相似三角形课件教案
发布时间:2023-04-17 相似三角形课件教案相似三角形课件教案(汇总9篇)。
古人云,工欲善其事,必先利其器。幼儿园的老师都想教学工作能使小朋友们学到知识,因此,老师会在授课前准备好教案,有了教案上课才能够为同学讲更多的,更全面的知识。怎么才能让幼儿园教案写的更加全面呢?在这里,你不妨读读相似三角形课件教案(汇总9篇),欢迎阅读,希望你能阅读并收藏。
相似三角形课件教案【篇1】
各位老师:
早上好
今天我说课的内容是《相似三角形的判定一》,下面我将从以下几个方面进行阐述。
一、说教材
内容选自华师大版九年级上册第二十四章第3节,是属于空间与图形领域的知识。在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义的全面研究,也是相似三角形性质的研究基础,同时还是研究圆中比例线段和三角函数的重要工具,可见相似三角形的判定占据着重要的地位。新的教学理念要求学生掌握的事思维方法,而不是仅仅记住结论,所以本节课的重点是对判定定理一的探索和理解判定定理一并学会应用,而寻找判定定理一的条件证是难点。基于以上对教材的认识,考虑到学生已有的认知结构和心理特征,我设定了以下教学目标。
二、说目标
1、知识与技能目标:
(1)、掌握两个三角形相似的方法——有两个角分别对应相等的两个三角形相似。
(2)、会用这种方法判断两个三角形相似。
2、过程与方法目标:
(1)、通过探索相似三角形判定定理(一)的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法、
(2)、利用相似三角形的判定定理(一)进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力、
3、情感与态度目标:
(1)、通过实物演示和多媒体教学手段,把抽象问题直观化,激发学生学习的求知欲,感悟数学知识的奇妙无穷、
(2)、通过主动探究、合作交流,在学习活动中体验获得成功的喜悦、
三、学情分析
经过两年的几何学习,学生对几何图形的观察,几何图形的分析能力有一定的基础。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论合作交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师创设便于他们进行观察的几何环境,给他们自己探索、发表自己的见解和表现自己的才华的机会;更希望教师满足他们的创造愿望。
四、说教法
针对初三学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。通过实验探索、猜想验证、归纳总结,学习知识,培养能力。同时根据学生的不同层次,为了让每个学生得到发展,教学中还辅之以多种教学方法。
五、学法指导
为了充分体现《新课标》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验。这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想。
六、教学过程
根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:
1、复习三角形的定义及利用相似三角形的定义判定两个三角形相似。
2、新课引入的好坏在某种程度上关系到课堂教学的成败,本节课选择以旧孕新为切入点,创设问题情境,引入新课:
提出问题:按定义来来判定两个三角形相似需要三个角分别对应相等,三条边分别对应成比例,需要太多的条件,那么是否存在判定两个三角形相似的简便方法呢?
猜想:根据三角形的稳定性判定两个三角形相似应该可以适当的减少一些条件。
这一节课我们先从“角”入手来研究一下用尽可能少的条件判定两个三角形相似。
探究活动:
情景1、现有一块三角形玻璃ABC,不小心打碎了,但是找到了一个角∠A=40°(如图)。利用这个角能否知道原三角形的形状? (即:有一个角对应相等的两个三角形相似吗?) 利用几何画板让学生更清楚地发现:有一个角相等的两个三角形不一定相似。(条件太少)
情境2:(在情景1的基础上)于是老师在破碎的玻璃堆中详细寻找,又找到了另一个角∠B=80°.现在利用这两个角能否知道原三角形的形状?(有两个角对应相等的两个三角三角形相似吗?)
在卡纸上画一个三角形,使它的两个内角分别为40°和80°,然后再把它剪下来,跟其他同学比较一下有什么发现?同桌的两个先比较 ,再与小组的其他人比较。
学生动手操作,教师巡回指导,启发点拨。
学生经过画一画、剪一剪、量一量、算一算、拼一拼,在小组合作基础上,讨论交流,可能得出下面结论:
①通过观察三角形的形状好像一样。
②两个三角形三个角都对应相等(根据三角形内角和180°)。
③通过度量后计算,得到三边对应成比例(测量时误差较大,教师可以动手用几何画板现场操作比较准确的比值)。
由相似三角形的`定义可以发现:有两个角对应相等的两个三角形相似。
于是我们得到识别两个三角形相似的一种较为简便的方法(判定一):
如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。
三、练习
1、如图,AB∥CD,AC交BD于点E,证明:△CDE∽△ABE。
2、图中DG∥EH∥FI∥BC,找出图中所有的相似三角形。
3、开放性的题目:
如图△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由,和你的同伴交流作法是否一样?
四、小结
1、提问:“通过这节课的学习有什么收获?”
让学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。
2、用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角等等。
相似三角形课件教案【篇2】
数学教案:相似三角形的判定教学设计
课题:相似三角形的判定
教学目标
知识与技能目标:
初步掌握运用两角对应相等的方法来判定两个三角形相似;
过程与方法目标:
1、经历三角形相似判定的探索过程,体会类比三角形全等的方法来进行三角形相似的探究的过程,从而体会研究问题的方法;
2、能利用添加辅助线将三角形相似判定定理的图形转化为预备定理的基本图形。
情感与态度目标:
1.在三角形相似判定的探究过程中,培养学生大胆动手、勇于探索和勤于思考的精神.
2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.
教学重点:探究运用两角对应相等的方法来判定两个三角形相似,并能简单运用.
教学难点:三角形相似判定方法的证明。.
教学方法:采用学生自主探索和合作学习的教学方法;
教学手段:采用多媒体辅助教学。
教学过程:
教师活动学生活动设计意图
一、复习引入:
1、两个三角形相似的定义:
2、我们已经学过的三角形相似的判定方法及各自的适用的范围:(定义及预备定理)
若使用预备定理,我们发现需要存在平行线截三角形两边的基本图形,而对于任意的两个三角形,我们只能运用定义去判定,我们需准备对应角相等,且对应边成比例,那么是否存在识别三角形相似的简单方法呢?
3、回忆并叙述三角形全等判定定理的探究过程。(由一个条件到多个条件,逐个按边、角及其组合的顺序去寻找)。
二、新课探究、巩固新知:
本节课,我们将类比三角形全等的探究方法来进行三角形相似判定的探究:
教师给出题目:
(1)在上面的网格中,已知△ABC,至少需要保证几个角对应相等才能确定出△DEF,使得△ABC∽△DEF;
(2)利用网格自己作出图形,并用刻度尺和量角器验证作出的图形与原图形相似;
(3)小组选派代表准备展示本组的成果:图形与判定三角形相似的猜想。
教师结合学生汇报的结果点评,并适时引导学生小结猜想:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
教师适时引导:借助辅助线将两个独立的三角形构造出预备定理的基本图形即可(强调作辅助线思想:平移小三角形到大三角形内部,但语言叙述应为:作线段或角等)。
教师板书判定定理1的符号语言:
在△ABC和△DEF中,
∵∠A=∠A`;∠B=∠B`(已知)
∴△ABC∽△DEF(两角对应相等的两三角形相似)
教师引导学生与三角形全等进行类比:
1、判定三角形全等的方法有ASA、AAS、SAS,至少有一组边相等;而判定相似只需两角对应相等即可。
2、证明三角形全等需要准备3个条件,而证明三角形相似需要2个条件即可。
例1、判断正误,并说明理由:
(1)任意等边三角形是相似三角形;
(2)有一角对应相等的两等腰三角形是相似三角形;
(3)顶角对应相等的两等腰三角形是相似三角形;
(4)任意直角三角形都相似;
(5)有一锐角对应相等的两直角三角形相似。
练习1:独立编写出一个能运用判定定理1来判断两三角形是否相似的题目,并与同学进行交流。
练习2:(1)如图:E是平行四边形ABCD的一边BA延长线上一点,CE交AD于点F,请找出图中的相似三角形,并说明理由:
(2)在Rt△ABC中,CD是斜边上的高,请找出图中相似的三角形,并说明理由。
教师巡视,并辅导重点学生。
解答完题目后,教师适时引导学生小结基本图形。
例2、已知△ABC和△DEF均为等边三角形,点D、E分别在边AB、AC上,请找出一个与△DBE相似的三角形,并说明理由。
教师适时点拨:由△DBE的角的特点入手,先由特殊角600作为突破口,通过观察确定方向(寻找另外的一组角相等即可),再去证明。
教师引导学生小结例2的证明思路:当存在一组角相等时,我们需寻找另外一组角相等,从而证明三角形相似。
三、小结提升:
谈谈自己的收获:
1、知识点方面:判定三角形相似的判定方法(定义、预备定理、定理1);
基本图形:双垂直;A字型、八字型。
2、学习方法:类比旧知识学习新知识。回忆知识点;
结合教师给出的探究题目学生小组合作,大胆进行
尝试。
派学生代表展示讨论结果;
结合图形,学生口述该命题的已知与求证,并思考命题的证明过程。
学生在教师的引导下口述证明过程。
思考:运用角的条件判定全等与相似的区别。
学生独立思考并作答。
学生自编题目练习:三角形相似的判定定理1。
学生独立解决后,组内交流。
体会双垂直的基本图形,小结结论。
独立分析此题目,大胆尝试此证明过程。
学生回忆本节课教学内容,归纳提升。培养学生及时小结知识点的学习方法
激发学生探究的欲望;
为探究相似铺垫思路。
培养学生探究能力与归纳能力。
运用网格既可以准确作出图形,又可以为后面两个判定打好基础。
由于证明过程对学生有一定难度,所以在学生展示完自己的猜想后,教师引导学生进行证明。
渗透转化的意识。
加强对学生学法的训练;
要求:正确的题目需结合定理1简单叙述理由,错误的题目需举出反例
加强对判定定理1的巩固。
自编题目,激发学习兴趣。
结合图形巩固判定定理1
对于比例线段的结论由学生课下完成。
总结基本图形为学生解决较复杂题目打基础。
学生自己小结本节课的知识要点及数学方法以提高学生的学习能力。
板书设计:
课题:
(投影)判定方法:(文字语言、图形语言)例2、
相似三角形课件教案【篇3】
各位老师:
大家好!下面我就我上的《相似三角形的复习》这一课说一说我的一些想法。
一、教材分析:
(一)教材的地位和作用
相似三角形是在全等三角形知识的基础上拓广和发展的,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。因此,相似三角形在初中数学教学中有着举足轻重的地位。
本课主要是复习相似三角形的判定和性质及其应用。通过本节课的学习,培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求结合学生的实情,我将本节课的教学目标确定为:
知识目标:
①掌握三角形相似的判定方法。
②会用相似三角形的判定方法和性质来判断及计算。
能力目标:
①通过相似三角形的判定方法培养学生的动手操作能力。
②利用相似三角形的判定及其性质进行有关判断及计算,培养学生探究新知识,提高分析问题和解决问题的能力,
情感目标:加强对学生探究知识的兴趣和情感培养,引导学生勇于探索,大胆推想,感受数学的魅力,激发其学习的欲望与创造力
(三)教学重点与难点
这节课的重点是三角形相似的判定性质及其应用。
难点是三角形相似的判定和性质的灵活运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、小组讨论,逐一突破重难点。
二、教学方法的选择与应用
本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。教学中启发学生发现问题、思考问题,培养学生逻辑思维能力,逐步设疑,引导学生积极参与讨论,提高学生学习的兴趣和学习积极性。
三、学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,本节课主要采用自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四、教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、温故知新
1、选一选下列各对三角形不能判定为相似的是( )
A.一腰和底边成比例的两个等腰三角形
B.有一个角对应相等的两个等腰三角形
C.△ABC的三边为1,2,△DEF的三边为2,3
D.有一个锐角对应相等的两个直角三角形
(设计意图:使学生加深对相似三角形判定方法的理解。)
2补一补如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,则需补上哪个条件?
(设计意图:通过让学生自己补条件得到到两个相似三角形,进一步让学生理解判定方法,同时激发学生自主学习,学会自己编题目,做学习的主人)
(二)、寻找相似三角形,相似三角形的证明,和图形变换
3.数一数:
已知△ABC中, BD,CE分别是高线,BD,CE交于点O
求证:△ABD∽△ACE
思考
(1)图中与△ABD相似的三角形有几个?数一数图中相似三角形有几对?
(2)如果连接ED,看看图中相似三角形还有吗?
△AED=1,S△ABC=4,求∠A的度数
(设计意图:在数相似三角形时既要不漏数也要不少数是一个重点,也是一个难点。所以一开始我先让学生数图中与△ABD相似的三角形有哪几个?再让学生数一数图中相似三角形有几对?学生就不会漏数,因为学生特别在数两两相似的三角形时学生往往漏数。另外出示的问题分三步走,由易到难,各种知识相结合,使题目进一步得到延伸与拓展,培养学生的综合运用知识的能力。)
4.证一证:
已知:△ABC内接于⊙O,AB=AC,D为BC上一点,延长AD交⊙O于E,求证:AB2=AD.AE
思考:如改为D为BC延长线上的一点,其它条件都不变,结论是否成立?
(设计意图:教师在多媒体几何画板上直观地演示从两个图形的探索,引导学生发现:尽管有时尽管图形变了,但证明的思路和方法也不变。也就是“形变实不变”。另由于采用多媒体数学,不仅增加了课堂教学的容量,而且能让学生在图形的运动中直观地获取知识,享受到几何的动感美。
(三)画图题
通过画图构造两个或三个相似三角形和在4x4的正方形网格中构造相似三角形是近年来中考中的一个亮点,本环节通过一系列画图问题的设置和解决,旨在使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
5(1)已知:△ABC中,∠C=90,∠A=60,∠B=30;△DEF中,∠D=90,∠E=50,∠F=40,将这两个三角形各分成两个三角形,使△ABC所分成的每一个三角形与△DEF所分成的每个三角形分别对应相似。
(2)在方格纸中,每个小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.在如图4x4的方格纸中,△ABC是一个格点三角形,请你画一个格点三角形,使它与△ABC相似(相似比不为1)
课外探究题
(3)点F是△ ABC中AB边上的一点,过点F作直线(不与直线AB重合)截△ ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有几条,最少有几条?(设计意图课堂教学中,应尽量创造愉悦的求知氛围,培养他们勇于探索、勇于发现问题的能力,形成良好的思维习惯
以上是我的本堂课的一些粗浅的想法,不足之处谨各位老师批评指正,谢谢大家。
相似三角形课件教案【篇4】
九年级数学教案:相似三角形的判定
教学目标:1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解定理的证明方法,初步会运用定理来解决有关问题.
2.培养学生运用类比联想,猜想命题,再加以证明的研究问题的方法以及化归的思想.
3.通过观察、猜想、归纳、探究等数学活动,给学生创造成功机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神.
教学重点和难点:
重点:相似三角形的判定定理的理解和初步应用;
难点:相似三角形的判定定理的证明.
教学方法:自主探究与小组合作相结合
教学过程设计
一、创设情境,提出问题
请学生出示课前按要求剪好的三角形,教师利
用已知三角形模板验证两个三角形是否全等的同时
请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法.
1.SAS;2.ASA;3.AAS;4.SSS。
在此基础上教师要求学生动手剪一个三角形与已知三角形相似.
学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预备定理.在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?1.相似三角形的预备定理;2.定义教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?本节课我们继续研究:相似三角形的判定(二).你认为我们可以从哪儿入手研究呢?引导学生类比全等三角形的判定方法进行猜想.
学生类比联想,自主探究猜想相似三角形的判定方法:
1.利用投影展示一般三角形全等的判定定理
(1)ASA:
若∠A=∠A’,∠B=∠B’,,
则有△ABC≌△A’B’C’
(2)AAS:
若∠A=∠A’,∠B=∠B’,,则有△ABC≌△A’B’C’
3)SAS:
若,∠A=∠A’,则有△ABC≌△A’B’C’
4)SSS:
若,则有△ABC≌△A’B’C’
2.猜想相似三角形的判定方法
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想.
猜想一(类比角边角公理和角角边定理)
△ABC与△A’B’C’中,若∠A=∠A’,∠B=∠B’,则△ABC∽△A’B’C’.
猜想二(类比边角边公理)
△ABC与△A’B’C’中,若,∠A=∠A’,则有△ABC∽△A’B’C’.
猜想三(类比边边边公理)换元
△ABC与△A’B’C’中,若,则有△ABC∽△A’B’C’.
二、小组合作,探究新知
得到猜想后学生分组动手实践,进一步探究猜想的正确性。合作探究后,以猜想1为例分析证明思路.
猜想1.两角对应相等,两三角形相似。
已知:△ABC与△A’B’C’中,
∠A=∠A’,∠B=∠B’。
求证:△ABC∽△A’B’C’。
启发学生结合刚才的动手实践思考,若平移△A’B’C’得到△ADE,则可转化为预备定理的形式.如何实现平移是关键,在此可让学生集思广益阐述观点.
方法之一:由∠A=∠A’,∠B=∠B’,能实现上述平移.
证明法一:在AB上截取AD=A’B’,且过点D作DE∥BC交AC于E.
∴∠ADE=∠B,∵∠B=∠B’
∴∠B’=∠ADE
又∵∠A=∠A’,AD=A’B’
∴△ADE≌△A’B’C’(ASA)
又∵DE∥BC
∴△ADE∽△ABC,∴△ABC∽△A’B’C’
法二:截取AD=A’B’且作∠ADE=∠B’交AC于E.
证法:略
师生共同总结实现上述化归的思路:
(1)利用添加辅助线的方法将问题化归为相似三角形的预备定理(图中,DE∥BC则△ADE∽△ABC).
(2)利用平移变换将证明三角形相似转化为证明三角形全等(图中△ADE≌△A’B’C’).
利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简记:两角对应相等,两三角形相似.
判定定理2,3的证明过程由学生仿照定理1的证明完成.请二人上黑板板演.
猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同.
请学生分别说出三个定理的推理形式且提出:如果不是“夹角”,结论是否仍然成立,请学生分析并举出反例.
在△ABC与△A’B’C’中,
已知∠B=∠B’,
但△ABC不相似于△A’B’C’
三、实战演练,巩固新知
例在△ABC和△DEF中,
∠A=40,∠B=80,∠E=80,∠F=60.
求证:△ABC∽△DEF.
思考题:
如图,已知,在△ADC和△ACB中,
∠A=∠A,请你添加一个条件,
使△ADC∽△ACB。
四、复习小结,归纳新知
师生共同回忆并总结:
今天你有什么收获?
新知的获得采用了什么方法?——类比、转化
你还有困难与困惑吗?
教师根据学生的回答总结类比学习方法及转化思想的重要意义.
五、作业
整理课上定理证明.
六、板书设计:
相似三角形课件教案【篇5】
今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的'表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)
(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。
回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比2
对应高之比0.5
周长之比3 k
面积之比100
2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
相似三角形课件教案【篇6】
一.教材分析
(一)教材的地位和作用
相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。
本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。
(二)教学的目标和要求
1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。
2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。
3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。
(三)教学的重点和难点
1.重点:相似三角形和相似比的概念及判定三角形相似的预备定理。
2.难点:相似三角形的定义和判定三角形相似的预备定理。
二、教法与学法
采用直观、类比的方法,以多媒体手段辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。
三、教学过程的分析
看我国国旗,国旗上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。
1. 关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再从中位线所在的直线上下平移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的“对应角相等,对应边成比例”,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为 △ABC,原三角形记为△A'B'C'。因此,如果有:
∠A=∠A',∠B=∠B',∠C=∠C',
那么△ABC与△A'B'C'是相似的。以此来加强两个三角形相似定义的认识。
2. 关于用相似符号“∽”来表示两个三角形相似时,考虑与全等三角形的全等符号“≌”表示相类比引入。全等符号“≌”可看成由形状相同的符号“∽”和大小相等的符号“=”所合成,而相似形只是形状相同,所以只用符号“∽”表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号“∽”表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知:
如果两个三角形相似,那么它们的对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,∠A、∠B、∠C就分别与∠D、∠E、∠F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。
3. 关于相似比概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比 (或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。
4. 在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”。即如图,若DE∥BC,则 △ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:
当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。
因此我们可得(预备)定理:
定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课堂练习,之后进行提问与调板,了解学生掌握知识的情况。
相似三角形课件教案【篇7】
一、教学目标
1、使学生了解直角三角形相似定理的证明方法并会应用。
2、继续渗透和培养学生对类比数学思想的认识和理解。
3、通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4、通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计
类比学习,探讨发现
三、重点及难点
1、教学重点:是直角三角形相似定理的应用。
2、教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排
3课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1、我们学习了几种判定三角形相似的方法?(5种)
2、叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写)。
其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)
3、什么是“勾股定理”?什么是比例的合比性质?
【讲解新课】
类比判定直角三角形全等的“HL”方法,让学生试推出:
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
这个定理有多种证法,它同样可以采用判定定理1、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。应让学生对此有所了解。
定理证明过程中的“都是正数,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
教师在讲解例题时,应指出要使___。应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。
还可提问:
(1)当BD与、满足怎样的关系时?(答案:)
(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)
(答案:或两种情况)
探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。”
这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度。
[小结]
1、直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用。
2、让学生了解了用代数法证几何命题的思想方法。
3、关于探索性题目的处理。
七、布置作业
教材P239中A组9、教材P240中B组3。
相似三角形课件教案【篇8】
尊敬的各位老师:
大家好!
今天我说课的题目是义务教育数学课程标准实验教材八年级下册第四章第六节的《探索相似三角形的条件(一)》这一课内容。下面我分五部分来汇报我这节课的教学设计,这就是“教材分析“、“教学”、“学法”、“教学过程”、“教学评价”。
一、教材分析:
(一)教材的地位和作用:
“探索相似三角形的条件”是在学习了相似图形及相似三角形的概念等知识后,单独研究如何探索相似三角形的条件的一课,本课是判定三角形相似的起始课,是本章的重点之一。既是前面知识的延伸和全等三角形性质的拓展,也是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件(二)(三)打下好的基础。通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。因此,这节课在本章中有着举足轻重的地位。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求及本课的特点,结合学生的实情,我本节课的教学目标确定为:
l知识目标:
①掌握三角形相似的判定方法(一)。
②会用相似三角形的判定方法(一)来判断及计算。
l能力目标:
①通过亲身体会得出相似三角形的判定方法(一),培养学生的动手操作能力。
②利用相似三角形的判定方法(一)进行有关判断及计算,训练学生的灵活运用能力。
l情感目标:通过实物演示和电化教学手段,把抽象问题直观化,从而发
展学生的合情推理能力,进一步培养逻辑推理能力。
(三)教学重点与难点
这节课的重点是三角形相似的判定定理1及应用。
难点是三角形相似的判定方法1的运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。
二、教学方法的选择与应用
根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计“实验、观察、讨论”的教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。
三、学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四、教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、点燃思维火花(趣味题目引入,配以动画演示)
1、为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A、B、D,使得AB┷AO,DB┷AB,然后确定DO和AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮助他们算出峡谷的宽度AO吗?
(设计意图:以趣味性题目引入,从而引起悬念,激发学生的学习兴趣。)
假如利用相似三角形原理可不可以解决这个问题呢?那么如何判定这两个三角形相似呢?这就是我们这节课要学习的内容。(引出课题)
(二)、动手实验探索(分小组研究讨论)
还记得全等三角形的判定方法吗?那么判定相似三角形要不要这么多条件呢?假如当条件只有角这个元素时,能不能判定两个三角形相似呢?
1、若有一个角对应相等,能否判定两个三角形相似?
(投示)(1)每人画一个△ABC,使∠BAC=60°,与同伴交流,两个三角形是否相似。
结论:只有一个角对应相等,不能判定两个三角形相似。
2、若有两个角对应相等,能否判定两个三角形相似?
(2)一人画△ABC,另一人画△A′B′C′,使∠A与∠A′都等于60°,∠B与∠B′都等于45°,比较∠C和∠C′是否相等,测量三边长度,探求是否相等。
改变角的度数再试一次。(用三个小组测量结果)
在此过程中,给学生充分的时间画图、观察、比较、交流,最后通过活动让学生用语言概括总结。
引出判定条件1:(学生总结,教师纠正)
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
可简单说成:两角对应相等,两三角形相似.
组织学生进行讨论,在此基础上教师引导学生从对应边和对应角入手进行观察。教师在多媒体几何画板上直观地演示。在教学中,通过以趣味性题目引入,从而引起悬念,引起学生的注意,激发他们的求知欲,让每个学生都积极参与。
通过学生自己探索、讨论,由学生自己得出结论:如果两个三角形中有两对角对应相等,那么这两个三角形相似。即两角对应相等的两个三角形相似。这样,从学生自己动力手操作、实验所得出的判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。
(三)、例题讲解:
例:如图,D、E分别是△ABC这AB、BC上的点,DE∥BC,
(1)图中有哪些相等的角?
(2)找出图中的相似三角形,并说明理由。
(3)写出三组成比例的线段。
分析:本例意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。
解:(1)DE//BC
∠ADE与∠ABC是同位角∠ADE=∠ABC,∠AED=∠ACB
∠AED与∠ACB是同位角
(2)△ADE∽△ABC理由是:
∠ADE=∠ABC
∠AED=∠ACB△ADE∽△ABC
(3)△ADE∽△ABC==
想一想:在上面的例题的条件下,=吗?=吗?(学生画图,交流,老师用多媒体演示出来。)
解:由DE//BC得,=
根据比例基本性质得:
=
即=
两边同时减去1,得
1=1
即=
课后思考:若DE与BC不平行,它们还可能相似吗?说明理由。
(设计意图:分三个问题显示,由易到难,新旧知识相结合,分散难点,让学生明白判定方法(一)在实际问题中的应用,最后设置一道课后思考与讨论,使题目进一步延伸与拓展,培养学生的发散思维。)
(三)随堂练习:
判断题:(让学生判断,老师用几何画板演示)
(1)有一个锐角对应相等的两个直角三角形相似。()
(2)所有的直角三角形都相似。()
(3)有一个角相等的两个等腰三角形相似。()
(4)顶角相等的两个等腰三角形相似。()
(5)所有的等边三角形都相似。()
解:(1)对。有一个锐角对应相等的两个直角三角形相似。
因为是两个直角三角形,所以有一对直角相等,再加上一对锐角相等,根据判定方法1,得,这两个三角形相似。
(2)错。
(3)错。有一个角相等的两个等腰三角形不相似。
例:一个顶角为30°的等腰三角形与一个底角等于30°的等腰三角形就不相似.
(4)对。顶角相等的两个等腰三角形相似。
因为两个等腰三角形的顶角相等,所以它们的四个底角都相等,因此有三对角对应相等,所以这两个三角形相似。
(5)对。因为等边三角形的三个角都是60°。
(设计意图:使学生加深对判定方法(一)的理解。)
(四)补充练习:
(1)已知:△ABC和△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠C=50°
∴∠A=55°
∴∠B=∠B′,∠A=∠A′
∴△ABC∽△A′B′C′
(2)已知△ABC和△A′B′C′中,∠B=∠B′=75°,∠A=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠A=50°
∴∠C=55°
而在△A′B′C′中,
∵∠B′=75°,∠A′=55°
∴∠C′=50°
∴根据判定方法(一),△ABC和△A′B′C′不相似。
(设计意图:通过让学生比较这两道题中条件的异同,进一步让学生理解判定方法(一)的运用)
现再请学生回头看看引入那道题,利用判定方法(一)让学生自己去发现两个三角形相似,然后再运用相似三角形的对应边成比例来解这道题,这样一来可以加深对判定方法(一)的理解,二来可以增强学生的自信心,培养学生分析问题、解决问题的能力。
通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
(五)、总结提高:
提问:“通过这节课的学习有什么收获?”
(同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳)
(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)
(六)、分层作业:
(必做题):P119的习题4.7的1、2
(选做题):
如图,已知D是△ABC的边AB上任一点,DF∥AC交BC于E.AF交BC于M,且∠B=∠F,△AMC∽△BDE吗?请说明理由。
(设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)
l新的探索:(提高题)
(4)如图梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD⊥DC,求证:△ABD∽△DCB.
分析:由已知条件不可能推出有关比例式时,只能找相等的角.用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等.
(设计意图:旨在体现因材施教、分层教学的原则。同时上述问题的进一步伸展,给学生展示了一个思维发散的平台。而且这也为下节课学习证明作了必要的铺垫。)
四、教学评价:
为了实现教学目标,优化教学过程,提高课堂效率,在教学上组织学生参与“创设问题、实验、观察、讨论、总结”这符合现代教学理论的'观点,把素质教育落到实处。另一方面对学生暴露思维过程,拓展性和开放性题目的设计编排,培养了学生的直觉思维能力和发散思维能力。
五分钟小测:
1、
C
如图,AB,CD相交于E,ΔAEC∽ΔDEB,∠A与∠D是对应角,则其余的对应角为xx,对应边的比例式为xx
A
E
B
D
2、
A
如图:∠BAC=∠ADB,图中有相似三角形吗?
为什么?
D
C
B
3、已知ΔABC,P是AB上一点,连接CP,满足什么条件时,ΔACP与ΔABC相似.
相似三角形课件教案【篇9】
今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)
(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。
回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比2
对应高之比0.5
周长之比3 k
面积之比100
2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
yjs21.cOm更多幼儿园教案编辑推荐
三角形课件教案(系列9篇)
幼儿教师教育网花时间专门编辑了三角形课件教案。老师职责的一部分是要弄自己的教案课件,相信老师对写教案课件也并不陌生。 教案课件的工作是新老师提高教学技能和水平的基础。相信你能从本文中找到需要的内容!
三角形课件教案(篇1)
教学目标:
1、使学生掌握三角形面积的计算公式,会运用公式计算三角形的面积。
2、通过图形的割补,剪拼,渗透图形变换等教学手段,培养学生的操作能力,空间想象能力和逻辑思维能力。
教学重点:
掌握三角形面积的计算公式,会运用公式计算三角形的面积。
教学难点:
理解三角形面积计算公式的推导方法。
教学关键:
引导学生理解三角形面积计算公式中除以2的意义。
本节课,我根据五年级学生的知识面较广,学习自觉性较强的特点,采用尝试教学法、实验法、练习法等教学方法进行教学。让学生带着教师提出的问题在旧知识的基础上,通过自学课本,利用学具独立作业,互相讨论和巩固练习,去尝试解决问题,教师再根据学生尝试练习中的难点和教材的重点加以讲解和点拔,充分发挥学生的主体作用和教师的主导作用,有利于培养学生的探索精神和操作能力。教学时,我按导入新课、揭示课题、推导公式、实际应用、巩固练习、课堂总结这六个环节进行。
一、导入新课
新课的导入是为了引导学生迅速进入学习状态的行为方式。好的导入,可以点燃学生思维的火花,活跃学生的思维。我采用实物直观法导入新课,先引导学生观察少先队大队旗,说出大队旗的长是120厘米,宽是90厘米,让学生利用旧知识计算大队旗的面积和归纳长方形面积计算公式。再出示红领巾,引导学生说出要计算红领巾的面积,就是求三角形面积,从而发挥知识的迁移作用,激发学生强烈的求知欲望和浓厚的学习兴趣,使学生进入一个良好的学习境界,为整个教学过程创造良好的开端。
二、揭求课题
我按照学生的心理特征,运用了激趣法揭示课题,以引起学生的注意和兴趣,调动学生的学习积极性,起承上启下、开宗明义的作用。我先直接板书课题“三角形面积的计算”,再提出问题“这节课要学习哪些内容?”让学生互相讨论,说出三个问题。(1)三角形面积的计算公式是什么?(2)三角形面积的计算公式是怎样推导的?(3)怎样运用公式计算三角形的面积?这样,巧妙地让学生自己提出本课的学习目标,把目标变成自身学习的需要,使学生由“要我学数学”变成“我要学数学”。
三、推导公式
公式的推导过程是学生知识的形成过程。我根据学生的认知规律让学生有目的、有步骤地动眼观察,动脑思考,动手操作,动口讲述,以实验法推导三角形面积的计算公式。教学时,分四步进行。(1)引导猜想:我让学生按照课本75页的方法,用方格纸数出三角形的面积,引导学生观察三角形的底是多少厘米?宽是多少厘米?底和高的长度与面积之间有什么联系?让学生通过观察分析,得出三角形底是6厘米,高是4厘米,面积是12平方厘米(图1),
底6厘米高4厘米面积12平方厘米
图1
接着引导学生猜想三角形面积是底和高乘积的一半。
(2)尝试操作:
当学生心理上产生疑问,迫切地需要教师的讲解和验证时,教师要求学生回忆平行四边形面积计算公式是怎样推导的?学生一边说,我一边把平行四边形变成长方形的推导方法演示出来(沿平行四边形的高剪出一个三角形,把剪下的三角形拼到另一边,变成一个长方形,如图2)。
图2
以唤起学
生的回忆,促进知识的迁移。然后再要求学生模仿平行四边形面积公式推导的方法,把三角形转换成其他图形,并拿出课前准备的长方形学具,量出长方形的长与宽是多少?(长10厘米,宽6厘米),计算出它的面积是10×6=60平方厘米,再沿着长方形的对角线剪开,分成两个大小形状相同的三角形,算出一个三角形的面积是10×6÷2=30平方厘米(如下图)。学生清楚地看
出这个三角形是原来长方形的一半。使学生沿着形象思维到抽象思维发展的规律去理解三角形面积计算公式的推导。接着让学生拿出平行四边形纸片,量出它的底和高分别是10厘米、6厘米,用10×6计算出平行四边形的面积是60平方厘米,然后沿着平行四边形的对角线剪开,可以分成两个大小形状相同的三角形,用10×6÷2算出一个三角形的面积是30厘米。学生再一次看出这个三角形是原来平行四边形的一半,而且观察出平行四边形的底和高与剪开的三角形的底和高是一致的,攻破教学的难点。(3)归纳公式:通过两个实验,学生纷纷讨论,并归纳出三角形面积计算公式是底×高÷2,用字母表示写作S=ah÷2,并点明求三角形的面积必须要知道三角形的底和高,计算三角形的面积时把底和高相乘后不能忘记除以2,让学生的知识更系统完善。(4)看书质疑:学生通过自己实验操作已水到渠成地得出结论后,我再让学生认真阅读课本75页至77页的内容,比较与自己推导的方法有什么异同,突出说明课本是用“合”的方法验证公式,而我们是用“分”的方法来验证公式的,两种方法均把三角形变换成长方形或平行四边形来推导,都能尝试成功。之后,留一点时间让学生提出疑问,我再进行针对性的释疑,创造亲切和谐的课堂气氛,使学生有疑敢问,进一步把教师的主导作用,学生的主体作用,教科书的示范作用及学生之间的互补作用有机地结合起来,提高了课堂效率。
四、实际应用
学生推导出三角形面积计算公式后,我便出示一道同课本例题相仿的尝试题:一条红领巾的底是100厘米,高是32厘米,它的面积是多少?让学生独立解答,分别叫好、中、差三类学生板演,我进行巡堂检查,了解信息反馈,去发现所估计出现的两种情况:(1)100×32÷2=1600平方厘米;(2)100×32=3200平方厘米,并按反馈信息组织学生讨论和讲解,强调应用三角形面积计算公式时把底和高相乘后不要忘记除以2,否则会计算了长方形或平行四边形的面积,以确保学生系统地掌握知识。
五、巩固练习
练习是学生掌握知识,形成技能的必要途径,是检查教学目标落实情况的重要手段。为了提高练习的效率,我合理地设计了三道练习题。
第1题:计算下列图形的面积。这是课本77页做一做的题目,属单一性练习,用于巩固新知识。
第2题:平行四边形的面积12平方厘米,求涂色的三角形的面积。
这是课本78页练习十八的题目,属综合性练习,既复习了三角形面积公式与平行四边形面积公式的关系,又进一步巩固三角形面积计算,防止学生照样画葫芦。
第3题:计算少先队中队旗的面积,看谁的解法最简便?这题属创造性练习题,既能激发学生学习兴趣,又能促进学生的散发思维。
六、课堂总结
总结是课堂教学的重要环节,可以使学生更进一步明确具体的教学任务,抓住要点内容,形成系统的知识。我让学生联系本课初提出的学生目标,总结本课所学内容,得出:(1)三角形面积计算公式是底×高÷2;(2)三角形的底和高决定以后,三角形的面积也就决定了;(3)计算时把底和高相乘后不要忘记除以2。这样,通过疏理、归纳,起到画龙点睛的作用,使整节课的安排善始善终。
三角形课件教案(篇2)
教学内容:
义务教育课程标准实验教科书数学四年级下册80~81页的例1、例2
教学目标:
1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形的高和底的含义,会在三角形内画高。
2、培养学生观察、操作、自学的能力和应用数学知识解决实际问题的能力。
3、体验数学和生活的联系,培养学生学习数学的兴趣。
教学重点:
1、理解三角形的特性。
2、在三角形内画高。
教学难点:
理解三角形高和底的含义,会在三角形内画高。
教学准备:
多媒体课件、投影。
教学过程:
一、谈话引入。
师:我们学过哪些平面图形?
师:说一说你对三角形有哪些认识?
师:同学们对三角形已经有了初步的了解,这节课我们继续研究和三角形有关的知识。
(板书课题:三角形的特性)
二、探究新知。
1、三角形的特征。
(1)画一画。
师:请你在纸上画一个自己喜欢的三角形。并和同桌边指边说一说三角形有几条边?几个角?几个顶点?
师黑板上画一个三角形,让学生说出各部分的名称师板书。(教师板书各部分名称)
(2)摆一摆。
师:每根小棒相当于一条线段。请你动手用三根小棒摆一个三角形。
找一学生上投影前摆一摆,并说一说是怎么摆的?
(3)看一看。
老师也摆了一个三角形,课件出示。
你们有什么看法?
教师用课件演示并强调:有三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
(4)找一找。
下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。(学生一起用手势表示)
2、三角形的特性。
(1)动手操作发现三角形的特性。
师生拿出平行四边形框架。
师:用手拉动,说一说有什么发现?(容易变形,不稳定。)
指导学生操作:去掉一条边,再扣上拼组成三角形框架。
师:再拉一拉有什么感觉?
师:想一想这说明三角形具备什么特性?(稳定性)
(2)生活中寻找三角形的特性。
师:三角形的稳定性在生活中的用处很大,你能举个例子吗?
课件出示例2的主题图,请你找出各图中哪有三角形?说一说它们有什么作用?
3、认识三角形的底和高。
(1)情境引入。
故事引入,两个三角形争论谁的个高。课件出示
让学生说一说怎样比较这两个三角形的高,并准备好相应的两个三角形学具试着让学生前面来分别指一指它们的高,并比一比。
师:请你拿出(指锐角三角形)这样一个三角形,试着指一指它的高。
(2)看书自学。
师:什么是三角形的高?怎样正确的画出三角形的高呢?请打开书81页,看看书上是怎样说的,又是怎样画的,和你的想法一样吗?
师:谁来说一说?
请你在刚才的三角形中画出三角形的一条高,并标出它所对应的底。
(3)教师板演。
我把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC。想想怎样以AC边为底画出这个三角形的高?
生说高的画法,师板演,并强调用三角板画高的方法。
(4)进一步认识三角形的高。
在三角形中标上字母ABC,和同桌说一说刚才画的高是以哪条边为底画的?
师:刚才我们画了三角形的一组底和高,想一想一个三角形只有一组底和高吗?为什么?
(三)应用练习。
1、填空:
三角形有()个顶点,()条边,()个角。
2、学校的椅子坏了,课件演示,怎样加固它呢?(教材86页第2题)
3、小明画了三角形的一条高,你说他画的对吗?为什么?
(四)课堂小结。
通过这节课的学习,你对三角形又有了哪些新的认识?
你还想了解和三角形有关的哪些知识?
三角形课件教案(篇3)
各位老师,大家好!
今天,我说课的内容是《三角形的认识》第一课时。下面我就从教材分析、教法、学法的应用、教学过程、板书设计五个方面来进行说课。
先说一下对教材的认识
本节课是九年义务教育六年制小学数学(青岛版)第八册教材第40-41页《三角形的认识》第一课时。
教材所处的地位与作用是:
三角形在平面图形中是最简单的也是最基本的多边形,一切多边形都可分割成若干个三角形,并借助三角形来学习其他相关知识内容。这部分内容是在学生学习了线段、角和直观认识了三角形的基础上进行教学的,它是进一步学习三角形分类、三角形内角和等知识的重要基础,也是今后进一步学习几何知识的基础。所以掌握三角形的特征是非常重要的。
本节课的教学目标是:
(一)知识目标:①理解三角形的含义,掌握三角形的特征和按角分类的方法;②能过操作,使学生知道三角形的特性及其在生活中的广泛应用。
(二)能力目标:培养学生的观察能力和动手操作能力。
(三)情感目标:培养学生主动探索与合作学习的精神。
本节课教学重点是:正确理解和掌握三角形的意义及三角形按角分类的方法
教学难点:正确地给三角形进行分类,并说明依据
难点突破则是:通过学生的观察、讨论、归纳将三角形按角的不同进行正确分类。
接下来说一下,本节课所采用的教学方法
新课标强调:人人学有价值的数学,人人都要获得必需的数学,让不同的人在数学上得到不同的发展。关于三角形学生已经有一定的感性认识,因此教学活动应紧密联系生活实际,在学生认知水平和已有知识经验基础上进行。因此,本节课采用多媒体课件,创设情境,激发学生的学习兴趣和求知欲,充分引导学生进行观察、操作、猜测、验证,让学生真正成为学习的主人。通过这样的教学,使学生在既获得知识的同时,也培养和提高了学习的能力。
为了体现以上教学方法,本节课采用的学法是:
全课以小组合作的形式组织教学,充分引导学生自己提出问题并自己解决问题,通过“摆一摆”、“找一找”、“猜一猜”等环节亲自体验探索知识的形成过程,培养学生解决问题的能力。
本节课的教学过程主要由:情境导入、探究新知、巩固与发展、回顾整理四部分进行。
(一)情境导入:
通过创设情境,观看有关三角形的实物图像(电脑出示一组画面:三角板、金字塔、彩色旗、自行车等),让学生感受到数学图形在生活中无处不在,数学就在我们身边,激发了学生学习数学的兴趣。然后,让学生围绕三角形提出问题,归纳为①什么叫三角形?②三角形由哪些部分组成?③三角形有什么特性?④三角形怎样分类?激发了学生探索的兴趣,为探索新知指明了方向,
(二)探究新知:
第一部分:理解三角形的概念
兴趣是最好的老师,怎样让已经点燃的兴趣的火种闪烁出智慧的火花呢?
1、通过用小棒摆三角形,让学生在动手操作中形成概念,抽向概括出三角形是由三条线段围成的图形,强调“三条线段”、“围成”二者缺一不可.
2、观察:图形中哪些是三角形?不是三角形的让学生说明理由(图略),学生在掌握了三角形的概念后,能很快地判断出哪些是三角形,哪些不是?并能说出理由。这样进一步加深了学生对三角形含义的理解,让学生在自主探索中掌握概念,真正成为概念的探索者与发现者。
第二部分:探究三角形的组成
通过让学生摸一摸,找一找,动手感知,然后自学课本,把学习的主动权交给学生,使学生能快速地掌握三角形的特征-----三条边、三个角、三个顶点。
第三部分:探究三角形的特性
三角形稳定性的应用十分广泛,但学生理解起来有一定的困难,为突破这一难点,首先设计提问,生活中有些物体为什么要设计成三角形?然后通过实验,让学生亲自动手拉用硬纸板钉成的四边形和三角形框,学生发现四边形容易变形,三角形不变形,使学生形象地认识了三角形具有稳定性。接着让学生具体说说生活中有哪些物体用到了三角形的特性?让学生感受到了数学来源于现实生活,也应用于现实生活。
第四部分:探究三角形的分类?
三角形怎样分类是本课的重点,也是难点,难点在于怎样找出分类的标准。首先,将学生事先
剪好的三角形贴在黑板上,然后让学生小组讨论:怎样给三角形分类?学生会踊跃地提出按颜色分类、按大小分类等多种分类方法,只要说的有道理,都要一一给予肯定,重点让学生观察三角形的角有什么特点?通过观察、讨论、对比,使学生知道三角形按角的不同可以分为锐角三角形、直角三角形、钝角三角形,从而掌握三角形按角分类的方法。再通过电脑演示,让学生更形象地理解、认识三类三角形。
(三)为了让学生更深入的理解所学知识,在巩固与发展这一环节,设计了一个游戏:猜猜老师书中夹的是什么三角形?
游戏是学生最喜欢的活动方式之一,通过猜一猜使学生知道了露出一个直角的一定是直角三角形,露出一个钝角一定是钝角三角形,露出一个锐角的不一定是锐角三角形,也可能是直角三角形或钝角三角形。这时老师要以合作者的身份参与到游戏中,通过师生互动,平等交流,形成了一种民主、和谐的师生关系和融洽的学习氛围。
(四)回顾整理
“这节课你学习了哪些知识?探讨了哪些问题?有什么收获?”
通过回顾,使学生对知识有一个系统的认识,培养学生的归纳概括能力,同时让学生体验到了成功的欢乐。
最后是板书设计这节课的板书设计如大屏幕所示
总之,本节课的教学坚持了“学生是探索的主体”这一教学原则,面向全体学生,充分引导学生动手操作、自主探索、合作交流,让每一个学生在自主探索的过程中感受数学与日常生活的紧密联系,体验学习数学的快乐,有效的促进师生之间、学生之间的共同发展。培养学生的创新精神和实践能力。
以上就是这节课的说课内容,不足之处,请各位老师批评指正。
三角形课件教案(篇4)
老师们:
你们好!
非常高兴能有机会和大家交流说课活动,谨此向在座的各位老师学习。
今天我说课的内容是人教版数学八年级上册第十四章第3节《等腰三角形》的第一课时,下面我将从教材分析、教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。
一、 教材分析
等腰三角形是一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,由于它的这些特殊的性质,使它比一般的三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,它也是证明两个角相等,两条线段相等,两条直线互相垂直的方法,学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要。根据本班学生的特点我确定如下:
(一)教学目标:
1、知识与技能:能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质
2、过程与方法:经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。
3、情感态度与价值观:培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心
(二)教学重点与难点
等腰三角形性质的探索和应用是本节课的重点。由于初二学生的几何知识有限,而本节课性质的证明又添加了辅助线,所以等腰三角形性质的验探究是本节课的难点。
二、教学方法
本节课中我遵循教师为主导,学生为主体的原则,针对当前学生的厌学情绪,我运用课件,实物演示等多种教学手段激发学生的学习兴趣,让学生感到容易学,采用创设情景、实验法来分散难点让学生感到愿意学,并设置适当的追问、探究,让学生来主宰课堂,成为学习的主人。
三、学法指导及能力培养
人教版数学八年级上册(等腰三角形),标签:初二数学说课稿,初中数学说课视频,
好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思考、动口表述,培养学生的观察、猜想、概括、表述论证的能力
四、教学过程
(一)情景设置
首先我用一个三角形测平架,测量黑板的下边是否水平,并让学生猜想其中的道理和奥妙,这样的引入既明确了本节课的主要内容,也激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
教育学中有句谚语:“告诉我我会忘记,做给我看我会记得,让我去做我才会懂”,由此可见实验法在教学中具有重要的作用。因此我设计了一个动手操作的环节,让学生按要求剪出一个三角形,为下面折纸操作作好铺垫,结合剪出的等腰三角形学习相关的概念加深印象,并指明等腰三角形是轴对称图形。
(二)探索新知
在这个环节我安排了两个探究,通过折纸的方法猜想并归纳。首先通过折纸让学生猜想∠B和∠C有什么关系?鼓励学生用多种方法来验证他们的猜想,并归纳出等腰三角形的第一条性质。这个地方我设计一个疑问,来强调等边对等角有一个前提条件就必须是在同一个三角形中,为了保证学生思维的连贯性,在这里我是这样引入探究二的,“从刚才辅助线的作法中,你发现了什么?”让学生感觉到这三条辅助线好像是一条线段,然后在通过折纸归纳出性质二。
学生在长时间的学习和探究中大脑已感到疲劳,随即引出课前设置的疑问,再次激发学生的学习热情。由于“三线合一”的性质在描述上经常出错,所以我设置了一个辨析,然后用填空的形式规范“三线合一”的符号表示形式,让学生理解性质的内涵。
(三)巩固练习
我用两个练习巩固等腰三角形的性质并让学生体验分类讨论的思想在解题中的应用。由于本节课的例题较难,因此我对它进行了改编,先让学生解决“等腰三角形一个底角的外角是108°时,三个内角分别是多少度?”然后再延长CD,得到一个新的等腰三角形,运用性质一就可以解决这两个问题,然后今天的例题就可以迎刃而解了,同时也要强调此题图形的特殊性,只有顶角是36°的等腰三角形才能满足这样的性质。
(四)课堂小结
课堂教学,一是注重引入激发兴趣,二是注重教学过程、重视方法,三就是注重概括总结。首先我让学生回想一下本节课的内容,“通过本节课的学习,你对等腰三角形有什么新的认识吗?”然后教师肯定学生的积极性。
(五)作业布置(略)
人教版数学八年级上册(等腰三角形),标签:初二数学说课稿,初中数学说课视频,
(六)板书设计(略)
总之,在整个教学过程中,我遵循着“教师为主导,学生为主体,训练为主线”的原则,在课上的每个环节中通过各种媒体,各种手段,始终注重兴趣的激发,培养学生的学习热情,让他们在轻松愉快中学习知识。
以上是我对这节课的教学设计,望各位老师批评指正,谢谢!
三角形课件教案(篇5)
今天我说课的内容是人教实验版七年级数学(下)第七章第二节中的:三角形的外角。下面我从教材分析、学生情况分析、教学目标分析、教法及学法分析、教学过程分析、教学反思这六个方面加以说明:
一、教材分析
新课程的教材力求体现“课程标准”实质,体现义务教育普及性、基础性、发展性;体现学生主动学习的过程,以学生的发展为本,从学生熟悉的情景出发,让学生亲身参与活动,进行探索和发现,以自己的亲身体验获取知识和技能,力求提高学生的创新精神与实践能力。本节课的教学设计较好地体现了上述特点。同时,这节课内容也是今后三角形、四边形等有关图形知识的基础,起着承上启下的作用。
二、学生情况分析
七年级学生的特点足模仿力强,喜欢动手,思维活跃,同时学生已学过三角形的内角和定理,以及三角形的边、顶点、内角和等概念,这为本节课的学习打下了基础。在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到一定的训练,这就为学生自主探究,动手实验,讨论交流、尝试说理做好了准备。
三、教学目标分析
经过认真研读课标及教材,针对学生实际,我为这节课制定了如下的教学目标:
总体目标是理解三角形外角的概念,掌握三角形外角的性质,并能在实际问题中运用性质解决问题。
分解为四方面的目标:
1.知识技能目标是理解三角形外角的概念,掌握三角形外角的性质及简单说理。
2.数学思考目标是学生是学习的主体,激发学生的学习兴趣,使学生感知数学来源于生活又高于生活。
3.解决问题目标是让学生经历观察、思考、猜想、归纳、推理的活动过程;通过分析问题、解决问题、证实结论,达到通晓数学知识的发生与形成过程,提高学生的合作意识和沟通、表达能力。
4.情感态度目标是通过射门集锦短片欣赏,增强学生对学习本课知识的兴趣;同时让学生体验数学课堂中的激情气氛,让学生体验生活中团队协作、力争上游、奋勇拼搏的精神。
教学重难点
1、由于三角形的外角知识在今后的学习中经常用到,新课程中又特别关注学生的主动学习,因此,本节课的重点是:学生实际动手操作、参与活动,探索、发现、归纳出三角形外角的性质。
2、由于新课程标准对图形内容的要求,一方面培养和发展学生的合情推理能力,另一方面也要培养学生的数学说理习惯和能力,而后者是初中学生(尤其初一学生)所不足或缺乏的,因此,学生探索出的外角特征的说理推导过程是本节课的难点。
四、教法及学法分析
新课程理念强调“经历过程与获取结论同样重要”,有时过程比结论更有意义。我们不能把学生看成是一个“容器”把知识往里塞;也不能把学生训练成一个只会解题的“机器”,而应该让他们投入到获取知识的过程中去,在过程中激发学习兴趣和动机,展现思路和方法,学会学习;从过程中建构进取型人格,通过过程中的“成功感”来完善自我,我觉得这是目前学生最需要的。因此本节课我采用探究式的教学方式。
在学法指导中,本节课主要通过学生的动手实验,自主探索,概括出三角形外角的两条性质:并通过交流探讨,说理论证,加深认识三角形的外角两条性质,进一步综合运用三角形的外角性质、三角形的内角和性质进行有关的计算。在课堂上充分地体现了学生的主体地位及其学习的规律,即:发现知识,认识知识,掌握知识,运用知识。
五、教学过程分析
环节一、展现问题:
观赏足球比赛射门集锦,激发学习欲望,带着问题学习。
(设计目的:创设问题情境,新课程比较注重让学生从实际问题入手,引起兴趣,体会数学与生活的联系,赋予数学一种生活气息,让学生尝试用数学知识解决生活实际问题,是对学生数学建模思想的一种培养,也为后面探索外角问题埋下伏笔。)
环节二、学习几个概念
我结合图形,讲解外角的概念,并特别注意“不相邻”的意义,后辅以练习,加强巩固。
(目的是对概念难点的突破,能在复杂图形中辨析外角。)
环节三、自主探索外角与不相邻内角的关系
体现课改精神,体现学生为主体,教师是学习的参与者,合作者,设计了△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,探究∠ACD与∠A,∠B有什么关系。并注重说理引导。并开拓学生思维,体现教师对学生的尊重,让学生发表自己不同的解法。
(设计目的:课堂上要大胆让学生动起来,老师“沉”下去,要努力转换教师角色,要相信:给了孩子权利,他会选择得更好;给了孩子条件,他会锻炼得更棒。)
在学生得出三角形的外角结论后,我故意说:这些结论不一定对,我画的那个三角形可能是老师故意设计好的,其它三角形是否也有这样的结论呢?大家试一试,尽量画各种不同的三角形并验证(如钝角三角形、直角三角形、锐角三角形),我相信大家能成功!
(设计目的:我想点燃学生思维的火花,让学生不能满足于一个现成图形的结论,而要有一种自己去探索、去发现的精神,要注意问题的一般性,学生在这一过程中投入到了获取知识的过程,较好地体现了学生学习方式的变革。)
设置及时练习的目的是依据学习策略中的分散学习与集中学习的效果设计的,就是提升学生的学习的有效性。
环节四、提升能力,挑战自我
设置一道思维性强,拓展性高的题(目的是开拓学生的思维,感受成功的喜悦。)
环节五、勇攀高峰
继续提升外角运用得几何价值,让学生感受数学学习的乐趣(目的是遵从课改让每一个学生都得到发展的理念)
环节六、课堂小结
学生自主谈收获,我给出知识点
(目的是归纳所学知识)
环节七、布置作业
教学反思:
在教学中我们必须意识到学生是学习的主体,教师是学习的合作者,参与者,讨论者,只有变换教师位置才能的促进学生学习的高效。在教学中要关注预设于生成的关系,发挥学生主动性的同时也要尊重书本知识,促进每一个学生都向前发展,使每一个学生都学到有用的数学。因此,我们的教学应站在学生的角度思考,学生是发展中的人!
我的说课到此结束,谢谢大家。
三角形课件教案(篇6)
一、说教材
(一)、内容:
《三角形的特性》是人教版义务教育课程标准实验教科书80—81页内容,这部分内容包括三角形的定义,三角形各部分名称,三角形的稳定性等。学生通过上册对空间与图形内容的学习对三角形已有了直观认识,能够从平面图中分辩出三角形。例题1:是有关三角形定义的教学,着重是让学生在“画三角形”的操作活动中进一步感知三角形的属性。抽象出概念。例题2:着重于三角形的重要特性是“稳定性”,在生活中有着广泛应用。它可以让学对三角形有更为全面和深入的认识。同时有利于培养学生的实践精神和实践能力。
(二)、教学目标:
1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2、通过实验,使用权学生知道三角形的稳定性及其在生活中的应用。
3、培养学生观察,操作能力和应用数学知识解决实际问题。
(三)、教学重点:理解三角形的特性。
(四)、教学难点:在三角形内画高。
二、说教法
(一)、情境教学法。
在特定的情境中进行学习,能激发学生兴趣,激活学生思维。为了解决问题,学生会主动探索新方法,从而将问题的解决和方法融为一体,这样安排有利于密切数学与生活的联系。
(二)、操作讨论法。
在动手操作,讨论交流时学生各抒己见,这样即启迪学生思维,又能增强其合作意识。学生动手、动脑,在探索发现问题的过程中解决问题,真正体现了以学生为主体的教学理念,教师在课堂上起到了组织者,引导者与合作者的作用。
三、说学法。
(一)、自主探究《数学课程标准》指出有效的数学活动不能单纯地进行模仿与记忆,动手实践,自主探究与合作交流是学生学习数学的重要方法。因此在教学中我让学生通过动手实践,亲身体验。如:画一画、议一议、说一说等活动发现新知、建构新知,从而掌握新知,培养合作意识和探究品质,发展思维能力和解决问题的能力。
(二)、学以致用,在学完新知后,我及时引导学生运用所学知识解决生活中的一些实际问题。这样,不仅增长学生智慧又使学生进一步感受到了数学与生活密不可分的关系,增强了学习数学兴趣和信心。
四、说教学程序。
(一)、联系生活,情境导入
1、出示80页情境图,学生观察,发现描述三角形。
2、说一说:生活中还有哪些物体上有三角形。
3、课件出示生活中常见的物体上的三角形。
4、导入并板书课题。
(二)、操作感知,理解概念
1、发现三角形的特征
2、概括三角形的定义
(1)、引导学生用自己的话概括什么叫三角形?
(2)、议一议:下面的图形是不是三角形?
(3)、讨论:哪种说法更准确?
(4)、指导阅读80页“三角形”定义。
3、认识三角形的底和高
(1)、出示三角形屋顶的房子。(问:你能测出三角形房顶的高度吗?学生动手操作)。
(2)、你是怎么测量的?(学生交流汇报)。
(3)、讲解测量过程?(得出:三角形高、底的概念)。
(4)、出示81页三角形(问:这是这个三角形的一组底和高吗?你还能画出其它的底和高吗?学生动手操作,然后评议交流)。
4、拓展
在三角形ABC中,以AB为底边的高是();以AC为底边的高是();以BC为底边的高是()。
(三)、实验解疑,探索特性
1、提出问题:出示81页插图,问图中哪里有三角形?生产生活中为什么要把这部分做成三角形呢?它具有什么特性?
2、实验解疑
(1)、学生拿出准备好的三角形、四边形学具分小组实验,拉一拉学具会有什么发现?
(2)、得出结论:三角形具有稳定性。
(3)、举例说出生活中应用三角形稳定性。
(四)、巩固运用,提高认识
课件出示练习十四:1、2、3题
(五)、总结评价,质疑问难
1、本节课学习了什么内容?
2、你对三角形有了哪些认识?
三角形课件教案(篇7)
今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。根据xxx教授的授课七步法,即说教材,说学情,说目标,说模式,说方法,说设计,说板书,我将进行本课的说课。
一、说教材
“三角形的内角和”是新课标人教版四年级下册第五单元第三节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。
二、说学情
1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。
2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。
三、说目标
根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:
认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。
解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。
情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。
将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。
四、说模式
“三角形的内角和”一课,知识与技能目标并不难,我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时合作交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、猜想验证、合作探究的学习模式。体现“以学生的发展为本”这一教育理念。
五、说方法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180度。
因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。
六、说设计
根据我对教材的把握和对学情的了解,设计了4个环节展开教学。
一、创设情境,发现问题
小游戏:猜一猜藏在信封后面的是什么三角形。
师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?
三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。
(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。)
教学进入第二环节——引导探究
二、动手操作,探究规律
1.介绍内角、内角和,并提出猜想
师:我们现在研究三角形的三个角,都是它的内角。
课件演示:三角形的三个内角
师:今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2.确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)
请你想个办法吧!
(通过引导学生分析,"研究哪几类三角形,就能代表所有的三角形"这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)
3.建立模型,解决问题
(一)测量法:
(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?
(3)记录小组测量结果及讨论结果
实验名称三角形内角和
实验目的探究三角形内角和是多少度。
实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片
方法一三角形的形状每个内角的度数三个内角的
方法二
我的发现
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(二)剪拼法
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
(三)折拼法
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
(四)演绎推理法
(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;
而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】
4.验证猜想"三角形的内角和是180度"
5.进一步感受
(1)三角形内角和与三角形大小的关系
教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?
(2)三角形内角和与三角形形状的关系
(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?
如果老师把一个角一直往下拽,猜一猜会怎样?
(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)
6.解释课前问题
用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。
三、拓展应用,深化创新
本节课的练习由易到难,设计成三个层次。
1、基本练习形成技能
2、变式练习巩固技能
3、综合练习发展提高技能
介绍科学家帕斯卡(出示帕斯卡的资料)
师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
多边形边形内角和
(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)
四、总结全课,全面提升
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
七、说设计
三角形的内角和是180度。
转化的思想:量、撕、剪、折、拼
三角形课件教案(篇8)
一、教材分析
本教材选自《幼儿园教育教学安排意见》小班内容,认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。认识三角形是在认识圆形的基础上进行的。这就为比较圆形和三角形奠定了知识基础,有利于幼儿对三角形的感知和掌握。本节课的知识点就是三角形的特征。基于以上对教材的分析,结合幼儿的认知特点,确定以下教学目标:
1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。
2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。
3、 发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。
确定目标的依据:小班上学期虽然还没有进行数的形成教学,但在日常活动中已经渗透了许多数的概念教育,因此,通过数形结合认识三角形的特征幼儿有一定的基础。3岁幼儿经常会把几何形体理解为他们所熟悉的实物,因此,教幼儿把三角形和生活中常见的实物进行比较找出和三角形相似的物体有利于发展幼儿对应能力。
围绕教学目标根据小班幼儿的认知特点,我认为本节课的重点是认识三角形的特征,幼儿认知几何形体对图形的知觉属于空间知觉的范畴,从幼儿感知三角形的形状到表达需要完成配对——指认——图形的特征,因此,三角形的特征定为本节课的重点。
三角形的特征同时也是本节课的难点。三角形的特征有三条边、三个角。但是,对于还没学过一一对应点数的幼儿来说还有一定的难度,所以把三角形的特征定为本节课的难点。
二、教学方法
为了让幼儿更好地掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探索法,体现教师为主导,幼儿为主体的师生双边活动。
游戏法:在计算教学中运用游戏法能激发幼儿的学习兴趣,集中幼儿的注意力,帮助幼儿轻松愉快地理解知识,因此,在本节课中,无论是新知的学习,还是复习巩固我都采用游戏的形式,如在课的开始,教师以游戏的
不错的口吻介绍两个图形娃娃到小班做客,激发了幼儿的学习兴趣,在复习巩固三角形特征时,设计了游戏给图形娃娃找朋友、奇妙的拼图、拼拼三角形使幼儿进一步巩固了三角形的特征,又激发了幼儿的学习兴趣。
启发探索法:这一教学方法是教学过程中依靠 幼儿已有的数学知识和经验启发幼儿去探索并获得新知。其最大的特点是激发幼儿的兴趣,最大限度地调动幼儿学习的积极性、主动性,在本节课认识三角形的特征时,我采用这一方法先出示一个圆形娃娃,再出示一个三角形娃娃,启发幼儿比较三角形和圆形的不同,在幼儿的观察探索中得出三角形有角、有边,通过亲自数一数、试一试,让幼儿明确有三个角的图形是三角形,三角形的角有点儿扎手。
本节课采用的教具:
⑴圆形、三角形娃娃各一个,用于引出课题,激发幼儿兴趣。⑵图形拼图一幅
⑶每桌一盘各类几何图形及冰糕棍若干。
选取教具的依据是小班幼儿的年龄特点及认知特点。
三、学法指导
1、复习内容的确定:三角形的特征有三条边、三个角。幼儿要掌握三角形的特征,就必须通过数一数来掌握,因此,3的数数的掌握直接影响到幼儿学习三角形的效果,因此将3的数数定为学习内容。采用幼儿比较喜欢的体态动作(拍手、拍肩、拍褪)进行,幼儿比较感兴趣又很快地集中了幼儿的注意力。
2、引导幼儿用探索法和操作法学习新知,发展幼儿的观察力。为了便于幼儿更好地掌握三角形的特征,请幼儿通过观察圆形和三角形有哪些地方不一样?通过亲自数一数、摸一摸来感知三角形的特征。幼儿从观察、判断到表述是幼儿利用旧知获取新知,主动学习的过程。
3、在操作、游戏中发展幼儿的空间想象力,在复习巩固三角形特征时,采取了游戏《给图形娃娃找朋友》、用小棍拼三角形。幼儿在游戏时,就需要将头脑中三角形的特征的轮廓体现出来,需要幼儿将想象、图形小棒联系在一起,进一步发展了幼儿的空间想象力,同时幼儿联想生活中的实物与三角形想象的物体将图形与实物相联系,从而发展幼儿的空间想象力。
4、数形结合,时幼儿在掌握特征的同时,加深幼儿对3的认识,在学习三角形特征时让幼儿数数三角形有几条边、几个角在看拼图找三角形的游戏中,让幼儿数数蝴蝶的翅膀、树身、房顶个由几个三角形拼成,在数形结合中既巩固了新知,又发展了幼儿的观察力和思维能力。
四、教学程序
不错的为了小学过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:
1、复习3的数数
设计这一环节的目的是为了在下步学习三角形特征时幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。
2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。
⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供
不错的幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的图形都是三角形。
⑶老师小结三角形特征,使幼儿获得的知识完整化。
3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。
⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。
⑵看图拼图找三角形:
图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:
这些拼图像什么?哪些部分是用三角形拼成的?用了几个三角形?
⑶周围环境中找出像三角形的东西:幼儿通过自己的联想寻找发展幼儿的空间想象能力,进一步巩固了三角形的特征。
四、延伸活动:
幼儿用冰糕棒拼三角形,引导幼儿拼完后讲一讲你拼得三角形有几条边?几个角?用了几根冰糕棒?
三角形课件教案(篇9)
微课作品介绍本微课是苏教版小学数学四年级下册《三角形内角和》的课前先学指导,学生在家观看视频内容,同时结合学习任务单,在视频的指导下通过猜、量、算、剪、拼等方法探索三角形的内角和是180度。学生在课前利用视频完成学习任务单,然后到学校课堂中和老师、同学进行交流,再进一步提升。
教学需求分析适用对象分析该微课的适用对象是苏教版四年级下学期的小学生,学生应认识三角形的基本特征,学习过角和角的度量,知道平角是180度。具备了一定的动手操作能力和数学思维能力。
学习内容分析该微课让学生发现、验证三角形的内角和是180度的结论。这部分内容是在学生认识了三角形的基本特征和三边的关系后,三角形分类前学习的。这在苏教版中和原来的教材不同,放在这里是因为三角形内角和是学生进一步学习和探究三角形分类方法的重要前提。学生知道了三角形的内角和是180度,对三角形分类及命名的方法,才能知其然,还能知其所以然。
教学目标分析:
1、通过学生的实际操作,理解并验证三角形的内角和等于180°,并能够运用结论解决简单的实际问题;
2、使学生通过观察、实验,经历猜想与验证三角形内角和的探索过程,在活动中发展学生的空间观念和推理能力。
3、已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在学习时的主要目标是验证三角形的内角和是180度。
教学过程设计本微课教学过程:
一、明确多边形的内角、内角和概念。
首先要明确概念,才好继续研究。内角、内角和以前学生没有学过,还是有必要给学生明确的。
二、探索三角尺的内角和,猜想三角形的内角和。
从学生熟悉的三角板开始计算三角板的内角和,引发学生猜想,三角形的内角和是多少。
三、验证三角形内角和是否为180°。
验证分为三个层次:首先是量教材提供的三角形,算出内角和,可能会有误差。其次把三角形三个内角拼在一起,拼成是平角180度。最后自己任意画一个三角形剪下来,拼一拼,得出结论。让学生经历由特殊到一般的认知过程。
四、拓展延伸,探究梯形、平行四边形和六边形内角和。
由三角形的内角和,学生自然就会想到已学过的梯形、平行四边形和六边形内角和是多少呢。教师留下问题让学有余力的学生进一步去探索。
五、自主学习检测
学生观看完了视频是否学会了,是需要检测的。学生通过做完自主检测后进行校对,检验自己所学。
学习指导本微视频应配合下面的学习任务单共同使用,在观看视频时,根据视频提示随时暂停视频依次完成任务单。
自主学习前准备:
请在自主学习前阅读学习任务单的学习指南,并准备好数学书、一副三角尺、量角器、剪刀、铅笔等学习用具。
自主学习任务单:
通过观看教学资源自学,完成下列学习任务:
任务一:明确多边形的内角、内角和概念
1、你认识下面的图形吗?他们各有几个角,请在图中标出来。
2、你刚才标出的角,又叫做每个图形的()。
3、如果把一个图形所有的内角的度数加起来,所得的总和就是这个图形的()。
4、你知道图中长方形和正方形的内角和是多少度吗?你是怎么知道的?
长方形内角和正方形内角和
任务二:探索三角尺的内角和,猜想三角形的内角和。
1、请拿出一副三角尺,你知道每块三角尺上各个角的度数?在图上标出来。
2、算一算,每个三角尺3个内角的和是多少度。
3、根据你刚才的计算结果,你能猜想一下,任意一个三角形它的内角和的度数呢?
任务三:验证任意三角形内角和是否为180°
1、请从数学书本第113页剪下3个三角形,用量角器量出每个三角形3个内角的度数。
算一算,每个三角形3个内角的和是多少度。
2还可以用什么办法来验证剪下的这3个三角形的内角和等于180度?(把你的验证方法展示在下面。)如果你想不出来请看下面的提示。
温馨提示:平角正好是180°,这三个内角能正好拼成一个平角吗?
3、自己任意画一个三角形,先剪下来,再拼一拼。
4、你发现了什么?写在下面。
5、请你回顾一下我们研究三角形形内角和是180度的过程?简单的写下来。
任务四:拓展延伸
任务一中还有梯形、平行四边形和六边形,如果你有兴趣,你可以研究他们的内角和。
任务五:自主学习检测
1、右边三角形中,∠1=75°,∠2=40°,∠3=()°
2、第3个三角形还可以怎样计算,哪种更简便?
3、一块三角尺的内角和是180°,用两块完全一样的三角尺拼成一个三角形,拼成的三角形内角和是多少度?
4、用一张长方形纸折一折,填一填
配套学习资料苏教版小学数学四年级下册教材
制作技术介绍CamtasiaStudio软件制作、PPT。
相似三角形的判定教案集锦5篇
今天栏目小编给您分享“相似三角形的判定教案”相关主题内容。教案课件是每个老师在开学前需要准备的东西,每个老师都需要仔细规划教案课件。 新老师要认真对待教案课件,这有助于课堂活跃。敬请参阅本文!
相似三角形的判定教案 篇1
数学教案:相似三角形的判定教学设计
课题:相似三角形的判定
教学目标
知识与技能目标:
初步掌握运用两角对应相等的方法来判定两个三角形相似;
过程与方法目标:
1、经历三角形相似判定的探索过程,体会类比三角形全等的方法来进行三角形相似的探究的过程,从而体会研究问题的方法;
2、能利用添加辅助线将三角形相似判定定理的图形转化为预备定理的基本图形。
情感与态度目标:
1.在三角形相似判定的探究过程中,培养学生大胆动手、勇于探索和勤于思考的精神.
2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.
教学重点:探究运用两角对应相等的方法来判定两个三角形相似,并能简单运用.
教学难点:三角形相似判定方法的证明。.
教学方法:采用学生自主探索和合作学习的教学方法;
教学手段:采用多媒体辅助教学。
教学过程:
教师活动学生活动设计意图
一、复习引入:
1、两个三角形相似的定义:
2、我们已经学过的三角形相似的判定方法及各自的适用的范围:(定义及预备定理)
若使用预备定理,我们发现需要存在平行线截三角形两边的基本图形,而对于任意的两个三角形,我们只能运用定义去判定,我们需准备对应角相等,且对应边成比例,那么是否存在识别三角形相似的简单方法呢?
3、回忆并叙述三角形全等判定定理的探究过程。(由一个条件到多个条件,逐个按边、角及其组合的顺序去寻找)。
二、新课探究、巩固新知:
本节课,我们将类比三角形全等的探究方法来进行三角形相似判定的探究:
教师给出题目:
(1)在上面的网格中,已知△ABC,至少需要保证几个角对应相等才能确定出△DEF,使得△ABC∽△DEF;
(2)利用网格自己作出图形,并用刻度尺和量角器验证作出的图形与原图形相似;
(3)小组选派代表准备展示本组的成果:图形与判定三角形相似的猜想。
教师结合学生汇报的结果点评,并适时引导学生小结猜想:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
教师适时引导:借助辅助线将两个独立的三角形构造出预备定理的基本图形即可(强调作辅助线思想:平移小三角形到大三角形内部,但语言叙述应为:作线段或角等)。
教师板书判定定理1的符号语言:
在△ABC和△DEF中,
∵∠A=∠A`;∠B=∠B`(已知)
∴△ABC∽△DEF(两角对应相等的两三角形相似)
教师引导学生与三角形全等进行类比:
1、判定三角形全等的方法有ASA、AAS、SAS,至少有一组边相等;而判定相似只需两角对应相等即可。
2、证明三角形全等需要准备3个条件,而证明三角形相似需要2个条件即可。
例1、判断正误,并说明理由:
(1)任意等边三角形是相似三角形;
(2)有一角对应相等的两等腰三角形是相似三角形;
(3)顶角对应相等的两等腰三角形是相似三角形;
(4)任意直角三角形都相似;
(5)有一锐角对应相等的两直角三角形相似。
练习1:独立编写出一个能运用判定定理1来判断两三角形是否相似的题目,并与同学进行交流。
练习2:(1)如图:E是平行四边形ABCD的一边BA延长线上一点,CE交AD于点F,请找出图中的相似三角形,并说明理由:
(2)在Rt△ABC中,CD是斜边上的高,请找出图中相似的三角形,并说明理由。
教师巡视,并辅导重点学生。
解答完题目后,教师适时引导学生小结基本图形。
例2、已知△ABC和△DEF均为等边三角形,点D、E分别在边AB、AC上,请找出一个与△DBE相似的三角形,并说明理由。
教师适时点拨:由△DBE的角的特点入手,先由特殊角600作为突破口,通过观察确定方向(寻找另外的一组角相等即可),再去证明。
教师引导学生小结例2的证明思路:当存在一组角相等时,我们需寻找另外一组角相等,从而证明三角形相似。
三、小结提升:
谈谈自己的收获:
1、知识点方面:判定三角形相似的判定方法(定义、预备定理、定理1);
基本图形:双垂直;A字型、八字型。
2、学习方法:类比旧知识学习新知识。回忆知识点;
结合教师给出的探究题目学生小组合作,大胆进行
尝试。
派学生代表展示讨论结果;
结合图形,学生口述该命题的已知与求证,并思考命题的证明过程。
学生在教师的引导下口述证明过程。
思考:运用角的条件判定全等与相似的区别。
学生独立思考并作答。
学生自编题目练习:三角形相似的判定定理1。
学生独立解决后,组内交流。
体会双垂直的基本图形,小结结论。
独立分析此题目,大胆尝试此证明过程。
学生回忆本节课教学内容,归纳提升。培养学生及时小结知识点的学习方法
激发学生探究的欲望;
为探究相似铺垫思路。
培养学生探究能力与归纳能力。
运用网格既可以准确作出图形,又可以为后面两个判定打好基础。
由于证明过程对学生有一定难度,所以在学生展示完自己的猜想后,教师引导学生进行证明。
渗透转化的意识。
加强对学生学法的训练;
要求:正确的题目需结合定理1简单叙述理由,错误的题目需举出反例
加强对判定定理1的巩固。
自编题目,激发学习兴趣。
结合图形巩固判定定理1
对于比例线段的结论由学生课下完成。
总结基本图形为学生解决较复杂题目打基础。
学生自己小结本节课的知识要点及数学方法以提高学生的学习能力。
板书设计:
课题:
(投影)判定方法:(文字语言、图形语言)例2、
相似三角形的判定教案 篇2
一、教学目标1、经历探索三角形相似的判定方法(两边对应成比例且夹角相等的两三角形相似)的`过程,掌握判定三角形相似的方法。2、能够灵活地运用两边对应成比例且夹角相等两三角形相似的判定方法解决相关问题。3、在观察、归纳、测量、实验、推理的过程中,培养学生勇于探索的精神。二、教学重点、难点重点:相似三角形的判定定理“两边对应成比例且夹角相等的两三角形相似”。难点:“两边对应成比例且夹角相等的两三角形相似”的证明思路探寻。三、教学过程(一)直接导入简要回顾:上一节课我们已经学习了两角相等的两个三角形相似,今天这节课继续来研究三角形相似的判定。(二)探究新知探索三角形相似的判定方法实验探究一:利用三角形纸片进行探究老师展示两个三角形纸片,提出问题:这两个三角形是什么关系?依据是什么?(动作:其中一个三角形纸片通过小型磁铁粘在黑板上并标上字母A,B,C),让学生在另一个三角形的基础上制作一个三角形△A′B′C′,使其满足:让学生判断这两个三角形是否相似,请同学们拿出上节课让准备好的两个三角形的纸片,动手操作完成△A′B′C′的制作。然后可以通过测量角,验证两个三角形是否相似;也可以通过三角形中位线的性质判定所构成的三角形与原三角形是否相似。实验探究二:利用教具进行探究两条直木条钉在一起,长蓝边与短蓝边的比等于长红边与短红边的比值为2,判断两个三角形是否相似?依据是什么?我们发现对应边的比为1:2或2:1且夹角相等的两个三角形相似。那么两边的比值相等且是任意值,夹角相等的两个三角形还是否相似?我们来看几何画板。实验探究三:利用几何画板进行探究问题1:两组对应边的长度发生改变,但比值不变,且夹角相等,两个三角形相似吗?问题2:两组对应边的比值不变,夹角度数改变,但保持两角相等,这两个三角形相似吗?问题3:如果两组对应边的比和夹角在保证相等的关系下,都改变他们的数值,这两个三角形相似吗?结合几何画板可以度量角的大小的功能,可以得出这三种情况两个三角形都是相似的。通过实验我们发现:对应边成比例且夹角对应相等的两个三角形相似。这个命题是真命题吗?我们还需要进行推理论证。论证过程:由证明两角相等的两个三角形相似的方法,通过类比让学生体会作全等,证明相似遇到的困难。进而引导退一步利用先作相似,再证全等的方法解决定理的证明。经过证明我们得到了定理:两边对应成比例且夹角相等,两三角形相似。到目前为止,我们有几种方法来判定两个三角形相似?(三)辨析设计意图:巩固两角相等的两个三角形相似;两边对应成比例且夹角相等,两三角形相似。以及两边对应成比例且其中一边的对角相等的两个三角形不一定相似。我们发现两边对应成比例且其中一边的对角相等的两个三角形不一定相似。很多问题是不能只通过观察就可以判断相似,需要我们分析———推理———论证。(四)典例分析设计意图:规范定理的书写格式。请同学们认真仔细找准对应边规范自己的书写格式。(五)一试身手,勇攀高峰利用实时投屏,实现同学互相评价,教师评价和鼓励。我们要善于发现别人的优点,弥补自己的不足,勇攀高峰。学生讲解。老师归纳:此题三种判定三角形相似的方法都用到了,我们要善于甄别。数学是严谨的学科,要抓住数学本质,善于观察,缜密推理。(六)小结和作业你的收获?知识、方法、思想……同学们收获颇丰。我们已经学习了三种判定三角形相似的方法,类比全等三角形的判定,还有其他方法吗?我们该如何开展后续的学习?作业:P78习题,必做题:A组1,2;选做题:B组1,2。
相似三角形的判定教案 篇3
一、教学目标
1、使学生了解直角三角形相似定理的证明方法并会应用。
2、继续渗透和培养学生对类比数学思想的认识和理解。
3、通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4、通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计
类比学习,探讨发现
三、重点及难点
1、教学重点:是直角三角形相似定理的应用。
2、教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排
3课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1、我们学习了几种判定三角形相似的方法?(5种)
2、叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写)。
其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)
3、什么是“勾股定理”?什么是比例的合比性质?
【讲解新课】
类比判定直角三角形全等的“HL”方法,让学生试推出:
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
这个定理有多种证法,它同样可以采用判定定理1、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。应让学生对此有所了解。
定理证明过程中的“都是正数,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
教师在讲解例题时,应指出要使___。应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。
还可提问:
(1)当BD与、满足怎样的关系时?(答案:)
(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)
(答案:或两种情况)
探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。”
这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度。
[小结]
1、直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用。
2、让学生了解了用代数法证几何命题的思想方法。
3、关于探索性题目的处理。
七、布置作业
教材P239中A组9、教材P240中B组3。
相似三角形的判定教案 篇4
一、教学目标
1、使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解它的证明方法,初步会运用相似三角形的三个判定定理来解决有关问题。
2、在探究判定方法的过程中,提高学生运用类比方法,猜想命题,再加以证明的研究问题的能力以及增强用化归思想解决问题的意识。
3、通过动手实践、观察、猜想、归纳、等数学探究活动,给学生创造成功的机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神。
二、教学重点和难点
重点:
(1)探索两个三角形相似的条件的过程;
(2)相似三角形判定定理的理解与初步应用。
难点:
相似三角形的判定定理的证明。
三、教学方法:
自主探究与小组合作相结合。
四、教学手段:
多媒体辅助教学。
五、教学过程:
请学生出示课前按要求剪好的三角形,教师利用已知三角形模板验证两个三角形是否全等的同时请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法。在此基础上教师要求学生动手剪一个三角形与已知三角形相似。学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预各定理。在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?
本节课我们继续研究:相似三角形的判定(二)。“你认为我们可以从哪儿入手研究呢?”引导学生类比全等三角形的判定方法进行猜想。
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想。利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。简记:两角对应相等,两三角形相似。判定定理2、3的证明过程由学生仿照定理1的证明完成。请二人上黑板板演。猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同。
相似三角形的判定教案 篇5
九年级数学教案:相似三角形的判定
教学目标:1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解定理的证明方法,初步会运用定理来解决有关问题.
2.培养学生运用类比联想,猜想命题,再加以证明的研究问题的方法以及化归的思想.
3.通过观察、猜想、归纳、探究等数学活动,给学生创造成功机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神.
教学重点和难点:
重点:相似三角形的判定定理的理解和初步应用;
难点:相似三角形的判定定理的证明.
教学方法:自主探究与小组合作相结合
教学过程设计
一、创设情境,提出问题
请学生出示课前按要求剪好的三角形,教师利
用已知三角形模板验证两个三角形是否全等的同时
请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法.
1.SAS;2.ASA;3.AAS;4.SSS。
在此基础上教师要求学生动手剪一个三角形与已知三角形相似.
学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预备定理.在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?1.相似三角形的预备定理;2.定义教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?本节课我们继续研究:相似三角形的判定(二).你认为我们可以从哪儿入手研究呢?引导学生类比全等三角形的判定方法进行猜想.
学生类比联想,自主探究猜想相似三角形的判定方法:
1.利用投影展示一般三角形全等的判定定理
(1)ASA:
若∠A=∠A’,∠B=∠B’,,
则有△ABC≌△A’B’C’
(2)AAS:
若∠A=∠A’,∠B=∠B’,,则有△ABC≌△A’B’C’
3)SAS:
若,∠A=∠A’,则有△ABC≌△A’B’C’
4)SSS:
若,则有△ABC≌△A’B’C’
2.猜想相似三角形的判定方法
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想.
猜想一(类比角边角公理和角角边定理)
△ABC与△A’B’C’中,若∠A=∠A’,∠B=∠B’,则△ABC∽△A’B’C’.
猜想二(类比边角边公理)
△ABC与△A’B’C’中,若,∠A=∠A’,则有△ABC∽△A’B’C’.
猜想三(类比边边边公理)换元
△ABC与△A’B’C’中,若,则有△ABC∽△A’B’C’.
二、小组合作,探究新知
得到猜想后学生分组动手实践,进一步探究猜想的正确性。合作探究后,以猜想1为例分析证明思路.
猜想1.两角对应相等,两三角形相似。
已知:△ABC与△A’B’C’中,
∠A=∠A’,∠B=∠B’。
求证:△ABC∽△A’B’C’。
启发学生结合刚才的动手实践思考,若平移△A’B’C’得到△ADE,则可转化为预备定理的形式.如何实现平移是关键,在此可让学生集思广益阐述观点.
方法之一:由∠A=∠A’,∠B=∠B’,能实现上述平移.
证明法一:在AB上截取AD=A’B’,且过点D作DE∥BC交AC于E.
∴∠ADE=∠B,∵∠B=∠B’
∴∠B’=∠ADE
又∵∠A=∠A’,AD=A’B’
∴△ADE≌△A’B’C’(ASA)
又∵DE∥BC
∴△ADE∽△ABC,∴△ABC∽△A’B’C’
法二:截取AD=A’B’且作∠ADE=∠B’交AC于E.
证法:略
师生共同总结实现上述化归的思路:
(1)利用添加辅助线的方法将问题化归为相似三角形的预备定理(图中,DE∥BC则△ADE∽△ABC).
(2)利用平移变换将证明三角形相似转化为证明三角形全等(图中△ADE≌△A’B’C’).
利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简记:两角对应相等,两三角形相似.
判定定理2,3的证明过程由学生仿照定理1的证明完成.请二人上黑板板演.
猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同.
请学生分别说出三个定理的推理形式且提出:如果不是“夹角”,结论是否仍然成立,请学生分析并举出反例.
在△ABC与△A’B’C’中,
已知∠B=∠B’,
但△ABC不相似于△A’B’C’
三、实战演练,巩固新知
例在△ABC和△DEF中,
∠A=40,∠B=80,∠E=80,∠F=60.
求证:△ABC∽△DEF.
思考题:
如图,已知,在△ADC和△ACB中,
∠A=∠A,请你添加一个条件,
使△ADC∽△ACB。
四、复习小结,归纳新知
师生共同回忆并总结:
今天你有什么收获?
新知的获得采用了什么方法?——类比、转化
你还有困难与困惑吗?
教师根据学生的回答总结类比学习方法及转化思想的重要意义.
五、作业
整理课上定理证明.
六、板书设计:
三角形内角和教案汇总
“三角形内角和教案”教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。写好教案课件,可以避免重要内容被遗忘,大家是不是担心写不好教案课件?为满足你的需求,栏目小编特别编辑了“三角形内角和教案”,自信能够帮助你找到适合自己的内容!
三角形内角和教案 篇1
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题2此实验给我们一个什么启示?
问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
三角形内角和教案 篇2
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、
(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
(3)等边三角形的3个内角都是()。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。
(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。
2、判断
(1)一个三角形中最多有两个直角。()
(2)锐角三角形任意两个内角的和大于90。()
(3)有一个角是60的等腰三角形不一定是等边三角形。()
(4)三角形任意两个内角的和都大于第三个内角。()
(5)直角三角形中的两个锐角的和等于90。()
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
三角形内角和教案 篇3
《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页
1、透过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、透过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想.
3、透过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践潜力.
多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。
此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)
师:请大家仔细观察,它把这条绳子围成了什么三角形?
师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?
师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)
(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?
每人从学具筐中任选一个三角形,指出它的内角。
师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?
(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?
(2)直角三角形与钝角三角形同上。
(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.
刘老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。
学生汇报测量结果。
师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?
师小结:看来采用测量的方法会有误差,学习数学要用这种严谨的态度来对待,咱们再看看别的方法。
请用撕拼方法的学生上台展示撕拼的过程。
师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?
师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。
如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。
师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?
师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)
师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。
明白了这个结论能够帮忙我们解决那些问题呢?
1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?
师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?
在一个三角形ABC中,已知A45°,B85o,求с的度数。
在一个直角三角形中,已知с52o,求Α的度数。
爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
3、思考:
你能画出一个有两个直角或两个钝角的三角形吗?为什么?
这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。
【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:
1、精心设计学习活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生用心向上的学习情感。
整节课的学习资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长.
三角形内角和教案 篇4
《三角形的内角和是180°》教学设计
教学思路:
由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。
学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。
教学目标:
1、知识技能目标:
(1)理解和掌握三角形的内角和是180°;
(2)运用三角形的内角和知识解决实际问题和拓展性问题;
2、能力技能目标:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感与态度目标:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点
重点:理解掌握三角形的内角和是180°。
难点:运用三角形的内角和知识解决实际问题。教具、学具准备:
教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。
教学过程:
一、创设情境 生成问题
(一)课件出示三角形争吵图
在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?
(二)猜想什么是三角形的内角和
师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?
课件演示三角形的内角(内角和)
二、探索交流 解决问题
(一)探究猜想内角和的度数
师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?
生:用量角器进行度量。
师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。
生回答。(回答可能不一样。)
师:同学们通过刚才的汇报你有什么想说的吗?
生:我发现内角和的度数不一样。
师:是啊,什么原因呢?
生:可能是量的时候出现了差错。
师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?
板书课题:三角形的内角和
(二)讨论验证方法
以小组为单位来想一想我们可以怎么样来验证?
小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)
(三)动手验证
生活动,师巡视
(四)汇报
师:哪个小组来汇报你们的验证方法和验证结论?
组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。
师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?
组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。
组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。
哪个小组的同学最想上来展示一下你们的研究成果?
师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?
(动画演示剪拼验证过程)
边演示边解说。
见证奇迹的时刻到了,你发现了什么?
师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。
课件演示独特折法
同学们还有不同的验证方法吗?
组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。
组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。
出示:普通折法
师:还有不同折法吗?
组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。
师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?
组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。
师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?
课件演示长方形推理法。
师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。
看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。
小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。
三、巩固应用 内化提高
同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!
1、根据已知角的度数求出未知角的度数
(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)
2、求等边三角形各内角的度数
3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)
4、放风筝:
同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?
一个等腰三角形的风筝一个底角是70度,求顶角的度数?
5、挑战极限:
同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?
根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?
四、回顾整理反思提升
同学们通过这节的学习你有哪些收获?
三角形内角和教案 篇5
一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。
本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。
从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
三、说教学目标
根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。
【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。
首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
根据视频中三角形的对话,顺势引出题目——三角形的内角和。
设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。
接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。
此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。
接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。
练习题组设计如下:
第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?
设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?
这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识
在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?
这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。
为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。
三角形内角和教案 篇6
教学目的:
1、学生通过量、折、拼、剪、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。在应用三角形内角和知识解决问题的过程中促进学生数学思维发展。
3、让学生在探究数学的过程中体验发现的乐趣,增强学好数学的信心。
教学重点:
让学生探究猜想并验证三角形内角和等于180°。
教学难点:
理解所有三角形的内角之和都是180°。
教学准备:
不同类型的三角形纸片,剪刀,量角器。
教学过程:
一、复习旧知,提示课题
1、一个平角是多少度?1个平角等于几个直角?
2、长方形有什么特征?(生汇报:长方形对边相等,有4个角,4个角都是直角)
3、三角形按角分可分成几类?
4、引出内角的概念,我们把图形里面的角叫做内角。三角形有几个内角?三角形三个内角的度数和叫做三角形的内角和。今天我们一起来研究三角形的内角和。(板书课题:三角形的内角和)
设计意图:学生对数学知识的学习,在很多时候都是对已有数学知识的延伸和发展。本节课,我充分认识到学生已有知识对新知的铺垫和孕伏作用,设计了三道复习题,把角的度数,长方形的特征,三角形的分类这些原本零散的数学知识纳入到一个整体,让旧知的复习、新知的孕伏和引入有机的结合起来。
二、创设情境,大胆猜想
1、长方形的内角和是多少度?为什么?如果沿长方形的一条对角线剪开,长方形就变成了两个什么图形?
2、出示三个三角形,说一说分别属于哪一类?(板书:锐角三角形 直角三角形 钝角三角形),判断这三个三角形的内角和谁大?为什么?(板书:内角和)
3、你猜三角形的内角和是多少度?(板书:是180°)
设计意图:数学教学最为重要的是要培养学生对数学的感觉,给学生一双数学的眼睛,由于学生已经知道长方形的内角和是360°,抓住时机,要求学生猜一猜三角形的内角和是多少度,以此培养学生的探索精神和创新意识。
三、动手操作,探究验证。
1、小组合作。
同学们能够用什么方法来验证三角形的内角和是180°,请同学们小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!
2、汇报交流。
谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是180°的?
量一量:
生:我们小组的方法是用量角器测量出三个内角的度数,再求出它们的和。
师:你们的方法是分别测量三个内角的度数,那你们测量的三个内角的度数分别是多少?(生汇报时吩咐学生记录下来并算出内角和)你觉得这个小组的方法怎样?(抽生评价)这种方法可出现误差吗?为什么?(生回答)
师:能不能因此否定我们刚才的猜想呢?还有不同的方法吗?
折一折:
生:我们是通过折一折的方法得出结论的。(边说边演示)。我将直角三角形的两个锐角折向直角,三个顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°,所以我得出结论:直角三角形的内角和是 180°。
生:我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是 180°。
生:我拿一个钝角三角形,用同样的方法去折,发现钝角三角形的三个角也正好拼在一起组成一个平角,所以我得出结论:钝角三角形的内角和是 180°。
生:直角三角形的三个角也可以用同样的方法折拼成一个平角。
师:真是心灵手巧的孩子,让我们把掌声送给他们!动脑筋的同学真多,请你说。
拼一拼:
生:我发现两个直角三角形正好可以拼成一个长方形,长方形的四个角都是直角,所以,长方形的内角和是 360°。再除以2,就得到直角三角形的内角和是180°。
师:能从不同的角度去思考问题,你真棒!
剪一剪,摆一摆:
生:我们将每个三角形的三个角都剪下来,再把每个三角形的三个角的顶点重合,发现每个三角形的三个角都组成了一个平角,这就证明了三角形的内角和是180°。
师:你们只验证了三个三角形,为什么从中能得出“三角形的内角和是180°”的结论呢?
生:因为三角形按角分可以分为三类,钝角三角形,直角三角形和锐角三角形。我们已经通过各种的方法证明了这三种类型的三角形的内角和是180°,所以可以得出“三角形的内角和是180°”的结论。
师:说得真好,我们给他鼓掌。
师概括小结。:刚才同学们用量、折、拼、计算、推理、剪等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,(师手指课题)你们真不错,我为你们成功的学习表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是180°”。
设计意图:新课标注重学生三维目标的培养,在这里,我要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。小组合作是课程改革所倡导的一种学习方式,本节课,我立足于学生的创新意识和实践能力的培养,把学习的时空还给学生,大胆地开展小组合作学习,使学生通过量、折、拼、剪、摆等操作学具活动主动掌握三角形内角和是180°,同时学生的发散思维也能得到有效培养。
四、实践应用,解决问题
1、那么同学们能不能根据三角形的内角和是180°求出三角形中任意一个角的度数,请完成书85页上“做一做”。
2、请完成书88页第9题
(提示:这一题只知道一个角的度数,另一个角是多少度,从哪看出来的?直角三角形中的一个锐角还可以怎样算?)
3、请完成书88页第10题
设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。最后让学生运用结论解决实际问题,为学生把知识转化为能力起到积极的促进作用。
五、拓展延伸,活用新知
现在老师手中有一个三角形,我一刀把它剪成两个图形,你猜这两个会是什么图形,它们的内角和是多少度?
把刚才的四边形剪去一个角,得到一个五边形,它的内角和是多少度?
继续剪掉一个角,得到一个六边形,它的内角和是多少度?你发现有什么规律吗?
(学生猜测→动手操作→计算内角和→归纳多边形内角和计算公式)
六、课堂小结,内化知识
今天,你有什么收获?
板书设计:
锐角三角形
因为 直角三角形 内角和是180°
钝角三角形
所以 三角形的内角和是180°
三角形内角和教案 篇7
【教材分析】
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。
【学习目标】
知识目标:掌握三角形内角和是180度这一规律,并能实际应用。
能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。
情感目标: 让学生体会几何图形内在的结构美。
【教学过程】
一、 情景激趣,质疑猜想。
播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。
钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”
师:想一想,什么是三角形的三个内角的和。
生:三角形的三个内角的度数和。
师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?
学生进行猜想,自由发言。
(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)
二、自主探究,验证猜想
师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?
生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。
生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。
生3:我把三角形的三个角撕下来,拼一拼是否180°。
生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
……
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)
学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。
(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)
三、交流评价,归纳结论。
学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。
实验报告单
实验名称
三角形内角和
实验目的
探究三角形内角和是多少度。
实验材料
尺子
剪刀
量角器
锐角三角形纸片
直角三角形纸片
钝角三角形纸片
我的方法
我的发现
我的表现
自评
互评
学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。
师生共同归纳,得出结论:
三角形内角和等于180°
(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)
四、分层练习,巩固创新。
①课件出示:
师:这个三角形是什么三角形?知道几个内角的度数?
生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。
师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。
学生做完后反馈讲评时让学生说说自己的方法。
生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。
②学生完成完成P29的第一题。
引导学生按照前面的方法独立完成,教师巡视,集体订正。
③猜一猜三角形的另外两个角可能各是多少度。
同桌同学互相说一说。(答案不唯一)
④小组操作探究活动。
让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。
方 法
四边形内角和
用量角器量出每个内角的度数,并相加。
把四边形四个角剪下来,拼在一起。
把四边形分为两个三角形。
填表后让学生想一想、互相说一说,四边形内角和是多少度?
(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)
三角形内角和教案 篇8
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三、自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法:
1、教师取出三角形教具,把三个角撕下来,拼在一起,
2、师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四、巩固练习,知识升华。
1、完成课本第28页的“试一试”第三题。
2、想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3、有一个四边形,你能不用量角器而算出它的四个内角和吗?
意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
五、总结延伸
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教案 篇9
一、教学目标:
1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。
2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。
3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。
二、教学重难点
教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程
教学难点:运用三角形的内角和解决实际问题。
三、教具、学具准备:
课件、一副三角尺、几个三角形。学生准备一副三角尺。
四、教学过程:
一、创设情境 揭示课题。
师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形
师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类
师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!
师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。
师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)
师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。
今天我们就来研究有关三角形内角和的知识。(板书课题)
二、探索交流,解决问
(一)、大胆猜想,产生分歧
师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)
生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)
生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)
生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
(二)验证猜想,解决问题
师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。
师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)
师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。
师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°
师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这
三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?
生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。
师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。
师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。
师:谁愿意第一个向大家介绍你们组的验证方法?
组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!
师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?
组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)
(展示:3个角折成了一个平角。)
师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?
组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °
师:(出示一个很小的三角形)它呢? 生:180 °
师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?
(生有的答360°,有的180 °。)
师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?
师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)
师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。
师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°
三、巩固应用,内化提高
1、解决问题:
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?
四、回顾整理,反思提升
通过今天的学习,大家有什么收获?
拓展创新
小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
三角形内角和教案 篇10
探索与发现:三角形内角和
课型
新授课
设计说明
本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。
1.重视知识的探究与发现。
在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。
2.重视学生的合作探究学习。
使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。
课前准备
教师准备:PPT课件 量角器 直尺 三角尺
学生准备:量角器 三角尺
教学过程
一、常识导入。(3分钟)
1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。
2.导入新课:这节课我们也来验证一下三角形的内角和。
1.倾听教师的介绍,了解帕斯卡。
2.明确本节课的学习内容。
1.填空。
(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分钟)
(一)量算法。
1.探究特殊三角形的内角和。
(1)出示一副三角尺,引导学生说一说各个角的度数。
(2)引导学生算一算它们的内角和各是多少度。
(3)引导学生得出结论。
2.探究一般三角形的内角和。
(1)引导学生猜一猜其他三角形的内角和是多少度。
(2)组织学生验证一般三角形的内角和是180°。
①引导学生量出每个内角的度数,再计算三个内角的和。
②引导学生分工合作,把结果填入记录表中。
③引导学生说说自己的发现。
(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。
(二)剪拼法。
1.组织学生用剪拼的方法求三角形的内角和。
2.引导学生总结发现。
3.课件演示,得出三角形的内角和是180°的结论。
(三)折拼法。
1.引导学生结合剪拼法尝试折拼法。
2.引导学生得出结论。
3.课件演示折拼法。
(一)1.(1)说出每个三角尺中各个角的度数。
①90°;60°;30°。
②90°;45°;45°。
(2)独立算出每个三角尺的内角和。
(3)得出结论:这两个三角尺的内角和都是180°。
2.(1)同桌之间互相说说自己的看法。
猜测:一种是内角和可能是180°,另一种是内角和一定是180°。
(2)小组合作进行探究,量一量,算一算,说一说。
三角形种类
每个内角
的度数
三个内
角的和
锐角三角形
65°
46°
68°
179°
钝角三角形
110°
25°
46°
181°
等腰三角形
70°
55°
55°
180°
等边三角形
60°
60°
60°
180°
通过观察发现:三角形的内角和都在180°左右。
(3)听老师讲解,明确三角形的内角和是180°。
(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。
2.发现三角形的三个内角正好拼成了一个平角,也就是180°。
3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。
(三)1.动手折一折、拼一拼。
2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。
3.观看课件演示,再次明确三角形的内角和是180°。
2.算一算。
在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?
3.在能组成三角形的三个角的后面画“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一个三角形,其中一个角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、巩固练习。(16分钟)
把正确答案的序号填在括号里。
1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。
A.90° B.180° C.360°
2.一个三角形中有两个锐角,则第三个角( )。
A.也是锐角
B.一定是直角
C.一定是钝角
D.无法确定
小组合作,选一选,明确答案。
1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。
2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。
6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?
四、课堂总结,拓展延伸。(3分钟)
1.总结本节课的学习内容。
2.布置课后作业。
谈自己本节课的收获。
三角形教案汇总14篇
我们常说,机会是留给有准备的人。作为一幼儿园的老师,我们需要让小朋友们学到知识,优秀的教案能帮老师们更好的解决学习上的问题,有了教案,在上课时遇到各种教学问题都能够快速解决。你知道如何去写好一份优秀的幼儿园教案呢?有请阅读小编为你编辑的三角形教案汇总14篇,请收藏并分享给你的朋友们吧!
三角形教案(篇1)
1、知道三角形高、中线、角平分线的定义
2、会做任意三角形高、中线、角平分线
重点
会做任意三角形高、中线、角平分线
难点
会做任意三角形高、中线、角平分线
教学方法
讲练结合、探索交流课型新授课教具投影仪
一、三角形的高
1、复习:过点A做BC的垂线,垂足为D
2、在黑板上做△ABC,过点A做对边BC
的垂线,垂足为D,我们
就将线段AD称为△ABC的高
3高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂
足之间的线段称为三角形的高
例如在上图中,我们从△ABC的一个顶点出发,向它对边BC所在
的直线作垂线,垂足为D,线段AD就是三角形的高
注:1)三角形的高必为线段
2)三角形的高必过顶点垂直于对边
3)三角形有三条高
为了将这三条高加以区别,我们把AD称为BC边上的高
例:做出下列三角形的三条高
1锐角三角形:
可由教师先做示范,然后再让学生自行画出
其余两个
2直角三角形
由于∠C等于900,说明AC⊥BC,那么BC
边上的高即为AC,AC边上的高即为BC,
3钝角三角形
二,三角形的角平分线
1引入:一知△ABC,做∠A的平分线AD交BC与点E,线段AE就称为△ABC的角平分线
2定义:在三角形中,一个内角的平分线与它的对边相交,,这个角的顶点与交点间的线段称为三角形的角平分线
3注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线
2)三角形的角平分线必过顶点平分三角形的一内角如上所示,△ABC的角平分线AE平分∠A,即∠BAE=∠CAE=∠BAC
3)三角形有三条角平分线
为了将这三条角平分线加以区别,我们把AE称为∠BACD的角平分线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形
钝角三角形
三,中线
1引入:如右所示,取BC的中点F,连结AF,那么线段AF就称为△ABC的中线
2定义:在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线
如上所示,线段AF就是△ABC的中线
31)三角形的中线必为线段
2)三角形的中线必平分对边如上所示,线段AF是△ABC的中线
必有:BF=CF=BC
3)三角形有三条中线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形:
钝角三角形
素材A:
1在△ABC中,AD是角平分线,
BE是中线,∠BAD=400,则
∠CAD=,
若AC=6cm,则AE=
素材B:
2下列说法正确的是()
A三角形的角平分线、中线、高都在三角形的内部
B直角三角形只有一条高
C三角形的三条至少有一条在三角形内
D钝角三角形的三条高均在三角形外
答案:1400、6㎝2C
三角形教案(篇2)
教学建议
知识结构
重点、难点分析
相似三角形的性质及应用是本节的重点也是难点。
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究。相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具。
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等。借助于图形的直观可以有助于找到全等三角形。但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大。
教法建议
1、教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2、教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3、在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1、使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.
2、学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题。
3、进一步培养学生类比的教学思想。
4、通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1、教学重点:是性质定理1的应用。
2、教学难点:是相似三角形的判定1与性质等有关知识的综合运用。
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具。
六、教学步骤
[复习提问]
1、三角形中三种主要线段是什么?
2、到目前为止,我们学习了相似三角形的哪些性质?
3、什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例。
下面我们研究相似三角形的其他性质(见图)。
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成。
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽,
BM=MC,
∽,
以上两种情况的证明可由学生完成。
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法。
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
三角形教案(篇3)
1、关注学生学习研究过程。老师在教学三角形的意义时,没有直接把“由三条线段围成的图形叫做三角形”这个定义直接地呈现给学生,而是紧紧围绕三条线段”、“围成”这两个关键词进行教学,通过比较、判断等等手段使学生认识到三角形必须具备两个条件:
2、锐角三角形:三个角都小于60度,三个角度相加的总角度的和等于180度;
3、三角形按角分:锐角三角形,直角三角形,钝角三角形;
4、注重设计的趣味性。在最初的'定义学习之后,我们进入到本课的难点,画高。教师通过让学生自己来找高,以及自己动手画画高,到最后优生的演示,无一不是体现学生在课堂上的自主地位。虽然画高到最后的钝角的高,这个过程出来的比较曲折,但我相信真正思考该问题的学生对三角形的学习是非常深刻。这也符合我们新课程的教学理念:以学生为主体,充分发挥学生的探究精神。
5、等边三角形,三条边都相等的三角形,又叫做正三角形;
6、不过,我认为本课还是有值得改进的地方。比如,在画高的过程中,教师所呈现在黑板上的三角形不够大,导致三条高密密麻麻地堆在一起,影响学生更为直观地进行理解。同时,板书的排版还需要更为简洁、合理。
7、钝角三角形:有一个角大于90度,其余二个角都小于60度,三个角度相加的总角度的和等于180度。
8、三角形三条边不一定相等。
9、三角形小学数学高年级的内容之一。在本课之前,学生已经学习过一些相关的知识点,如线段、角、也能简单区分三角形和其他形状的区别,三角形的认识是平面图形知识的起点,是学习研究其他几何图形的基础,在实践中有着广泛的应用。本节课的教学主要包括三角形的定义、画高等内容。老师的这节课整个教学过程始终围绕教学目标展开,层次比较清楚,环节紧凑,并注意引导学生通过观察、分析、动手实践、自主探索、合作交流等活动,突出体现了学生对知识的获取和能力的培养。具体体现在以下几个方面:
10、二、是否围成封闭的图形。接着安排判断练习,从正反两方面,同时还出现用曲线围成的图形、用不封闭的线围成的图形等。进一步加深对三角形意义的理解。
11、三角形按边分:等边三角形和非等边三角形,非等边三角形又可分为等腰三角形和三条边都不相等的三角形;
12、参考资料人民教育出版社
13、当然,作为一名非专职的数学老师去听课,我的观点可能还是比较肤浅或不够正确,但老师的教态自然、大方,教学设计紧凑等方面仍是值得我们学习的。
14、等腰三角形,有两条边相等的三角形,
15、应该是:三角形任两边之差小于第三边。它是由三角形任意两边和大于第三边变形得到的。
16、拓展资料
17、直角三角形:有一个角等于90度,其余二个角的角度相加的总角度的和等于90度;
18、一、是否具有三条线段;
19、三条边都不相等的三角形
20、《三角形三边的关系》教学设计
三角形教案(篇4)
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
2、判断
(1)一个三角形中最多有两个直角。 ( )
(2)锐角三角形任意两个内角的和大于90。 ( )
(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )
(4)三角形任意两个内角的和都大于第三个内角。 ( )
(5)直角三角形中的两个锐角的和等于90。 ( )
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形教案(篇5)
教学目标
1.使学生理解三角形的意义,掌握三角形的特征和特性,能按角的不同给三角形分类.
2.培养学生观察能力和动手操作能力.
教学重点
正确认识三角形及其分类.
教学难点
正确掌握画三角形高的方法.
教学过程
一、联系生活,课前调查.
课前调查:找一找,生活中有哪些物体的外形或表面是三角形?请收集和拍摄这类的图片.
二、创设情境,导入 新课.
1.让学生说说生活中见到的三角形.
投影展示:学生展示收集到的有关三角形的图片.
2.出示下图:
3.导入 新课.
教师导入 :看来生活中的三角形无处不在.关于三角形你还想了解它什么?
整理学生发言,并提出以下学习目标:
(1)什么叫三角形?
(2)三角形有哪些特征?
(3)三角形具有什么特性?
(4)三角形怎样分类?
今天我们就一起来认识三角形.(板书课题:三角形)
三、师生互动,引导探索.
1.教学三角形的意义.
(1)教师:请同学们拿出三根小棒,如果把每根小棒看做是三角形的一条边,你们分组摆一摆,并互相交流一下,知道了什么?
(2)继续演示课件“三角形”.
教师:看一看哪组和你摆的一样,它们是三角形吗?
(3)分组讨论:如果我们摆三角形用的三根小棒看作三条线段,那么什么样的图形叫做三角形呢?
(4)教师演示三根小棒是怎样摆的,从而使学生知道一根接着一根连在一起的,随后明确这是围成的.(板书:围成)
(5)揭示概念.
教师启发同学互相补充,口述三角形的含义.(教师板书)
(6)练一练:继续演示课件“三角形”.
2.教学三角形的特征:
(1)自学:①三角形各部分名称叫什么?
②三角形有几条边、几个角、几个顶点?
(2)继续演示课件“三角形”出示三角形各部分名称.
教师提问:什么叫三角形的边?三角形有几条边?
同桌讨论:这些三角形都有哪此共同的特征?
引导学生用一句话概括三角形的特征.
(3)结合手里三角形学具、边摸边说出它的特征.
3.三角形的特性.
(1)用三角形木框实验.
学生尝试:让学生用手拉一拉这个三角形,感觉怎么样?你发现了什么?同桌互相拉一拉.
引导学生得出结论:三角形的木框不易变形.
提问:为什么这些部位要制成三角形呢?
(2)实验:出示三角形、平行四边形(用木条钉成的)教具,让学生试拉一拉它们.感觉如何?你发现了什么?
提问:要使平行四边形不变形,应怎么办?(加一条边构成一个三角形)
(3)揭示特性.
(4)师小结:房架、自行车架等之所以制成三角形的其中很重要的一个原因是利用了三角形的稳定性,使其结实耐用.
(5)你还能举例子说明吗?
4.三角形的分类.
(1)让学生任意画一个三角形(或剪一个三角形)
(2)对三角形进行分类.
①学生猜测:三角形按角的特点可以分为哪几类?
②教师揭示:通常我们根据三角形角的特点分成三类.分别是锐角三角形、直角三角形和钝角三角形.
③小组讨论:你画或剪的三角形属于哪一类?找同学代表把三角形贴在黑板相应的集合图中.
④组织学生观察并分组讨论:这些角有什么特点,可以分成几类?
⑤教师小结:三个角都是锐角的三角形叫做锐角三角形;
有一个角是直角的三角形叫做直角三角形.
有一个角是钝角的三角形叫做钝角三角形.
⑥认识三角形之间的关系.继续演示课件“三角形”.
教师提问:如果我们把所有的三角形看作一个整体,这个整体是由哪几部分组成的呢?
(3))三角形按边进行分类.
全班同学共同测量课本137页上部的三角形.
教师提问:通过测量你发现这些三角形边、角各有什么特点?
引导学生得出:每个三角形的三条边长度都相等,每个三角形的三个角都相等.
教师指出并板书:三条边都相等的三角形叫做等边三角形,又叫做正三角形.等边三角形的三个角都相等.
引导学生比较等边三角形与等腰三角形,使学生明确:等边三角形是特殊等腰三角形.
5.认识三角形的底和高,并画高.
(1)画锐角三角形,教师边作图边说明.
教师说明:我们已经学过从直线外一点向直线作垂线的方法.现在利用这个知识来认识三角形的高.
教师提问:锐角三角形有几条高?如果从B点画高,它的底边是哪条线段?如果从C点画高,它的底边是哪条线段?
引导学生明确:锐角三角形的底和高不止一个,从任何一个顶点都可以向它的对边作高.这样三角形就有3个底和3个高.
(2)画直角三角形.
讨论:直角三角形的高应该怎样画?
使学生明确:因为直角三角形两条边成直角,所以夹直角的一条边是高,另一条边就是底.
教师提问:再找一找另外一条高在哪儿?
使学生明确:从直角的顶点向斜边作一条垂线,所以直角三角形的另一条高在斜边上.
(3)教师演示怎样画钝角三角形的高.
(4)教师强调说明:每画完一条高,要标上垂足.
6.教学三角形的内角和.【演示动画“三角形内角和定理”】
(1)量一量下面每个三角形中三个内角的度数.算一算三角形三个内角的和是多少度.
教师:怎样能知道三角形的三个内角和的准确度数呢?
(2)实验:
指导学生拿一个直角三角形,按下图的顺序,把∠1和∠2沿虚线折过来.观察一下,知道了什么?
使学生明确:∠1+∠2=∠3=90°.
指导学生拿一个锐角三角形,按下图的顺序,把∠1、∠2、∠3沿虚线折过来.观察一下,知道了什么?
使学生明确:∠1+∠2+∠3=180°.
③指导学生用一个钝角三角形再试一试.
(3)引导学生总结:三角形的内角和是180°.
(4)根据三角形内角的是180°,如果知道三角形是两个角的度数,就能求出第三个角的度数.
出示例题,引导学生读题,分析题意.
列式计算.
(5)练习:“做一做”.
在三角形中,已知∠1=140°,∠3=25°,求∠2.
四、巩固练习.
1.在信封中藏一个三角形,只露出一个锐角,请同学们猜一猜是什么三角形?
提问:为什么不能确定?
2.判断.
①由三条线段组成的图形叫做三角形.
②三角形有三条边、三个角、三个顶点.
③有两个角是锐角的三角形一定是锐角三角形.
④直角三角形只有一个直角.
3.操作题.
在下面的图形中画出一个条线段.
(1)把这个三角形分成两个锐角三角形?
(2)把这个三角形分成两个钝角三角形?
(3)把这个三角形分成两个直角三角形?
4.实践题.
小红家的椅子用了很多年了,有点摇摇晃晃了.请同学们帮她想想办法,该如何修理?
5.说出下面每个三角形的名称,并画出每个三角形的高.
五、教师小结.
通过学习,你掌握或学会了什么?
六、布置作业 .
140页10题
下图是一块菜地,它外面的篱笆围成了一个等边三角形.这个篱笆的周长是多少?
140页11题
用七巧板拼三角形.
用两块拼一个三角形,你想出几种拼法?
用四块拼一个三角形,你想出几种拼法?
用七块拼一个三角形,你想出几种拼法?
141页14题
已知∠1和∠2是直角三角形中的两个锐角.
(1)∠1=50°,求∠2.
(2)∠2=48°,求∠1.
板书设计
探究活动
听指挥
游戏地点
操场
游戏用具
皮筋(封闭的)
游戏方法
1.将全班学生分成各小组.每组4人,其中三人按老师要求利用皮筋围成三角形,另外一人负责举旗,当本组完成时,该同学举起小旗,以示做好.
2.老师可以说任意一种三角形.例如:当老师说“直角三角形”,三个同学就开始围(三个同学各在三个顶点位置),另一个同学认为围好了就举起小旗,先举起小旗者为胜.当说出其它三角形时,游戏方法同上.
三角形教案(篇6)
一、教学目标:
(一)知识目标
1、让学生通过观察、操作、讨论探索出三角形的内角和等于180及3条边之间的关系,体验解决问题方法的多样性。
2、在活动中,使学生初步学会与同学合作探索问题。
3、培养学生的语言表达能力和说普通话的能力。
(二)能力目标
通过让学生猜测验证三角形的内角和的过程中,培养学生探究、解决问题的能力。
二、教学重点:
三角形的内角和及三角形的三条边之间的关系。
三、教学难点:
验证三角形的内角和等于180。
四、教具准备:
三角板2个、量角器、不同类型的三角形。
五、学具准备:
三角板、量角器
六、教学过程:
(1)活动一:复习导入
师:上节课我们学习了三角形的有关知识,谁能说一说?
指名交流,说出三角形的稳定性和三角形的分类。
学生表述的质量。
(2)活动二:探究新知
师:两个三角板它们都是三角形,都有几个内角?
量一量它们的内角的和是多少度?
等边三角形的内角和是多少度?
小组合作进行,量出一个三角形的内角和是:60+30+90=180,第二个内角和也是:45+45+90=180。
等边三角形的内角和室60+60+60=180。
小结:这山种特殊的三角形的内角和都是180。
给学生提供充分的空间进行探究。
关注学生的结论。
(3)活动三:操作验证
师:是否所有的三角形的内角和都是180呢?用你喜欢的方法验证,比一比哪个小组性的方法多。
结论:三角形的内角和是180。
学生拿出事先准备的三角形和必要的工具进行验证,可以用折叠的方法,也可以用量角器量的方法,还可以用剪拼的方法等。小组探索,全班交流并总结。
让每个学生都参入活动中。
关注学生的验证过程。
(4)活动四:探究三条边之间的关系
师:三角形的三条边之间有什么关系呢?可以摆一摆,量一量。你有什么发现?
师:板书:三角形的任意两条边之和大于第三边。
同桌俩合作进行,三角形的两条边的和大于第三边。
指名交流,集体总结:三角形任意两边之和大于第三边。
关注学生的验证方法。
(5)活动五:巩固练习
师:做教材45—46页的6、7、8、9题。
让学生独立完成,然后全班交流订正。
公主学生交流的质量,给予一定的评价。
(6)活动六:课堂小结
说一说这节课你有什么收获?
学生的知识进行回顾总结。
鼓励学生用自己的语言进行总结。
创意作业:在自己周围找一找与课本类似的铁塔,并找出不同的三角形。
七、板书设计:
(1)三角形的三个内角的和是180度
(2)三角形任意两边之和大于第三边
八、教学反思:
三角形是最简单的多边形,学生对三角形已有一定的感性认识,因为在生活中他们经常会接触到。本节三角形的认识是学生在角的认识的基础上进行教学的,它又是进一步学习三角形有关知识的重要基础。本节课的教学主要包括三角形的意义、特征、特性,三角形的分类和三角形之间的关系等内容。
我在教学中贯彻让学生经历知识的形成过程为原则,整个教学过程始终围绕教学目标展开,力求做到层次清楚,环节紧凑,并注意引导学生通过观察、实验和操作,突出体现了学生对知识的获取和能力的培养。
现代心理学、教育学认为,语言的准确性体现着思维的周密性,语言的层次连贯性体现着思维的逻辑性,语言的多样性体现着思维的丰富性。众所周知能力和思维相辅相成,而思维的发展同语言的发展又紧密相关,这说明要提高学生思维能力,就必须培养学生的语言表达能力,从而提高学生的口语能力,提高说规范话、说普通话的水平。
三角形教案(篇7)
一、说教材:
本课题是人教版五年级上册第五单元一课时的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。
二、说教学目标:
1、知识与技能
(1)使学生经历三角形面积计算公式的探索过程,理解三角形面积计算的公式。让学生亲身经历三角形面积公式探索与获得的过程,而不是要教师直接把三角形面积计算的方法讲明给学生,让学生处于接受的状态。这样设计,符合了新课程学生的现代学习观。
(2)通过多种学习活动,培养学生动手操作的能力,和学生的抽象、概括、推理能力,培养学生的合作意识和探索精神。
(3)培养学生应用所学知识解决生活实际问题的能力。
2、过程与方法
使学生经历操作、观察、讨论、归纳等数学学习活动,通过图形的拼摆,割补、折叠来渗透图形转化的数学思想,在探索学习和解决实际问题的过程中体验数学与生活的联系。
3、情感、态度与价值观
让学生在探索活动中获得积极、愉悦的情感体验,进一步培养学生学习数学的兴趣。
三、说教学重点、难点:
重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形的底、高和面积与拼合而成的平行四边形的底、高和面积之间的关系。
四、说教法学法:
“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:
1、实验法
学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。
2、课件演示,配合启发。
学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。
五、说教学过程:
(一)创设生活情境,揭示课题
1、请学生回忆并指名学生说明上节课同学们推导平行四边形面积计算的过程。以解决生活中高庙公园一长方形地为出发点,园林师傅想分成相同的两半,如何去分提出问题,揭示课题。板书课题:三角形的面积(设计意图:有学生熟悉的知识并继续渗透转化的数学思想,即:把平行四边形转化成长方形来计算面积,为新知识的学习作好铺垫。对于表达不清楚、不完整的同学,教师显示课件,启发其完整的表达,并给予鼓励。)
(二)探索新知
出示问题:怎样把三角形的转化成我们学过的图形呢?
1、小组合作,动手拼摆,(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“形状完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)
2、小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。“我的发现”这一栏教师要鼓励学生充分、大胆地发言,说出自己在操作中的发现,教师给予鼓励。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)
3、课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生动手拼摆,再播放课件演示这一顺序必须把握好。先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)
4、小组合做,讨论问题
问题:两个完全一样的三角形可以拼成?
每个三角形的面积等于?这个平行四边形的底等于?这个平行四边形的高等于?三角形的面积公式是?学生借助手中的图形讨论问题。小组代表汇报讨论学习成果。
(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)
(三)巩固拓展
1、课件出示解决红领巾面积的练习。
学生独立计算,教师指名学生上黑板板演。
课件演示规范的板演过程。(设计意图:基本题的设计,巩固了学生对基本知识的掌握。渗透对估算的学习)
2、出在同一三角形中底对应的高的练习来解决问题。
3、以生活为例交通警示牌进行安全教育,计算面积。
(四)全课总结
同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)
这节课我们学习的是三角形面积的计算,说说你都获得了哪些知识?
三角形教案(篇8)
一、教材分析
本教材选自《幼儿园教育教学安排意见》小班内容,认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。认识三角形是在认识圆形的基础上进行的。这就为比较圆形和三角形奠定知识基础,有利于幼儿对三角形的感知和掌握。本节课的知识点就是三角形的特征。基于以上对教材的分析,结合幼儿的认知特点,确定以下教学目标:
1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。
2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。
3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。
确定目标的依据:小班上学期虽然还没有进行数的形成教学,但在日常活动中已经渗透许多数的概念教育,因此,通过数形结合认识三角形的特征幼儿有一定的基础。3岁幼儿经常会把几何形体理解为他们所熟悉的实物,因此,教幼儿把三角形和生活中常见的实物进行比较找出和三角形相似的物体有利于发展幼儿对应能力。
围绕教学目标根据小班幼儿的认知特点,我认为本节课的重点是认识三角形的特征,幼儿认知几何形体对图形的知觉属于空间知觉的范畴,从幼儿感知
三角形的形状到表达需要完成配对——指认——图形的特征,因此,三角形的特征定为本节课的重点。
三角形的特征同时也是本节课的难点。三角形的特征有三条边、三个角。但是,对于还没学过一一对应点数的幼儿来说还有一定的难度,所以把三角形的特征定为本节课的难点。
二、教学方法
为让幼儿更好地掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探索法,体现教师为主导,幼儿为主体的师生双边活动。
游戏法:在计算教学中运用游戏法能激发幼儿的学习兴趣,集中幼儿的注意力,帮助幼儿轻松愉快地理解知识,因此,在本节课中,无论是新知的学习,还是复习巩固我都采用游戏的形式,如在课的开始,教师以游戏的口吻介绍两个图形娃娃到小班做客,激发幼儿的学习兴趣,在复习巩固三角形特征时,设计游戏给图形娃娃找朋友、奇妙的拼图、拼拼三角形使幼儿进一步巩固三角形的特征,又激发幼儿的学习兴趣。
启发探索法:这一教学方法是教学过程中依靠幼儿已有的数学知识和经验启发幼儿去探索并获得新知。其最大的特点是激发幼儿的兴趣,最大限度地调动幼儿学习的积极性、主动性,在本节课认识三角形的特征时,我采用这一方法先出示一个圆形娃娃,再出示一个三角形娃娃,启发幼儿比较三角形和圆形的不同,在幼儿的观察探索中得出三角形有角、有边,通过亲自数一数、试一试,让幼儿明确有三个角的图形是三角形,三角形的角有点儿扎手。
本节课采用的教具:
⑴圆形、三角形娃娃各一个,用于引出课题,激发幼儿兴趣。⑵图形拼图一幅
⑶每桌一盘各类几何图形及冰糕棍若干。
选取教具的依据是小班幼儿的年龄特点及认知特点。
三、学法指导
1、复习内容的确定:三角形的特征有三条边、三个角。幼儿要掌握三角形的特征,就必须通过数一数来掌握,因此,3的数数的掌握直接影响到幼儿学习三角形的效果,因此将3的数数定为学习内容。采用幼儿比较喜欢的体态动作(拍手、拍肩、拍褪)进行,幼儿比较感兴趣又很快地集中幼儿的注意力。
2、引导幼儿用探索法和操作法学习新知,发展幼儿的观察力。为便于幼儿更好地掌握三角形的特征,请幼儿通过观察圆形和三角形有哪些地方不一样?通过亲自数一数、摸一摸来感知三角形的特征。幼儿从观察、判断到表述是幼儿利用旧知获取新知,主动学习的过程。
3、在操作、游戏中发展幼儿的空间想象力,在复习巩固三角形特征时,采取游戏《给图形娃娃找朋友》、用小棍拼三角形。幼儿在游戏时,就需要将头脑中三角形的特征的轮廓体现出来,需要幼儿将想象、图形小棒联系在一起,进一步发展幼儿的空间想象力,同时幼儿联想生活中的实物与三角形想象的物体将图形与实物相联系,从而发展幼儿的空间想象力。
4、数形结合,时幼儿在掌握特征的同时,加深幼儿对3的认识,在学习三角形特征时让幼儿数数三角形有几条边、几个角在看拼图找三角形的游戏中,让幼儿数数蝴蝶的翅膀、树身、房顶个由几个三角形拼成,在数形结合中既巩固新知,又发展幼儿的观察力和思维能力。
四、教学程序
为小学过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:
1、复习3的数数
设计这一环节的目的是为在下步学习三角形特征时
幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。
2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。
⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的`图形都是三角形。
⑶老师小结三角形特征,使幼儿获得的知识完整化。
3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。
⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。
⑵看图拼图找三角形:
图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:
这些拼图像什么?哪些部分是用三角形拼成的?用几个三角形?
⑶周围环境中找出像三角形的东西:幼儿通过自己的联想寻找发展幼儿的空间想象能力,进一步巩固三角形的特征。
五、延伸活动:
幼儿用冰糕棒拼三角形,引导幼儿拼完后讲一讲你拼得三角形有几条边?几个角?用几根冰糕棒?
三角形教案(篇9)
教学目标:
1.经历从具体物体中抽象出角和三角形的过程,认识角和三角形,知道周角、平角及周角、平角、直角、钝角、锐角的大小关系。通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180。
2.结合实例,学会用量角器量角的度数,会画指定度数的角,并能用三角板画30、45、60、90度的角。能够按角的大小对三角形进行分类。在探索三角形分类和验证三角形的内和过程中,体验解决问题方法的多样性。
3.在观察、操作、验证等学习活动中,学习角与三角形的知识,发展空间观念,提高初步的推理能力。
4.能够自觉运用角和三角形的有关知识解决生活中的简单问题,体验角和三角形知识与日常生活的密切联系。
教学内容:
了解平角、周角,系统认识角,教的大小的比较,角的度量和分类,画角;三角形的认识及其特征,三角形的分类,三角形的内角和及三条边之间的关系。
教学重点:
全面认识角和三角形。
教学难点:
画角和三角形三边关系的探索。
教材分析:
本单元是在学生初步认识角和三角形的基础上进行上学习的,是今后进一步学习几何初步知识的基础。本单元教材的特点是
1.选取现实的物品作为素材,引发学生学习兴趣,体会图形与生活的密切联系。
2.创设多种感官参与的活动,调动学生自主探索的积极性。
3.内容的编排,符合学生的认知特点。
4.强化知识之间的内在联系。
教学措施:
1.灵活运用教材提供的素材,创设学生喜欢的现实情境。
2.要重视操作活动,引导学生形成正确的图形表象,发展空间观念。
3.科学组织探索活动,引导学生自主学习新知识。
4.沟通知识间的联系,构建良好的知识构建。
5.加强知识与生活的联系,体会体会数学学习的价值。
三角形教案(篇10)
教学目标:
1、使学生理解三角形的概念,知道它各部分的名称,了解它的特性,掌握它的分类。
2、培养学生的探究意识和观察、比较、分析、判断等能力,发展学生的创新思维。
3、在小组合作学习中培养学生的团结合作精神,激发学生良好的数学学习情感,增强学习的自信心。
教学过程:
一、活动一:生活引入,直入主题
谈话:你们喜欢旅游吗?老师就特别喜欢旅游,尤其爱看城市中的建筑,走在繁华的街道上,看着一座座宏伟的建筑,就能感受到这座城市的魅力。不过受时间限制,有些地方我们也只能在书中或网上领略它的风采了。我这里收集了一些建筑物的图片,咱们一起欣赏一下吧。(电脑出示)美吗?这些图片中最基本的图形是什么?(三角形)你知道这其中的高楼大厦是在什么机器的协助下盖起来的吗?(塔吊)(出示信息窗)来看看这幅图,你看到了什么?
学生回答:塔吊上有许多三角形。
谈话:为什么饱经风雨的宏伟建筑和结实的塔吊最基本的构造都是三角形呢?
学生回答:具稳定性、牢固。
谈话:三角形到底有什么魅力,使人们在生活中处处都离不开它?这节课我们就一起来研究三角形。(板书课题:三角形的认识)
【设计意图】通过从生活中寻找形似三角形的物体,使学生感受到三角形对人们生活的重要性。引导学生提出“为什么要设计成三角形?”这样有价值的问题,从而进一步思考三角形有何种特性。
二、活动二:深入生活,感知特性
谈话:三角形真的牢固吗?让我们动手试一试。每个小组内有一个三角形框架和一个多边形框架,先观察一下,两者间有什么区别?
引导学生观察边和角的数量。
分别拉一拉,比比看,两个框架有什么变化。
学生操作实验并回答发现:三角形框架形状没有发生改变,多边形形状变了。
谈话:这是为什么呢?
学生可能回答:三角形有三条边把它的形状固定住了,所以怎么拉它也不会变形,而四边形不具稳定性,轻轻一拉就变形了。
总结:刚才同学说的很对,三角形是牢固的,也可以说它具有稳定性。(板书:稳定性)我们的生活中常常巧妙的利用了这一点。像这样的小木凳,(课件出示木凳)用得时间久了,经常会不牢固,你们有办法修修它吗?
学生回答:加斜杠,只有构成三角形,凳子才不摇,说明三角形具有稳定性。
谈话:看这两幅图中,哪里用到了三角形的稳定性?(课件出示这些物体的图片)生活中还有哪些应用三角形稳定性的例子?(学生举例)
谈话:三角形的稳定性在生活中的体现无处不在,请看(电脑出示)建筑上的斜拉桥、铁塔、自行车架、照相机三角支架、电线杆、房屋的金字架、上海东方明珠电视塔、吊车的长臂、埃及金字塔、香港中银大厦、晒衣架,太阳能架、大广告牌后面三角支架,相框后三角支架,固定小树用三角形,铁栏杆里外每隔一段有一支斜的铁杆,构成三角形。细心观察你还会发现更多呢!
【设计意图】通过亲自动手操作,验证三角形具有“稳定性”这一特点,并能有条理地把操作过程及呈现结果进行简单的表述。结合生活中物体的直观形象,体会三角形的稳定性及给人们生活带来的方便好处。
三、活动三:自制图形,引导归纳。
谈话:每个小组里都有几根小棒,请你试着用它们摆出三角形,边摆边思考:三角形是怎样构成的?
学生观察讨论:由三条边按顺序围起来。(强调解释重点字眼:围成)
谈话:谁能来试着总结一下什么叫三角形?
学生总结:由三条线段围成的图形叫做三角形。(板书)
谈话:三角形除了有三条边,还有什么?你能再试着找找吗?(教学三个角、三个顶点)
【设计意图】通过学生亲自操作,了解三根小棒是一根接着一根连在一起的,明白围成的含义,并能总结出三角形的概念,结合自己摆出的三角形进一步观察了解三角形的各组成部分。
四、活动四:观察分析,按角分类。
1、新授
谈话:每个小组的学具袋里都放着许多三角形,这些大大小小,形形色色的看起来好象各不相同,可细心的人发现有一些三角形放在一起还有不少共同点呢。请大家仔细观察三角形中各角的特点,以小组为单位,将学具袋里的三角形分分类,抓住主要特征为这类三角形起个名字。
(学生操作)
谈话:谁来把你们组的分类结果展示给同学们看看?
(学生分类)
谈话:能给你们分的这几类三角形分别起个名字吗?
学生:三个都是锐角,叫锐角三角形。
一个直角,两个锐角,叫直角三角形教师板书。
一个钝角,两个锐角,叫钝角三角形。
2、巩固
谈话:下面我们来做个小游戏,请同学们扮演这三种不同类型的三角形来向大家作以简单介绍。(我是一个三角形,我的特点是……)其他同学根据它的介绍来猜猜它的名字,好吗?
谈话:认识三种三角形,你能根据各自的特征把他们画下来吗?打开书第44页,完成自主练习。
3、(学生独立完成,教师点评)
【设计意图】给学生足够的思考空间,让学生通过观察,自己总结各种三角形的特点并加以分类,引导学生形成正确的图形表象,发展空间观念。
五、活动五:观察三边,按边分类
谈话:我了解了三角形按角可以分为三类,其实它们的边也可作为分类的依据。(出示等腰三角形、等边三角形)小组讨论一下,它们有什么不同,可以怎样分类。(引导学生用量,对折……的方法验证一下)
(学生讨论)边分类边回答。
学生:三条边都不相等:不等边三角形。
两边相等:等腰三角形。
三条边都相等:等边三角形(也叫正三角形)
有时我们把等边三角形看成是等腰三角形中的一种特殊情况。
谈话:等腰三角形和等边三角形各部分也有名称,请打开书第42页自学。
(学生自读了解)
请同学介绍等腰三角形和等边三角形各部分的名称。
小结:我们通过刚才的学习了解到三角形如果按角分可分为:锐角三角形、直角三角形、钝角三角形,还有两边相等的等腰三角形和三边相等的等边三角形。
老师这里有许多三角形,你能试着给它们找找家吗?请打开书44页,完成自主练习的第2题。
(反馈、订正)
练习:再来看这幅图(课件出示书45页第4题)在地板砖图案中,你能找到哪些三角形?还能找到哪些图形?
【设计意图】知道按边分,三角形可以分为哪几类,丰富三角形分类的知识。了解等腰三角形和等边三角形各部分的名称及特点,以结合名称特点帮助学生理解记忆两个特殊三角形。
六、活动六:结合已知,教学底、高谈话:我们在上学期学习过如何过直线外一点作这条直线的垂线。还记得怎样画吗?谁来示范一个?
(学生板书)
谈话:今天我们就在这个知识的基础上学习三角形的底和高。(边画边讲解)任选三角形的一个顶点,向它的对边作一条垂线,顶点和垂足之间的线段就叫做三角形的高,这条对边就叫做三角形的底。看清楚了吗?
【设计意图】以旧知带新知,既复习巩固,又使得新知的出现没那么突然,学生自然轻松地掌握,记忆深刻。
三角形教案(篇11)
尊敬的各位老师:
大家好!
今天我说课的题目是义务教育数学课程标准实验教材八年级下册第四章第六节的《探索相似三角形的条件(一)》这一课内容。下面我分五部分来汇报我这节课的教学设计,这就是“教材分析“、“教学”、“学法”、“教学过程”、“教学评价”。
一、教材分析:
(一)教材的地位和作用:
“探索相似三角形的条件”是在学习了相似图形及相似三角形的概念等知识后,单独研究如何探索相似三角形的条件的一课,本课是判定三角形相似的起始课,是本章的重点之一。既是前面知识的延伸和全等三角形性质的拓展,也是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件(二)(三)打下好的基础。通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。因此,这节课在本章中有着举足轻重的地位。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求及本课的特点,结合学生的实情,我本节课的教学目标确定为:
l知识目标:
①掌握三角形相似的判定方法(一)。
②会用相似三角形的判定方法(一)来判断及计算。
l能力目标:
①通过亲身体会得出相似三角形的判定方法(一),培养学生的动手操作能力。
②利用相似三角形的判定方法(一)进行有关判断及计算,训练学生的灵活运用能力。
l情感目标:通过实物演示和电化教学手段,把抽象问题直观化,从而发
展学生的合情推理能力,进一步培养逻辑推理能力。
(三)教学重点与难点
这节课的重点是三角形相似的判定定理1及应用。
难点是三角形相似的判定方法1的运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。
二、教学方法的选择与应用
根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计“实验、观察、讨论”的教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。
三、学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四、教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、点燃思维火花(趣味题目引入,配以动画演示)
1、为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A、B、D,使得AB┷AO,DB┷AB,然后确定DO和AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮助他们算出峡谷的宽度AO吗?
(设计意图:以趣味性题目引入,从而引起悬念,激发学生的学习兴趣。)
假如利用相似三角形原理可不可以解决这个问题呢?那么如何判定这两个三角形相似呢?这就是我们这节课要学习的内容。(引出课题)
(二)、动手实验探索(分小组研究讨论)
还记得全等三角形的判定方法吗?那么判定相似三角形要不要这么多条件呢?假如当条件只有角这个元素时,能不能判定两个三角形相似呢?
1、若有一个角对应相等,能否判定两个三角形相似?
(投示)(1)每人画一个△ABC,使∠BAC=60°,与同伴交流,两个三角形是否相似。
结论:只有一个角对应相等,不能判定两个三角形相似。
2、若有两个角对应相等,能否判定两个三角形相似?
(2)一人画△ABC,另一人画△A′B′C′,使∠A与∠A′都等于60°,∠B与∠B′都等于45°,比较∠C和∠C′是否相等,测量三边长度,探求是否相等。
改变角的度数再试一次。(用三个小组测量结果)
在此过程中,给学生充分的时间画图、观察、比较、交流,最后通过活动让学生用语言概括总结。
引出判定条件1:(学生总结,教师纠正)
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
可简单说成:两角对应相等,两三角形相似.
组织学生进行讨论,在此基础上教师引导学生从对应边和对应角入手进行观察。教师在多媒体几何画板上直观地演示。在教学中,通过以趣味性题目引入,从而引起悬念,引起学生的注意,激发他们的求知欲,让每个学生都积极参与。
通过学生自己探索、讨论,由学生自己得出结论:如果两个三角形中有两对角对应相等,那么这两个三角形相似。即两角对应相等的两个三角形相似。这样,从学生自己动力手操作、实验所得出的判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。
(三)、例题讲解:
例:如图,D、E分别是△ABC这AB、BC上的点,DE∥BC,
(1)图中有哪些相等的角?
(2)找出图中的相似三角形,并说明理由。
(3)写出三组成比例的线段。
分析:本例意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。
解:(1)DE//BC
∠ADE与∠ABC是同位角∠ADE=∠ABC,∠AED=∠ACB
∠AED与∠ACB是同位角
(2)△ADE∽△ABC理由是:
∠ADE=∠ABC
∠AED=∠ACB△ADE∽△ABC
(3)△ADE∽△ABC==
想一想:在上面的例题的条件下,=吗?=吗?(学生画图,交流,老师用多媒体演示出来。)
解:由DE//BC得,=
根据比例基本性质得:
=
即=
两边同时减去1,得
1=1
即=
课后思考:若DE与BC不平行,它们还可能相似吗?说明理由。
(设计意图:分三个问题显示,由易到难,新旧知识相结合,分散难点,让学生明白判定方法(一)在实际问题中的应用,最后设置一道课后思考与讨论,使题目进一步延伸与拓展,培养学生的发散思维。)
(三)随堂练习:
判断题:(让学生判断,老师用几何画板演示)
(1)有一个锐角对应相等的两个直角三角形相似。()
(2)所有的直角三角形都相似。()
(3)有一个角相等的两个等腰三角形相似。()
(4)顶角相等的两个等腰三角形相似。()
(5)所有的等边三角形都相似。()
解:(1)对。有一个锐角对应相等的两个直角三角形相似。
因为是两个直角三角形,所以有一对直角相等,再加上一对锐角相等,根据判定方法1,得,这两个三角形相似。
(2)错。
(3)错。有一个角相等的两个等腰三角形不相似。
例:一个顶角为30°的等腰三角形与一个底角等于30°的等腰三角形就不相似.
(4)对。顶角相等的两个等腰三角形相似。
因为两个等腰三角形的顶角相等,所以它们的四个底角都相等,因此有三对角对应相等,所以这两个三角形相似。
(5)对。因为等边三角形的三个角都是60°。
(设计意图:使学生加深对判定方法(一)的理解。)
(四)补充练习:
(1)已知:△ABC和△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠C=50°
∴∠A=55°
∴∠B=∠B′,∠A=∠A′
∴△ABC∽△A′B′C′
(2)已知△ABC和△A′B′C′中,∠B=∠B′=75°,∠A=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠A=50°
∴∠C=55°
而在△A′B′C′中,
∵∠B′=75°,∠A′=55°
∴∠C′=50°
∴根据判定方法(一),△ABC和△A′B′C′不相似。
(设计意图:通过让学生比较这两道题中条件的异同,进一步让学生理解判定方法(一)的运用)
现再请学生回头看看引入那道题,利用判定方法(一)让学生自己去发现两个三角形相似,然后再运用相似三角形的对应边成比例来解这道题,这样一来可以加深对判定方法(一)的理解,二来可以增强学生的自信心,培养学生分析问题、解决问题的能力。
通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
(五)、总结提高:
提问:“通过这节课的学习有什么收获?”
(同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳)
(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)
(六)、分层作业:
(必做题):P119的习题4.7的1、2
(选做题):
如图,已知D是△ABC的边AB上任一点,DF∥AC交BC于E.AF交BC于M,且∠B=∠F,△AMC∽△BDE吗?请说明理由。
(设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)
l新的探索:(提高题)
(4)如图梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD⊥DC,求证:△ABD∽△DCB.
分析:由已知条件不可能推出有关比例式时,只能找相等的角.用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等.
(设计意图:旨在体现因材施教、分层教学的原则。同时上述问题的进一步伸展,给学生展示了一个思维发散的平台。而且这也为下节课学习证明作了必要的铺垫。)
四、教学评价:
为了实现教学目标,优化教学过程,提高课堂效率,在教学上组织学生参与“创设问题、实验、观察、讨论、总结”这符合现代教学理论的'观点,把素质教育落到实处。另一方面对学生暴露思维过程,拓展性和开放性题目的设计编排,培养了学生的直觉思维能力和发散思维能力。
五分钟小测:
1、
C
如图,AB,CD相交于E,ΔAEC∽ΔDEB,∠A与∠D是对应角,则其余的对应角为xx,对应边的比例式为xx
A
E
B
D
2、
A
如图:∠BAC=∠ADB,图中有相似三角形吗?
为什么?
D
C
B
3、已知ΔABC,P是AB上一点,连接CP,满足什么条件时,ΔACP与ΔABC相似.
三角形教案(篇12)
教学内容:
含有几个小三角形(《现代小学数学》第三册智力游戏).
教学目标:
1.选择一个适当的图形为单位,进行图形的分解训练,分析几何图形之间包含的关系.
2.初步培养学生观察能力、空间观念和推理能力.
3.养成仔细观察,认真审题的好习惯.
教学重点:
如何把一个图形分解成单位图形.
教学难点:
推导图形中含有几个小三角形的推理过程.
教学用具:
小黑板、彩色图形、小卷子两张(同题板1、题板2内容)
教学过程:
(课前板书课题:含有几个小三角形)
一、复习导入
师生问好,开始上课!
1.导入
师:这儿有三种图形,你知道它是什么形状吗?它呢?
(师一个个出示,生分别说出是什么形状)
2.准备题(一)
师:我们看投影上的这些图形,你能从这些图形中找出一共有几个三角形、几个正方形、几个长方形吗?
一共有( )个三角形
( )个正方形
( )个长方形
(一问一问出示,用数字板反馈,并说出是哪几号图形)
师:这节课我们一起来研究图形之间的包含关系.继续看投影.
3.准备题(二)
考眼力:下图中各是由几个相等的小三角形拼成的?
二、探讨新知
第一层次:动手实践
1.师:请你想办法求出下面各题的结果.(出示题板1)
(反馈①)生回答后追问:你是怎样想的?
生:用
摆了摆含有2个
生:斜着画一条线,分成了2个小三角形
生边说师边画:
(反馈②③步骤同上)
请学生用学具亲自来验证答案
第二层次:讨论研究
2.师:如果把这三个答案作为已知条件(板书:已知)
你能求出下面的问题吗?(出示题板2)
师:用什么方法可以得到正确答案,前后桌4人一组进行讨论.(拿出小卷子2)
(反馈①)生:可以画一画
师追问:还有其他的'方法吗?
生:我们已经知道1个长方形含有2个小正方形,1个小正方形含有2个小三角形,2个小正方形含有(2×2=4)个小三角形,所以1个长方形有4个小三角形.
师:刚才××同学用的方法太好了,他用的方法叫推理方法,根据已知的一个或几个判断,推导出最后的结论,这种方法就是推理的方法.
还有谁用了推理的方法,你能说说你是怎样推理的吗?其他同学在心里和他一起说说.
(反馈②)生:可以画一画
生:可以用推理方法(同①的步骤)
(采取个人说,同桌对说练习推理方法,请学生用单位图形验证所得的结论,肯定学生的答案和方法都很正确.)
第三层次:运用推理
师:刚才同学讨论得特别好,再出一问:(出示题板3)
师:你能用推理方法得出结论吗?请4人一组讨论.
反馈①生:画一画
反馈②
方法一:
1个大正方形含有4个小正方形
1个小正方形含有2个小三角形
4个小正方形含有(2×4=8)个小三角形
所以1个大正方形含有8个小三角形
方法二:
1个大正方形含有2个小长方形
1个小长方形含有4个小三角形
两个小长方形含有(4×2=8)个小三角形
所以1个大正方形含有8个小三角形
方法三:
1个小正方形含有2个小三角形
1个小长方形含有(2×2=4)个小三角形
1个大正方形含有(2×2×2=8)个小三角形
师:用推理的方法算出的结果是否正确,请4人一组用虚线画一画验证我们推理的结论正确吗?(事先发给每组一张有6个大正方形的纸)
反馈:
对比:师:上面两题所含的两种小三角形个数为什么不一样?
生:小三角形的大小不一样,个数也不一样.
三、巩固练习(投影反馈)
1.下面的图形里含有几个这样的?
2.涂阴影的小三角形拼成下面的图形,各需要几个?
3.下面图形分别是用多少个像图内那样的小三角形组成的?你能用虚线画一画吗?
板书设计:
三角形教案(篇13)
一、教材分析
1.教材的地位与作用:
等腰三角形的性质是新人教版八年级数学第十三章第三节的内容,它是在认识了轴对称性质以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的"等边对等角"和"等腰三角形的三线合一"本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。
2.教学目标:
知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。
能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。
情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。
3.教学重点与难点
重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。
难点:等腰三角形三线合一的推理应用
二、教法与学法
教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。
学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受"等腰三角形的性质"通过学生自己看、想、议、练等活动,让学生自己主动"发现"几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。
三、教学过程:
(一)出示教学目标
知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。
能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。
情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。
让学生明白本节课的重要知识点和自己需要掌握的主要知识,做到有的放矢。
(二)直观演示,大胆猜想
观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。
由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。
(二)证明猜想,形成定理。
1△ABC中,AB=AC,求证:∠B=∠C
思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的平分线〕
2有其它的方法吗?试试看,用不同的方法证明这个结论。
让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想--证明这一数学认知基本方法。
2交流反馈,共同完成本节重要知识点的证明。
通过看幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的表述水平。
3小结:根据等腰三角形的性质填空。
(1)如果AB=ACAD是角的平分线那么......
(2)如果AB=ACAD⊥BC那么......
(3)如果AB=ACBD=CD那么......
总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。
(三)应用举例,强化训练
为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。
通过这一环节的题目训练,有利于激发学生探索精神,养成灵活运用新知识,敢干运用新知的跳跃精神。
四、归纳小结
为了使学生对所学知识有一个完整而深刻系统的认识,我让学生畅所欲言,谈体会、谈收获,让学生自己结合本节教学目标,发现在学习中学会了什么及还存在哪些问题。这样有利于学生学习后养成及时反思的习惯。
等腰三角形的性质教学反思
安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。
在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。
性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”,三句话是“1等腰三角形的顶角平分线平分底边、垂直于底边,2等腰三角形的底边上的中线平分顶角、垂直于底边,3等腰三角形的底边上的高平分顶角、平分底边”,六句话是“1等腰三角形的顶角平分线平分底边,2等腰三角形的顶角平分线垂直于底边,3等腰三角形的底边上的中线平分顶角,4等腰三角形的底边上的中线垂直于底边,5等腰三角形的底边上的高平分顶角,6等腰三角形的底边上的高平分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。
性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,没有安排同学在黑板上板演,主要培养了学生讨论和自觉纠错的学习习惯。
本节课的两个性质全部是由学生折纸,自主猜想出来,老师几乎没有提示,学生自主探究能力得到很大的提升。此外。本节课的PPT制作效果好,能准确引导学生的探究方向,在展示性质证明的过程中,起到了很好的作用。学生学习热情高,课堂氛围好。
三角形教案(篇14)
学习 目标
能证明出“三角形内角和等于180”,能发现“直角三角形的两个锐角互余”;
按角将三角形分成三类.
学习重点
1、角平分线的概念;
2、三角形的中线.
学习难点
会角平分线的概念.即判别哪两个角相等.
疑难预设
任意画一个三角形,设法画出它的一个内角的平分线.
教学器材
学法设计及时间分配 个案补充
教学过程:
一、探索练习:
1.任意画一个三角形,设法画出它的一个内角的平分线.
2.你能通过折纸的方法得到它吗?
学生可以用量角器来量出这个角的大小的方法画出这个角的平分线.也可以用折纸的方法得到角平分线.
在学生得到这条角平分线后,教师应该引导学生观察这三条线之间的位置关系,并且在交流的基础上得到结论:
三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线.简称三角形的角平分线.
教师应该规范学生的书面表达,给出下面的示范书写:
如图:∵AD是三角形ABC的角平分线,
∴∠BAD=∠CAD=∠BAC,
或:∠BAC=2∠BAD=2∠CAD.
学法设计及时间分配 个案补充
请你画出△ABC(锐角三角形)的所有角平分线,并且观察这些角平分线有什么规律?对于钝角三角形呢?直角三角形呢?它们的角平分线也有这样的规律吗?
一个三角形共有三条角平分线,它们都在三角形内部,而且相交于一点.
例题:△ABC中,∠B=80∠C=40,BO、CO平分∠B、∠C,则∠BOC=______.
活动二:
1、任意画一个三角形,设法画出它的三条中线,它们有怎样的位置关系?小组交流.
2、你能通过折纸的方法得到它吗?
画中线时,学生可以用刻度尺通过测量的方法来得一边的中点.也可以用折纸的方法得到一边的中点.
在学生得到这条中线后,教师应该引导学生观察这当中的线段之间的大小关系,并且在交流的基础上得到结论:
连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线.简称三角形的中线.
教师应该规范学生的书面表达,给出下面的示范书写:
如图:∵AD是三角形ABC的中线,
∴BD=DC= BC,
或:BC=2BD=2DC.
请你画出△ABC(锐角三角形)的所有中线,并且观察这些中线有什么规律?对于钝角三角形呢?直角三角形呢?它们的中线也有这样的规律吗?
学生通过自己的动手操作,观察.应该比较快得到下面的结论:
一个三角形共有三条中线,它们都在三角形内部,而且相交于一点.
已知,AD是BC边上的中线,AB=5cm,AD=4cm,▲ABD的周长是12cm,求BC的长.
学法设计及时间分配 个案补充
巩固练习:
1、AD是△ABC的角平分线(D在BC所在直线上),那么∠BAD=_______= ______.
△ABC的中线(E在BC所在直线上),那么BE=___________=_______BC.
2、在△ABC中,∠BAC=60,∠B=45,AD是△ABC的一条角平分线,求∠ADB的度数.
例题评讲
例:△ABC中,∠B=80°∠C=40°,BO、CO平分∠B、∠C,则∠BOC=______.
三.活动:
1.任意画一个三角形,设法画出它的三条中线,它们有怎样的位置关系?
2.你能通过折纸的方法得到它吗?
课时小结
(1)三角形的角平分线的定义;
(2)三角形的中线定义.
( 3) 三角形的角平分线、中线是线段.
(1)如图(1), 是 的三条中线,则 ______ _________, _____, ________ ______.
(2)如图(2), 是 的三条角平分线,则 ,
, .
4.如上图, 中, 为中线, 平分 ,则 ,
如图, 是 的角平分线,DE∥AC,DE交AB于E,DF∥AB,DF交AC于F,图中∠1与∠2有什么关系?为什么?
板书设计
第一节 认识三角形(3)
三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之
间的线段叫做三角形中这个角的角平分线。简称三角形的角平分线。
连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线。简
称三角形的中线。
教学反思 值得记忆的
细节 学生基本上能明白三角形的角平分线、中线的定义,但是在较复杂一点的题目中也会出现以下错误:
(1)已知AD是三角形ABC的角平分线,则∠B=∠C;值得思考的环节
(2)有部分生会把三角形的角平分线和三角形的中线混淆.
如:AD是三角形ABC的角平分线,则BD=CD.
对角平分线、三角形的中线的运用有待真正的提高.