内角凑成一个平角来证明,而有的学生则借助“两直线平行,同旁内角互补”来证明)。对学生的独到的见解,不同的证题方式,我及时进行肯定与鼓励,3 使学生感受成功的喜悦。最后教师规范证明过程,给出证明的书写格式,使学生学习有章可依。
探究2的思路分析和添加辅助线的方法,由学生类比于探究1的步骤合作交流后独立完成证明过程。通过教师的正确引导,使学生掌握三角形内角和定理的证明方法,从而突出本节课的重点。对证明的格式、方法和步骤,要在学生亲身经历、体验的过程中去逐步理解和掌握。
对于探究3,引导学生观察拼接的图形,说出添加辅助线的方法,证明过程让学生课下独立完成。
探究完成之后,师生共同进行归纳得到三角形内角和定理:三角形三个内角的和等于180°。然后教师引导学生总结辅助线的添加方法,即通过添加平行线,把三角形的三个内角转化成一个平角或者转化为一组同旁内角来证明。让学生交流自己发现的其他证题思路,并进行适当的比较和讨论,努力给他们创造一个“海阔凭鱼跃,天高任鸟飞”的课堂氛围,使学生的求异思维和创新意识得到及时的表现。
通过学生的思考、争论达到思想上的碰撞,激发新思维。本节课的难点也会趁此而突破。
3.实践运用,巩固新知
新课标提倡发展应用数学知识的意识与能力。因此在推理证明完成之后,我设计了一组题目来巩固所学定理。首先是例题1的学习,教师进行适当的引导和点拨后,由学生独立完成。然后师生一起理顺思路,规范格式。
其次是基础练习。通过试一试、练一练、做一做,让学生经历运用所学知识解决问题的过程,使学生对初步感知的结论有更加深刻的认识,进一步发展他们的推理论证能力。
为了提升学生的应用能力,我还设计了两个实际问题。通过解决问题让学生体会到数学来源于生活,又服务于生活,从而激发他们学习数学的积极性,建立学好数学的自信心。4.小结反思,提高认识
回顾本节知识脉络,请学生谈谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给我 4 们教者本身一个反思提高的机会。
5.布置作业
分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。
6.板书设计
采用提纲式板书,突出重点,一目了然。五.教学反思
本节课教师主导作用的发挥是比较好的,主要体现在让学生的主体地位得到充分展示。例如:证明方法的发现和小结等。同时使学生感受到了学习的快乐,体会到了探究与发现带来的乐趣。教学中,我遵循的基本教学原则是激励学生展开积极的思维活动,不断的表扬学生,使学生感到自身的价值存在,给学生一个展示个性、尝试成功的机会。
总之,本节课力求从学生实际出发,通过他们的实践、思考、探索、交流获得知识,形成技能,发展思维。存在的不足之处还恳请各位评委老师批评指正。
三角形的内角和教案六篇
居安思危,思则有备,有备无患。杰出的幼儿教学工作者能使孩子们充分的学习吸收到课本知识,为了将学生的效率提上来,老师会准备一份教案,教案有利于老师在课堂上与学生更好的交流。幼儿园教案的内容要写些什么更好呢?有请驻留片刻,小编为你推荐三角形的内角和教案六篇,但愿对你的学习工作带来帮助。
三角形的内角和教案(篇1)
(一)创设情境,悬念引入
一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的`关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。
具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。
(二)探索新知
1、动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。
(将拼图展示在黑板上)
2、尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。
3、证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
4、学以致用,反馈练习
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,则∠C=?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B—∠C=40°,则∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?
解:设∠A=x°,则∠B=3x°,∠C=5x°
由三角形内角和定理得,x+3x+5x=180
解得,x=20
∴∠A=20°∠B=60°∠C=100°
(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?
第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。
通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。
5、巩固提高,以生为本
(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。
(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。
本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用。能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。
6、思维拓展,开放发散
如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。
本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。
(三)归纳总结,同化顺应
1、学生谈体会
2、教师总结,出示本节知识要点
3、教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
(四)作业
1、必做题:习题3.1第10、11、12题
2、选做题:习题3.1第13、14题
(五)板书设计
三角形内角和
学生拼图展示已知:求证:
证明:开放题:
三角形的内角和教案(篇2)
“三角形内角和”教学设计
教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。 教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。 教学重点:
学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。 教学难点:
学生理解不同探究方法的内涵和对所得结论的灵活运用。 设计思路:
三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。
同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。
教学准备:多媒体课件、三角尺等。 教学过程:
一、激趣引入
(一)认识三角形内角
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点? 生1:三角形是由三条线段围成的图形。 生2:三角形有三个角,……
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠
1、∠
2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。 (利用交互式电子白板的画图、手写功能,直接演示找三角形三个内角的过程并标示出来,帮助学生理解三角形的内角的概念。)
(二)设疑,激发学生探究新知的心理 师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理) 生:能。 师:请听要求,画一个有两个内角是直角的三角形,开始。 师:有谁画出来啦? 生1:不能画。
生2:只能画两个直角,围不成三角形。 生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。 师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道? 生:想。
师:那就让我们一起来研究吧! (揭示矛盾,巧妙引入新知的探究)
(利用交互式电子白板的画图、手写功能,让学生直观感受三角形中不可能有2个90度的内角。设置认知矛盾,使学生在矛盾中去发现问题、探究问题。)
二、动手操作,探究新知
(一)研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形) 师:也就是这个三角形各角的度数。它们的和怎样? 生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么? 生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。 (利用交互式电子白板的手写功能,直接在由三角板抽象出来的三角形上标出各个角的度数并列式求出其内角和。)
(二)研究一般三角形内角和 1.猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。 生1:180°。 生2:不一定。 ……
2.操作、验证一般三角形内角和是180°。 (1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧! 师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
(2)小组汇报结果。
师:请各小组汇报探究结果。 生1:180°。 生2:175°。 生3:182°。 ……
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢? 生:把它们剪下来放在一起。 1.用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。 2.汇报验证结果。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。 生3:钝角三角形的内角和还是180°。 3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
(此部分内容是本节课的重点及难点所在,因此,在教学中:
1、利用交互式电子白板资源共享中即时显示度数的量角器,令学生上台演示量三角形各个角的大小的操作变得更简单、准确。增强了师生及生生之间的互动性。
2、利用交互式电子白板强大的链接功能,将网络资源链接过来:动画形象演示“拼”的方法验证三角形内角和的过程,弥补了人工操作无法直观再现学生的思维过程的短处。通过以上两点,将学生在研究三角形内角和为什么是180°的思维过程呈现出来,达到突出重点以及突破难点的目的。) 师:我们可以得出一个怎样的结论? 生:三角形的内角和是180°。
(屏幕显示:三角形的内角和是180°学生齐读一遍。)
(利用交互式电子白板的隐藏、拖拽功能,将结论在适当的时候呈现。)
师:为什么用测量计算的方法不能得到统一的结果呢? 生1:量的不准。
生2:有的量角器有误差。 师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因 为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢? 生:不可能。 师:为什么?
生:因为两个锐角和已经超过了180°。 师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2.按要求计算。(数学信息较为隐藏和生活中的实际问题)
(
1、利用交互式电子白板的屏幕捕获、链接等功能,让练习逐步呈现,让学生解决问题时更加专注。
2、利用交互式电子白板的手写功能,将学生解决问题的多种方法同时呈现,进行对比,加强了师生及生生之间的互动交流。)
五、全课小结。
师:今天你学到了哪些知识?是怎样获取这些知识的?(学生自由发言) (利用交互式电子白板的即时记忆功能,用课堂生成的课件资源回顾总结,便于学生再次回顾课堂学习过程,明确学习所得。)
三角形的内角和教案(篇3)
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知 引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
【设计意图:也自然导入新课。】
二、提出问题 引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】
三、操作验证 形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设: ①量算法 ②剪拼法 ③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
【设计意图:
《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】
四、应用结论 解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测: 三角形的内角和是180°?
验证: 量 拼
结论: 任意三角形的内角和是180°
三角形的内角和教案(篇4)
探索与发现
(一)-----三 角 形 内 角 和
说 课 稿
一、教材分析
“三角形内角和”是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了三角形的主要特征和三角形的分类的基础上进一步探究三角形有关性质中的三个内角的性质。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步探索发现三边性质的基础。
二、设计思路
基于教材的内容安排和呈现结构特点我拟定本节课的教学目标为: 1.通过自主探索、合作交流,发现三角形内角和等于180度。
2.通过学生画、量、撕拼、折拼、观察等活动,培养学生的探索发现动手操作能力及阅读插图找信息的能力。
3.能运用三角形内角和这一性质解决简单的实际问题。
4.让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:
探索并发现三角形内角和等于180度。教学难点:
运用三角形的内角和的性质解决简单的实际问题。教学方法:
课件演示、小组合作 教学准备:
三角尺、量角器、三角形纸片、双面胶、课件 教学流程:
根据设定的教学目标和教材呈现的各个情境主题图为线索,我把“三角形内角和”的知识分四个步骤来完成:
一、“创设情境,建立模型”:
复习三角形的有关知识为新知的学习做好铺垫,改编创设书上27页“大小三角形争论”情景引入新课,引起学生好奇心,激发探究欲望。
二、动手操作,自主探究: 1.活动一,量一量,通过测量发现大小,形状不同的每个三角形,三个内角的度数和都接近180度;
2.活动二,撕一撕,拼一拼。学生会发现撕下的三个角,可以拼成一个平角,也进一步证明了三角形的三个内角和是180°。
3.活动三,折一折。折叠一个三角形的三个内角,把三个角折叠在一起,三个角在一条直线上,从面得到三角形的三个内角和等于180°。
学生通过上面三个活动的操作,得出了一个结论:三角形内角和是180°.三、巩固与应用
利用今天所学知识回到课始判断大小三角形谁说得对.设计一般三角形已知两个角度度数,求第三个角的度数,学会运用三角形内角和是180度来解决,在这里我也注重对学生阅读插图能力的培养,让学生看书先说说图上告诉了哪些信息,要求什么,然后再想办法计算。
四、总结与拓展
假如你是一个三角形,你该如何向别人介绍自己? 根据三角形内角和等于180°,你能求出四边形的内角和是多少吗?
富兵
2014年3月4日
北师大版四年级数学下册
探 索 与 发 现
(一)----三角形内角和(说课稿)
官 庄 学 区 中 心 小 学
富 兵
2014年3月4日
三角形的内角和教案(篇5)
一、说教材
1、教学内容苏教版《义务教育六年制小学教科书·数学》四年级下册第130~131页。
2、教材简析
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的。通过学习三角形的内角和使学生学会求三角形中第三个内角的度数的方法,同时让学生经历探索、猜想、归纳等过程,发展学生的合情推理能力。
3、教学目标
(1)让学生探索发现三角形的内角和是180°。
(2)通过动手拼摆等活动提高学生的动手能力和思维能力,感受数学的转化思想。
(3)进一步发展学生空间观念。
4、教学重点
探索发现三角形的内角和是180°。
5、教具准备
多媒体课件
6、学具准备
每人准备几个不同类型的三角形。
二、说教法、学法
新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证,通过实验、操作、交流等活动,获得知识与能力,掌握解决问题的方法,获得情感体验。
三、说教学过程
(一)猜角设疑,揭示课题我们来做个游戏叫“猜角”。请同学们拿起桌子上量好角角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。想信吗?(不相信),下面我们来试一试。(师生猜角活动。)师:你想知道老师是怎么猜的吗?其中的奥秘就在今天我们要探索的知识。(板书:“的内角和”并齐读课题)[设计意图]在教学中激励学生展开积极的思维活动。先创设猜角的游戏情境,让学生对三角形三个角的度数关系产生好奇,引发学生的探究欲望。通过本节课的学习,你有什么收获?你还有什么问题吗?
三角形的内角和教案(篇6)
三角形内角和定理的证明说课稿
马建禄
一、说教材:
(一)、教材的地位及作用:
本节课是北师大版实验教科书八年级下册第六章第五节的内容。是在学习了平角、同位角、内错角、同旁内角、探索两直线平行的条件及三角形内角和定理的基础上,进一步探索三角形内角和定理的证明.为今后学习多边形内角和、外角和,圆等知识打下良好的基础,具有承上启下的作用。且三角形内角和定理在日常生活中,如机械制造、工程设计、国防等领域具有广泛应用。
(二)、教学目标设计:
1、知识与技能:
(1)掌握“三角形内角和定理”的证明及其简单应用。(2)对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
(3)通过一题多解,初步体会思维的多向性,引导学生的个性化发展。
2、过程与方法:通过动手操作、探索、观察、分析、归纳培养学生获得数学结论的能力。
3、情感与价值观:培养学生创造性,弘扬个性发展,体验解决
用为主线来展开。采用了教具演示的教学手段,使图形直观、形象地便于学生理解。以学生发展为本的原则,我运用启发式教学方法,引导学生动手操作、探索、讨论、归纳。在教学过程中,引导学生去探索,使学生感受到添加辅助线的数学思想,更好地掌握三角形内角和定理的证明及简单的应用,从而实现教师是引导者和学生是主体者的课堂教学理念。
(二)说学法
根据本节课特点和学生的实际,八年级学生基本具备动手操作、探索讨论、猜想、说理的能力,主要采用“操作—观察—讨论—证明—应用 ”的探究式的学习方式,教会学生“ 动手做,动脑想,大胆猜、会说理,学致用”的学习方法。增加学生参与的机会,使学生在掌握知识、形成技能的同时,培养科学的学习方法和自信心。
四、说教学过程设计
教学过程的设计应根据学生的实际情况,教法、学法的确定,以完成教学目标为目的。
(一)、创设问题情境,引入新课:
1.提出疑问:前面的课程学习了三角形三条边的关系,那么三角形的三个内角又存在怎样的关系呢?
2.动手实践:我们知道三角形三个内角的和等于180°.你还记得这个结论的探索过程吗?