幼儿教师教育网,为您提供优质的幼儿相关资讯

不等式与不等式组教案

发布时间:2023-05-25 不等式教案

不等式与不等式组教案必备4篇。

每一位教师都必须在上课之前拥有一份完备的教案课件,因此每天都需要按时按质地编写完善的教案课件。教案作为教育教学领域中的重要管理和组织工具,其质量也至关重要。如何编写出优质的教案课件呢?我相信这份“不等式与不等式组教案”可以满足您的需求,欢迎借鉴和学习,同时希望对您的教学工作有所帮助!

不等式与不等式组教案【篇1】

各位领导老师,大家好:(幻灯1)

今天我说课的题目是人教版、七年级下册、第九章,《不等式》中的第一节:《不等式及其解集》。对于本节课的处理,我准备从教材分析、教法学法、教材处理、教学过程(幻灯2)这几个方面谈谈自己的看法:

1 教材分析(幻灯3)

1. 1 教材的地位和作用

本章的主要内容是一元一次不等式解法及其简单的应用,是继一元一次方程学习之后,又一次数学建模思想的教学,是进一步探究现实生活中的数量关系、培养学生分析问题和解决问题能力的重要内容,也是今后学习一元二次方程、函数、以及进一步学习不等式知识的基础。相等与不等是研究数量关系的两个重要方面,用不等式表示不等的关系,是代数基础知识的一个重要组成部份,它在解决各类实际问题中有着广泛的应用.

本节课的内容主要介绍不等式及不等式的解的概念及解集的表示方法,是研究不等式的导入课,通过实例引入,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望;经历、感受概念形成的过程,使学生正确抓住不等式的本质特征,为进一步学习不等式的性质、解法及简单应用起到铺垫作用.

1.2 学情分析

(1) 学生对实际生活中的不等量关系、数量大小的比较等知识,在小学阶段已有所了解.

(2) 学生已初步具备了“从实际问题中抽象出数学模型,并回到实际问题解释和检验”的数学建模能力.

(3) 学生已初步具备探究和比较的能力.

1.3教学目标分析

本节课的教学目标是:

1.知识方面:了解不等式及一元一次不等式概念,并理解不等式的解、解集,能够正确表示不等式的解集;经历把实际问题抽象为不等式的过程,能够列出不等关系式.

2、能力方面:使学生进一步理解归纳和类比的数学方法,以及从具体到抽象获取知识的思维方式;初步体会不等式是刻画现实世界中不等关系的一种有效数学模型。3、情感方面:通过对不等式概念及其解集等有关概念的探索,加强同学之间的分工合作与交流.

1.4教学重难点分析

本节课的教学重点是:不等式相关概念的理解和不等式的解集的表示。

本节课课的教学难点是:不等式的解不是一个或几个具体的数值,而是适合不等式的未知数的值的全体,具有较高的抽象性,学生不易理解和接受,是本节教学中的难点. 2教法和学法(幻灯4)

2.1 教法:

根据本节课教学内容和七年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,揭示事物发展从“特殊”到“一般”再到“特殊”的辩证规律;既提高了学生的学习兴趣,增强了信心,又有利于接受知识;也有益于形成对问题进行探索、研究和解决的能力.

2.2 学法:

建构主义教学构想的核心思想是:通过问题的解决来学习.根据本节课的特点,采用自主探究、合作交流的探究式学习方法.

3 教材处理(幻灯5)

本节课是从一个实例(问题)的解答来引出不等式及其概念的,为了降低学生的认知难度,我通过不等式与方程的类比教学,主要采用了:实际问题——列方程解答——改编为问题——列不等式——提出不等式的概念——不等式解的概念,并及时穿插相对应的例题和练习,加以巩固.

4 教学过程

下面我来说说本节课的教学过程共同分为五个环节

第一个环节 创设情境,激发求知欲

首先通过老师的自我介绍,我们先认识一下,我叫丁文婷,我的年龄吗------比您们都大,等等。让学生体会到生活中的不等关系,也让学生轻松地找出生活中的不等关系,既把学生的注意力带入本节课的内容,也拉近了与学生的距离,创建了融洽的教学氛围。然后利用两个实际问题让学生从列方程到列出不等关系式。(幻灯6)

(1) 20xx年12月1日起施行修改后的《铁路旅客运输规程》,将此前规定的身高1.1米-1.4米的儿童应购买儿童票,调整为身高1.2米-1.5米的儿童应购买儿童票。这意味着在12月1日新规实行后,1.2米以下儿童可免票,1.2米至1.5米的可购买半票,1.5米以上则须全票. 问题:现在若用x表示一名儿童的身高,那么

①x满足______时,他可免票.

②x满足______时,他该买全票.

⑵已知襄樊与武当山的距离为150千米,他们上午10点钟从襄樊出发,汽车匀速行驶. ①若该车计划中午12点准时到达武当山,车速应满足什么条件?

设车速为x千米/小时,可列式子:______________.

②若该车实际上在中午12点之前已到达武当山,车速应满足什么条件?

设车速为x千米/小时,可列式子:______________.

考虑学生实际情况和题目难度,所以设置问题串,降低难度.这样编排教材我认为更能体现知识呈现的序列性,从易到难,让学生“列不等式”能力实现螺旋上升.最后类比方程的概念由学生总结出不等式的概念.

第二个环节,4.2承上启下

通过两组练习,(幻灯7)

①下列式子中哪些是不等式?

(1)a+b=b+a

(2)-3>-5

(3)x≠1

(4)x+3>6 (5)2m<n(6)2x-3

②用不等式表示:

⑴a是正;⑵a是负数;⑶a与5的和小于7;⑷a与2的差大于-1;

⑸a的4倍大于8;

⑹a的一半小于3.

一是判断不等式,既巩固了不等式的概念也补充“≠”“≤”“≥”这些符号。二是让学生用不等式来刻画题中6个简单的不等关系,也由此得出一元一次不等式的概念. 学生得出答案并不难,所以该环节让学生独立完成、互相评价,同时进一步培养学生列不等式能力. 第三个环节,4.3 合作质疑、探索新知

问题1.(幻灯片8)

①判断下列数中哪些满足不等式2x/3>50:

76、73、79、80、74.9、75.1、90、60

②满足不等式的未知数的值还有吗?若有,还有多少?请举出2—3例.

③.上问中的不等式的解有什么共同特点?若有,怎么表示?你能验证一下你的结论吗? ④.②中答案在数轴上怎么表示?

本环节主要任务是突出重点和突破难点. 首先通过一组环环相扣,步步深入的问题来实现,第一问四人一组分工合作完成,通过简单代值运算,使每名学生都动起来,边代、边算、边答、边交流,调动学生的学习兴趣,为每位学生都创造在数学活动中获取成功的体验机会,并培养学生观察能力和数感. 第二问的设计,使学生感受不等式的解不是一个或几个具体数值,加深对不等式解的理解。第三问四问突破不等式的解是适合不等式的未知数的值的全体这一难点,使学生及时掌握、运用新知识。从而类比方程的解得出不等式的解和解集的概念.尤其第四问的不等式的解集在数轴上的表示也体现了数形结合的思想,连同前面的文字表示,充分体现了数学的三种表示形式.

其次通过两组练习观察学生掌握知识的情况,及时反馈,及时调节。整个环节通过“观察特点——猜想结论——验证猜想”的思路展开,符合学生的认知过程.

第四个环节,4.4 运用新知、解决问题(幻灯9)

某班同学经调查发现,1个易拉罐瓶可卖0.1元,1名山区贫困生一年生活费用至少是500元。该班同学今年计划资助两名山区贫困生一年生活费用,他们已集资了450元,不足部分准备靠回收易拉罐所得。那么他们一年至少要回收多少个易拉罐?

该环节设置了一个俭省节约和助人为乐的实际问题,通过对学生熟悉的生活背景进行处理,让学生体会数学生活化,能将实际问题转化为数学问题加以解决,培养学生应用意识,同时也对学生进行潜移默化的思想品德教育.

第五个环节,归纳反思、重组结构(幻灯10)[实用文书网 wEI508.coM]

4.5 归纳反思、重组结构

(1)通过本节课的学习,你学会了哪些知识?

(2)通过本节课的学习,你最大的收获是什么?

(3)通过本节课的学习,你获得了哪些学习数学的`方法?

充分发挥学生的主体地位,从学习知识、方法和延伸三方面进行归纳。,让学生养成“反思”的好习惯,并培养学生语言表述能力。

最后分层次设置作业让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生.

教学评价:本节课主要在第一环节,学生有没有积极思考,尝试列不等式,能不能归纳出不等式的概念. 第二个环节关注学生能不能判断不等式,归纳出一元一次不等式的概念.第三个环节关注学生参与活动的积极性和对数学的三种表示的总结,然后通过学生板演评价学生的知识的掌握,能力的迁移情况.第四环节考察学生把实际问题数学化的能力.第五环节不仅评价学生总结的知识点 而且有数学思想、数学方法等等

最后展示一下我的板书设计:

不等式及其解集

问题一: 巩固练习: 练习1

问题二: 探索新知: 练习2

不等式的概念: 不等式的解: 反思:

一元一次不等式的概念: 不等式的解在数轴上的表示

以上,我仅说明了“教什么”和“怎么教”,阐述了“为什么这样教” 希望各位专家领导对本堂说课提出宝贵意见

不等式与不等式组教案【篇2】

(第1课时)

一、教材内容解析

(一)内容

一元一次不等式的概念及解法

(二)内容解析

在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能.另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础.

解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的的3个性质(特别是性质3,要改变不不等号的方向),逐步将不等式化为x>a或x<a的形式,从而确定未知数的取值范围,这一化繁为简的过程,充分体现了化归的思想.基于以上分析,本节课的教学重点:一元一次不等式的解法.

二、学习目标

1·了解一元一次不等式的概念,掌握一元一次不等式的解法;2·在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会.

3·依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式,学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤.

三、教学重难点

1·教学重点:掌握一元一次方程概念及解法,运用化归思想把形式复杂的不等式转化为x>a或x<a的形式,逐步将不等式变形为最简形式.2·教学难点:解一元一次不等式步骤的确定.

四、教学方法:

启发式、小组合作学、学生展讲、教师点评、归纳总结等模式

五、教学过程设计

(一)新课导入形成概念

问题:观察下面的不等式,它们有哪些共同特征?

3x—7>26

3x<2x+1x>50

—4x>3

4学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.

师生共同归纳获得:含有一个未知数,未知数的`次数是1的不等式,叫做一元一次不等式.

设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力.

(二)通过类比研究解法

练习:利用不等式的性质解不等式x—7>26学生尝试独立完成练习

教师结合解题过程,指出:由x—7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.

设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.设问1:解一元一次方程的依据和一般步骤是什么?

学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.

设问2:解一元一次不等式能否采用类似的步骤?学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路.

(三)例题讲解

规范步骤

例:解下列不等式,并在数轴上表示解集(1)2(1+x)<3(2)

设问(1):解一元一次不等式的目标是什么?

学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式.设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗?由学生独立完成,老师评讲设问(3)对比不等式么不同?

设问(4):怎样将不等式

变形,使变形后的不等式不含分母?

与2(1+x)<3的两边,它们在形式上有什小组合作交流,老师点拨

设问(5):你能说出解一元一次不等式的基本步骤吗?

学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1.设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么?

学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变.设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(x>a或x<a)的差异,思考如何依据不等式的性质将原不等式通过变形转化为最简形式,以获得解一元一次不等式的步骤.

(四)辨别异同

深化认识

设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处?

学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处.

相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1.基本思想相同:都是运用化归思想,都要变为最简形式.

不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质.最简形式不同:解一元一次不等式:最简形式是x>a或x<a,一元一次方程的最简形式是x=a.设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想.

设问2:解一元一次不等式每一步变形的依据是什么?

学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据.设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力.

(五)学以致用,能力提升

课本P124页的练习1、2两题

设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用.

(六)课堂小结

(七)布置作业,课外反馈

教科书P126习题9.2第1,3题

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.本节课教学反思

通过问题引导让学生会一元一次不等式的解法,由于一元一次不等式的解法与一元一次方程的解法十分相似,解一元一次方程的依据是等式的性质,而解一元一次不等式的依据是不等式的性质,所以讲授新课之前老师先口头复习了等式的性质,然后通过对两个不等式不等式的式子在左右两边同时加上、减去、乘以、除以某一个相同有数,让学生自己归纳出不等式的性质,同时和前面刚复习的等式的性质比较,对比掌握。类比一元一次方程的解法学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后系数化为1不同,其它的步骤是相同的,强调最后一步(用不等式的性质2或3)系数化为1“负变,正不变”。学生掌握得很好。并在这一节重视用数轴表示不等式的解集。

存在不足:发现学生对不等式及不等式组的解法掌握得较好,但对不等式的特殊解不是很理解还有在列不等式的时候很多学生不懂如何用不等式表示“负数”、“正数”、“非正数”、“非负数”,“不大于”、“不小于”。对一元一次不等式的应用这部分内容,我们感觉学生掌握得最薄弱,这也作为老师的我觉得比较困惑的问题。正在努力寻找行之有效的措施。提出建议:对将表示不等式的语句转化成不等式要强化训练,如“至多“、“至少”、“不超过”,“剩余”、“不够”等等,为后面的应用题作准备,我们知道在列一元一次方程或方程组解应用题,学生学握起来非常困难,主要是等量关系难找。而在不等式的应用题中,不等关系将更难找,很多表示不等关系的语句隐藏得较深,所以要提前作好这方面的准备。

不等式与不等式组教案【篇3】

各位评委老师大家好!我说课的题目是华东师大版初中数学七年级(下)第八章第二节《解一元一次不等式》的第一节《不等式的解集》,下面我从教材分析等方面对本课的设计进行说明。

一、教材分析

本节课研究的是不等式的解集和不等式解集在数轴上的表示。这之前学生已经初步学习了不等式和不等式解,这部分在本章中不但有承上启下的作用,而且为今后学习函数的应用奠定了数形结合的基础,因此它在教材中处于非常重要的位置。一元一次不等式的解集是前面一元一次方程解的扩展,两者存在区别与联系。在数轴上表示不等式的解集,是学生学习数轴之后,又一次接触到图形与数量的对应关系,同时为今后函数的学习提供了方法和依据。

二、目标分析

根据学生已有的认知基础和本科教材的地位,由于数学教学不仅是知识的教学,技能的训练,更能重视能力的培养及情感教育,因此确定教学目标1,2,3。

即:

1、知识目标:了解不等式解集的意义和不等式的解集在数轴上的表示。

2、能力目标:建立图形与数量的对应关系,能在数轴上表示不等式的解集,渗透数形结合的数学思想。

3、情感目标:引导学生在独立思考的基础上,参与问题的讨论,激发学生主动获取知识的兴趣增强学生学习的信心。

教学重点:一元一次不等式的解集和表示。

教学难点:一元一次不等式解集的意义和不等式解集在数轴上的表示。

教学难点突破办法: 通过观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。

三、教法分析

为创设宽松民主的学习气氛,激发学生思维的主动性,顺利完成教学目标根据学生特点和学生的实际情况采用引导发现法,计算机辅助教学。将学生个体的自我反馈,小组间的合作交流,与师生间的信息及时联系起来,形成多层次多方面的合作交流,共同发现知识,获取知识。学生知识掌握过程离不开学生自身的智力活动,因此,在教学中,突出引导学生观察,分析,以旧探新,猜测论证等方法,揭示数学问题,并采用个人思考,分组讨论,汇报结果等多种形式,使每个学生都参与到学习中来,学生在获得知识的过程中悟出道理,得出结论,增强学习数学的自信心,

四、学法分析

1.学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。

2.合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。

五、教学过程

1、创设情景,提出问题

通过实际应用问题让学生在解决的过程中先找出几个符合题意的解,然后发现问题,这样,既复习了不等式,又给新课做好了铺垫,由此可以发现,不等式的解有许多个,他们组成一个集合,称为不等式的解集,这样既符合认知规律,又能找到最佳切入点,使学生产生探索的欲望,从而引出不等式的解集。

2、探究新知

通过讨论、交流、归纳得到:大于3的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+25的解有无限多个,它们组成集合,称为一元不等式x+25的解集。即表示为x3。

由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。

我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢? 不等式解集x>3,在数轴上可以直观地表示出来。如图8.2.1

如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2

说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时往左拐。

3、讲解补充例题,

例1:判断:

①x=2是不等式4x<9的一个解.( )

② x=2是不等式4x<9的解集.( )

例2、将下列不等式的解集在数轴上表示出来:

(1)x<2

(2)x≥-2

(设计意图:例1是让学生理解不等式的解与不等式的解集。联系与区别,例2揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

4、巩固练习:课本44页练习2,3题

5、归纳总结,

结合板书,引导学生自我总结,重点知识和学习方法,达到掌握重点,顺理成章的目的。

6、作业:课本49页习题1,2题

设计意图:促进学生及时地复习课文,巩固和强化所学知识,提高解决问题的能力。

不等式与不等式组教案【篇4】

课题:§3.2.2均值不等式 课时:第2课时 授课时间: 授课类型:新授课

【教学目标】

1.知识与技能:利用均值定理求极值与证明。

2.过程与方法:培养学生的探究能力以及分析问题、解决问题的能力。

3.情态与价值:激发学习数学的热情,培养善于思考、勤于动手的学习品质。【教学重点】利用均值定理求极值与证明。【教学难点】利用均值定理求极值与证明。

【教学过程】

1、复习:

定理:如果a,b是正数,那么

abab(当且仅当ab时取“”号).22、利用均值定理求最值应注意:“正”,“定”,“等”,灵活的配凑是解题的关键

3、例子:

1)已知x≠0,当x取什么值时,x2+2)已知x>1,求y=x+

81的值最小,最小值是多少? 2x1的最小值 x13)已知x∈R,求y=x22x12的最小值

4)已知x>1,求y=x+116x+2的最小值 xx15)已知08)要建一个底面积为12m2,深为3m的长方体无盖水池,如果底面造价每平方米600元,侧面造价每平方米400元,问怎样设计使总造价最低,最低总造价是多少元?9)一段长为Lm的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长和宽各为多少时,菜园的面积最大,最大面积是多少? 小结:利用均值定理求极值课堂练习:第73页习题3-2B:1,2 课后作业:第72页习题3-2A:3,4,5 2板书设计:教学反思:

yJS21.com更多精选幼儿园教案阅读

不等式解法教案9篇


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。制作合理充分的教案是巩固学生知识的有效途径,老师应该从什么方面去写教案课件?幼儿教师教育网编辑深度评估了这篇“不等式解法教案”强烈推荐给大家,如果您对这个话题有所兴趣请跟进我们的官网!

不等式解法教案 篇1

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:

填表:

当x 时,y = 0,即 2x-7 0;

当x 时,y

当x 时,y > 0,即 2x-7 0;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y0部分图象)

从上例的特殊情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b

2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

不等式解法教案 篇2

一元二次不等式及其解法教学反思

塘沽中专-----戚卫民

我在13级电子班教室上了一节课,由此我进行了深刻的反思:

我教的是一个普通中专的班,学生基础比较差。因此,第一,课前组织很重要,给 学生 做思想 工 作,这 节 课很重要,是大家表现 自己 的好机会,同 学 们应该遵守纪律,积极发言,展示 自己 班良好的素质和班风。这样学生激情会高一些,自然课堂也会活跃一些。第二,把握本节课的难点,课前做好铺垫。一元二次不等式及其解法看上去好像很简单,但是它需要同学们有很好的基础,解一元二次方程的基础。而学生在初中只是熟悉用求根公式解方程,对于十字相乘法分解因式只有极个别会,对于这种情形我在课前把一元二次方程的解法好好的补了一下。还有二次函数的图象画法,也好好的复习一下,加深巩固,突破难点,使得这节课能顺利进行下去。

尽管这样我的课堂效果也不是很好,这是为什么呢?我陷入迷茫之中可能是我的学生不适应教学方式?可能是学生紧张?弄错?后来想想可能我没有好好地备学生。我觉得这节课的教案应该这样设计,可能会更好:课前引入去掉,应该在复习时让学生解一元二次方程,画二次函数图象,这样学生容易进入状态。然后直接导入新课,有特殊到 一般,由具体到抽象,逐步揭开解一元二次不等式的方法。给出例题应由浅入深,先给出形如这样的:(x-2)(x-3)

让他们好求方程的根,从而画图求不等式的解集,为后续例题做铺垫。作为教师我应该很规范的板书。以给学生榜样。然后给出形如这样的不等式:x2+3x-4≥0 由上道题的启示他们自然会去验证Δ,用十字相乘法求一元二次方程x2+3x-4=0 的根,画函数的图像,从而求出解集。从这两道题让他们自己归纳一下解一元二次不等式的步骤,再出课本习题,这样他们一定可以解出来,此种做法可以提高他们的解兴趣,把课堂气氛变得浓烈一些。接着给出-x2-3x+4>0提醒他们要把二项式系数变为正数。用课本课后题做练习。再给出x2-3x+4>0这种Δ0Δ=0的情形。根据二次函数的图像学生应该可以解决。

一节课究竟要解决什么问题,怎样解决这是课堂的首要。贴近学生实际,层层深入,各个击破,帮学生排忧解难,同时发挥他们的主观能动性,让学感受到自己是课堂的主人,这是教师课堂的主旨。还有一点非常重要,老师必须要有很强的亲和力。其实亲和力的前提是要有爱心,有爱才会亲。一个孩子在班上是六十分之一,但在一个家庭是百分百,所以我觉得我们应该向爱我们自己的孩子一样去爱他们,让学生感受到我们的关怀,怎样做到爱学生,我觉得自己以后可这样努力 :记住每一个学生的名字,在路上和他们打招呼,下课和他们谈谈心,说笑说笑,不 要说一些伤学生人 格的话语,适当鼓励他们,人心都是肉长的呀,他们会感觉得到的。成绩差的学生其实是非常敏感的,也是很容易叛逆的,在任何时候老师都要想到自己是成年人,是长者,要站在一定的高度考虑我们的学生,设身处地为他们想象。这样就不会有芥蒂,冲突,代沟。这节课我比较真实展现我的学生和我自己。无论从哪一方面,业务能力,管理能力,对学生的掌控能力,课堂的把握能力。我都有待学习提高。我会努力的!

不等式解法教案 篇3

高中数学《一元二次不等式的解法(2)》教案

一、教学目标

【知识与技能】

掌握求解一元二次不等式的简单方法,能正确求解一元二次不等式的解集。

【过程与方法】

在探究一元二次不等式的解法的过程中,提升逻辑推理能力。

【情感、态度与价值观】

感受数学知识的前后联系,提升学习数学的热情。

二、教学重难点

【重点】一元二次不等式的解法。

【难点】一元二次不等式的解法的探究过程。

三、教学过程

(一)导入新课

回顾一元二次不等式的一般形式,组织学生举例一些简单的一元二次不等式。

提问:如何求解?引出课题。

(二)讲解新知

结合课前回顾的一元二次不等式的一般形式,对比之前所学内容,引导学生发现其与一元二次方程和二次函数的共同特点。

不等式解法教案 篇4

一元二次不等式及其解法(3课时)

(一)教学目标

1.知识与技能:从实际问题中建立一元二次不等式,解一元二次不等式;应用一元二次不等式解决日常生活中的实际问题;能用一个程序框图把求解一般一元二次不等式的过程表示出来;

2.过程与方法:通过学生感兴趣的上网问题引入一元二次不等式的有关概念,通过让学生比较两种不同的收费方式,抽象出不等关系;利用计算机将数学知识用程序表示出来;

3.情态与价值:培养学生通过日常生活中的例子,找到数学知识规率,从而在实际生活问题中数形结合的应用以及计算机在数学中的应用。

(二)教学重、难点

重点:从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式的解法展开,突出体现数形结合的思想;

难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。

(四)教学设想

[创设情景] 通过让学生阅读第84页的上网问题,得出一个关于x的一元二次不等式,即

x2?5x?0

[探索研究] 首先考察不等式x?5x?0与二次函数y?x2?5x以及一元二次方程x?5x?0的 关系。

容易知道,方程x?5x?0有两个实根:x1?0,x2?5

由二次函数的零点与相应的一元二次方程根的关系,知x1?0,x2?5是二次函数222y?x2?5x的两个零点。通过学生画出的二次函数y?x2?5x的图象,观察而知,当x?0,x?5时,函数图象位于x轴上方,此时y?0,即x?5x?0;

2当0?x?5时,函数图象位于x轴下方,此时y?0,即x?5x?0。

22所以,一元二次不等式x?5x?0的解集是x0?x?5

??从而解决了以上的上网问题。

[总结归纳] 上述方法可以推广到求一般的一元二次不等式ax?bx?c?0或

2ax2?bx?c?0(a?0)的解集:可分??0,??0,??0三种情况来讨论。

引导学生将第86页的表格填充完整。

[例题分析]:

一.分析、讲解例2和例3,练习:第89页1.(1)、(3)、(5);2.(1)、(3)二.分析、讲解例1和例4 练习:第90页(A组)第5题,(B组)第4题。[知识拓展]:

下面利用计算器,用一个程序框图把求解一般一元二次不等式的过程表示出来:

下面是具有一般形式ax?bx?c?0(a?0)对应的一元二次方程

2ax2?bx?c?0(a?0)的求根程序:

input “a,b,c=”;a,b,c d=b*b-4*a*c p=-b/(2*a)q=sqr(abs(d))/(2*a)if d “;p,”}” else print “the result is {x/x> “;x2, “or x

1.从实际问题中建立一元二次不等式,解一元二次不等式; 2.应用一元二次不等式解决日常生活中的实际问题;

3.能用一个程序框图把求解一般一元二次不等式的过程表示出来:

[课后作业]:习题(A组)第1、2、6题;(B组)第1、2题。

不等式解法教案 篇5

《一元二次不等式及其解法(第1课时)》教学设计

Eric 一 内容分析

本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

二 学情分析

学生已经掌握了高中所学的基本初等函数的图象及其性质, 能利用函数的图象及其性质解决一些问题。学生知道不等关系, 掌握了不等式的性质, 通过这部分内容的学习, 学生将学会利用二次函数的图象, 通过数形结合的思想, 掌握一元二次不等式的解法。

三 教学目标

1.知识与技能目标:(1)熟练应用二次函数图象解一元二次不等式的方法(2)了解一元二次不等式与相应函数, 方程的联系 2.过程与方法:(1)通过学生已学过的一元一次不等式为例引入一元二次不等式的有关概及解法(2)让学生观察二次函数,在此基础上, 找到一元二次不等式的解法并掌握此解法(3)在学生寻找一元二次不等式的过中程中培养学生数形结合的数学思想 3.情感与价值目标:(1)通过新旧知识的联系获取新知,使学生体会温故而知新的道理

(2)通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。

(3)在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

四 教学重点、难点 1.重点

一元二次不等式的解法 2.难点

理解元二次方程与一元二次不等式解集的关系

五 教学方法

启发式教学法,讨论法,讲授法

六 教学过程

1.创设情景,提出问题(约10分钟)

师:在初中,我们解过一元一次不等式,如解不等式x – 1 > 0,现在请同学们先画出函数y = x – 1 的图象,并通过观察图象回答以下问题: 1)x 为何值时,y = 0;2)x 为何值时,y > 0;3)x 为何值时,y 0的解集能从函数y = x – 1上看出来吗?

学生画图,思考。先把问题交给学生自主探究,过一段时间,再小组交流,此间教师巡视并指导。提问学生代表。

通过对上述问题的探究,学生得出以下结论:

因为上述方程x – 1 = 0以及不等式x – 1 > 0的左边恰好是上述函数y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3

练习:课本80页练习第1题(1)-(3)【灵活掌握】.师:今天我们这节课的内容有两个: 1)会一元二次不等式的解法 2)理解三个“二次”的关系

作业:课本第80页 习题 A

4.板书设计

§ 一元二次不等式及其解法

解不等式x2 – x – 6 > 0, 请先画出二次函数 y = x2 – x – 6的图像,并回答以下问题: 1)x 为何值时,y = 0;y > 0;y 0的解集呢?

七 教学反思

组1、2题 例,解不等式:

1)2x24x + 1 > 0;3)-x2 + 2x – 3

解:1)因为Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因为Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.

不等式解法教案 篇6

《一元二次不等式及其解法》

教 学 设 计 说 明

《一元二次不等式及其解法》教学设计说明

一.教学内容分析:

1.本节课内容在整个教材中的地位和作用.

必修五第三章不等式第二节一元二次不等式及其解法共有三个课时,本节课是第一课时,教学内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用.许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用. 2.教学目标定位.

根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标.第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系.第二层面是能力目标,培养学生运用数形结合与分类讨论等数学思想方法解决问题的能力,提高运算和作图能力.第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想.第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神. 3.教学重点、难点确定.

本节课是在复习了一元二次方程和二次函数之后,利用二次函数的图象研究一元二次不等式的解法.只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可.因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系. 二.教法学法分析:

数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感.为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动.我设计了①回忆旧知,服务新知,②创设情境,提出问题,③合作交流,探究新知,④数学运用,深化认知,⑤练习检测,反馈新知,⑥谈谈收获,强化思想,⑦布置作业,实践新知,环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节. 三.教学过程分析:

(一)联系旧知,构建新知

设置一系列的问题唤起学生对旧知识的回忆. 问题1:一元二次方程的解法有哪些呢?

(意图:让学生回顾一元二次方程的解法,为解一元二次不等式做准备.)

问题2:同学们还记得二次函数吗?二次函数的形式是怎样的?你记得二次函数的性质吗?

(意图:引导学生从图象的角度出发,并启发学生二次函数的图象是一条抛物线,其开口方向由二次项系数决定,为突出重点做准备)

(二)创设情景,提出问题

1、让学生动手画直角坐标系,然后沿x轴方向上下对折这张纸,观察它们的值有什么特点?

22、请在刚才的坐标系中画出y=x-7x+6的图像 问题1:

(1)x轴上方有无图像?若有请用红线描出。这部分图像对应的y值如何?(2)x轴下方有无图像?若有请用蓝线描出。这部分图像对应的y值如何?(3)红线与蓝线有无交点?若有请用绿色标出。

(4)你能找出上述各种情况的x的取值范围吗?请在图中写出。

问题2:你能说一说这两个不等式有何共同特点么?(1)含有一个未知数x;

(2)未知数的最高次数为2。通过两问题得出一元二次不等式的概念:一般地,只含有一个未知数,且未知数的最高次数为2的不等式,叫做一元二次不等式。

问题3:判断下列式子是不是一元二次不等式?

问题4:一元二次函数、一元二次方程之间有何联系呢?

一元二次方程的解即一元二次函数图象与x轴交点的横坐标,也就是说方程的解即对应函数的零点。

问题5:一元二次不等式如何求解呢?

(三)合作交流,探究新知

1. 探究一元二次不等式x2?x?2?0的解.

容易知道:一元二次方程x2?x?2?0的有两个实数根:x1??1或x2?2. 二次函数y?x2?x?2与x轴有两个交点:??1,0?和?2,0?. 思考1:观察图象一元二次方程的根与二次函数之间有什么关系? 思考2:观察图象,当x为何值时,y?0;

当x为何值时,y?0; 当x为何值时,y?0.

(设计意图 : ①体现学生的主体性;②有利于加强对图象的认识,从而加强数形结合的数学思想 ;③有利于加强学生理解一元二次不等式的解相关的三个因素;④为归纳解一元二次不等式做好准备.根据前面探讨的问题引导学生归纳一元二次不等式的解.)

2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:

2抛物线y?ax?bx?c与x轴的相关位置的情况,也就是一元二次方程2ax2?bx?c=0的根的情况,而一元二次方程根的情况是由判别式??b?4ac三 3 种取值情况(??0,??0,??0)来确定.

(设计意图:这里我将运用多媒体图标的形式来展现出其解法思路,学生有一个完整的逻辑思维,让学生在探究中建立知识间的联系,体会数形结合,强调突出本节的难点.)

(四)数学运用,深化认知.

2例1.求不等式2x?3x?2?0的解集. 2变式为:求不等式2x?3x?2?0的解集.

2例2.解不等式?x?2x?3?0.

(设计意图:先让学生来解答例题,若教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬.)总结:

解一元二次不等式的步骤:

一化:化二次项前的系数为正(a>0).二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.(五)练习检测,巩固收获

(设计意图:为了巩固和加深一元二次不等式的解法,让学生学以致用,接下来及时组织学生进行课堂练习.然后就学生在解题中出现的问题共同纠正.)

(六)归纳小结,强化思想

设计意图:梳理本节课的知识点,总结一元二次不等式解法的步骤:“一化,二判,三求根,四画图,五写解集”的口诀来帮助学生记忆和归纳,让学生掌握严谨的做题方法,知晓本节课的重难点.

(七)布置作业,拓展延伸

必做题:课本第80页习题A组 1,2.选做题:(1)若关于m的一元二次方程x

2?(m?1)x?m?0有两个不相 等的实数根,求m的取值范围.2(2)已知不等式x?ax?b?0的解集为x2?x?3?,求a,b的

?值.(设计意图:以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的反馈,选做题是对本节课知识的延伸,整体的设计意图是反馈教学,巩固提高.)四.教学总结

本节课的所有内容以习题的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而老师只须时刻关注学生的活动过程,不时给予引导,及时纠正.

不等式解法教案 篇7

新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到“意外”的问题,我在平时的教学中重视对“课堂意外预案”的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个“意外预案”。

1、学生在做课本练习1(x+2)(x-3)>0时,可能会问到转化为不等式组{或{求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。

2、根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。

以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!

不等式解法教案 篇8

1、一元二次不等式解法的探索

[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y

[师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,

2、讲解例题

[师]接下来请同学们再来分析几个具体例子

(板书)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

所以原不等式的解集是{x| x2 }

注:问题要顺利求解,应先考虑对应方程

的根的情况,然后画出草图,结合不等式写出解集。

(以下学生试着解决,并回答)

(2)分析一:结合开口向下的抛物线求解。

分析二:引导学生能否转化为熟知类型,与(1)中二次项系数作比较,只要不等式两边同乘以-1,并注意不等式要改变方向。

解:原不等式可变为 3x2-6x+2

方程3x2-6x+2=0的两根为 x1=1- , x2=1+

原不等式解集为: {x | 1-

(3)方程 4x2-4x+1=0有两等根 x1=x2=

所以原不等式的解集是{x |x }

变式训练:改成4x2-4x+1 0,请学生回答(使学生知道不等式的解也可能是一个值)。

(4)将原不等式变形为:x2-2x+3

方程x2-2x+3=0无实根

原不等式的解集是

变式训练: -x2+2x-3

[师]上述几例都有各自的特点,反映在哪两方面呢?注:引导学生总结:一是二次项系数,二是判别式 ,一般要先将二次项系数转化为正数。

不等式解法教案 篇9

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2—x—6=0,如果我把“=”改成“>”则变成一元二次不等式x2—x—6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x—7=0;②2x—7>0;③2x—7

[荐]基本不等式教案8篇


依据您的要求,笔者检索出《基本不等式教案》这篇文章。教师每节课都需要一份完整的教学课件,因此我们必须认真地撰写每份课题策划和制作好每份教学课件。高质量的教案和课件是能够刺激学生的学习兴趣的。我们希望这篇文章可以对您有所帮助!

基本不等式教案 篇1

《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:

知识与技能:

1. 感受生活中存在的不等关系,了解不等式的意义。

2. 掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

重点:不等式概念及其基本性质

难点:不等式基本性质3

教法与学法:

1. 教学理念: “ 人人学有用的数学”

2. 教学方法:观察法、引导发现法、讨论法.

3. 教学手段:多媒体应用教学

4. 学法指导:尝试,猜想,归纳,总结

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。下面我将具体的教学过程阐述一下:

一、复习导入新课

上课开始,我首先带领学生学习本节课的教学目标,让学生明白本节课学习的目标。

1.探索并掌握不等式的基本性质,并运用它对不等式进行变形.

2.理解不等式性质与等式性质的联系与区别.

3.提高观察、比较、归纳的能力,渗透类比的思想方法.

二、探求新知,讲授新课

第一部分:学前练习

1. -7 ≤ -5, 3+4>1+4

5+3≠12-5, x ≥ 8

a+2>a+1, x+3 <6

(1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系?

(2)这些符号两侧的代数式可随意交换位置吗?

(3)什么叫不等式?

目的:设计该部分是为了让学生上新课之前先回顾一下上节课学习的内容。

第二部分:探究新知:

1.商场A种服装的价格为60元,B种服装的价格为80元

(1)两种服装都涨价10元,哪种服装价格高?涨价15元呢?

(2)两种服装都降价5元,哪种服装价格高?降价15元呢?

(3)两种服装都打8折出售,哪种服装价格高?

2.已知 4 > 3,填空:

4×(-1)——3 ×(-1)

4×(-5)——3 ×(-5)

目的:设计该部分的目的是为了引出不等式的基本性质做铺垫。

第三部分:不等式的基本性质的探究

1:填空: 60

60+10 80+10

60-5 80-5

60+a 80+a

性质1,不等式的两边都加上(或减去)同一个整式,不等号的方向不变.

2:填空(1):60

60 ×0.8 80 ×0.8

填空(2): 4 > 3

4×5 3×5

4÷2 3÷2

性质2,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3:填空: 4 > 3

4×(-1) 3×(-1)

4×(-5) 3×(-5)

4÷(-2) 3÷(-2)

性质3,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

三、小结不等式的三条基本性质

1. 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

2. 不等式两边都乘(或除以)同一个正数,不等号的方向不变;

3.*不等式两边都乘(或除以)同一个负数,不等号的方向改变 ;

与等式的基本性质有什么联系与区别?

四、典型例题

例1.根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

(1) x-2< 3 (2) 6x< 5x-1

(3) 1/2 x>5 (4) -4x>3

解:(1)根据不等式基本性质1,两边都加上2,

得: x-2+2<3+2

x<5

(2)根据不等式基本性质1,两边都减去5x,

得: 6x-5x<5x-1-5x

x<-1

例2.设a>b,用“<”或“>”填空:

(1)a-3 b-3 (2) -4a -4b

解:(1) ∵a>b

∴两边都减去3,由不等式基本性质1

得 a-3>b-3

(2) ∵a>b,并且-4<0

∴两边都乘以-4,由不等式基本性质3

得 -4a<-4b

五、变式训练:

1、已知x<y,用“<”或“>”填空。

(1)x+2 y+2 (不等式的基本性质 )

(2) 3x 3y (不等式的基本性质 )

(3)-x -y (不等式的基本性质 )

(4)x-m y-m (不等式的基本性质 )

2、若a-b

A.a>b B.ab>0

C. D.-a>-b

3、若x是任意实数,则下列不等式中,恒成立的是( )

A.3x>2x B.3x2>2x2

C.3+x>2 D.3+x2>2

六 、小结

七、作业的布置

八、 以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

基本不等式教案 篇2

尊敬的各位评委、老师:

大家好!

很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。

一、教材分析

1. 教材的地位和作用

不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。

2.教学重难点

重点:不等式的概念和不等式的基本性质1。

难点:利用不等式的基本性质1进行简单的变形。

二、教学目标

知识目标:

在了解不等式的意义基础上,掌握不等式的基本性质1。

能力目标:

①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。

情感目标:

①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。

通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

三、教学方法

1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。

四、教学流程

我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。

(一)创设情境,激发兴趣:

师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。

设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

学习目标:

1、 理解不等式的基本性质1。

2、 会解简单的不等式。

此时我出示本节课的学习目标和归纳出不等式的概念:

归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

(二)探究新知、总结规律

在这个环节,我主要设计了以下二个活动来完成教学任务:

活动1:1、你能用“﹤”或“﹥”填空吗?

(1)5﹥3 (2)6﹥4

5+2﹥3+2 6+a﹥4+a

5-2﹥3-2 6-a﹥4-a

2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?

(2)小组合作讨论交流,大胆说出自己的“发现”。

本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。

活动2:你能用自己的语言概括不等式的性质吗?

本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:

不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。

当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:

性质中的“不等号方向不变”的含义是什么?

使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。

在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。

通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。

设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。

(三)针对练习、学习例题

1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。

如果x-5>4,那么两边都 ,可得到x>9

2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。

例1.用“>”或“

(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。

解:

【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。

例2.把下列不等式化为x>a或x

(1)x+6>5 (2)3x>2x+2

解:

【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。

(四)巩固提高、拓展延伸

在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。

1、课本P133练习第1、2题;

2、判断是非:

①若a>b,则a-3>b-3 ( )

②若m③若a-8④若x>7,则x-4(五)畅谈收获、分层作业回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。1.不等式的概念和基本性质1.2.简单不等式的变形.通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。最后是作业设计:1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记);2、习题5.1A组第1题(1)(2),第3题(1)(2);3、选作:习题5.1B组第1题。五、教学评价本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。六、教学反思1.本节课通过学生自主探讨、小组合作得出不等式的概念和性质1.2.本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。谢谢大家!

基本不等式教案 篇3

《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1. 感受生活中存在的不等关系,了解不等式的意义。

2. 掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

重点:不等式概念及其基本性质

难点:不等式基本性质3

教法与学法:

1. 教学理念: “ 人人学有用的数学”

2. 教学方法:观察法、引导发现法、讨论法.

3. 教学手段:多媒体应用教学

4. 学法指导:尝试,猜想,归纳,总结

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课

引例列出了数与数之间的不等关系和含有未知量120

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;

(2)a是非负数;

(3) a与b的和小于5;

(4) x与2的差大于-1;

(5) x的4倍不大于7;

(6) 的一半不小于3

关键词:非负数,非正数,不大于,不小于,不超过,至少

回到引入课题时的门票问题120

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果a>b,那么

(1) a-3 b-3 (2) 2a 2b (3) -3a -3b

提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系

三、拓展训练

根据不等式基本性质,将下列不等式化为“”的形式

(1)x-13

再次回到开头的门票问题,让学生解出相应的x的取值范围

四、小结

1.新知识

一个数学概念;两种数学思想;三条基本性质

2.与旧知识的联系

等式性质与不等式性质的异同

五、作业的布置

以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

“让学生主动参与数学教学的全过程,真正成为学习的主人”

基本不等式教案 篇4

一、素质教育目标

(一)知识教学点

1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.

2.灵活运用不等式的基本性质进行不等式形.

(二)能力训练点

培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.

(三)德育渗透点

培养学生积极主动的参与意识和勇敢尝试、探索的精神.

(四)美育渗透点

通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

二、学法引导

1.教学方法:观察法、探究法、尝试指导法、讨论法.

2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

三、重点·难点·疑点及解决办法

(一)重点

掌握不等式的三条基本性质,尤其是不等式的基本性质3.

(二)难点

正确应用不等式的三条基本性质进行不等式变形.

(三)疑点

弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.

(四)解决办法

讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.

四、课时安排

一课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.

2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.

3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.

七、教学步骤

(-)明确目标

本节课主要学习不等式的三条基本性质并能熟练地加以应用.

(二)整体感知

通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.

(三)教学过程

1.创设情境,复习引入

什么是等式?等式的基本性质是什么?

学生活动:独立思考,指名回答.

教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

请同学们继续观察习题:

(1)用“>”或“<”填空.

①7+3____4+3 ②7+(-3)____4+(-3)

③7×3____4×3 ④7×(-3)____4×(-3)

(2)上述不等式中哪题的不等号与7>4一致?

学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的'性质.

学生活动:观察思考,猜想出不等式的性质.

教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

师生活动:师生共同叙述不等式的性质,同时教师板书.

不等式基本性质1  不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.

【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?

师生活动:由学生概括总结不等式的其他性质,同时教师板书.

不等式基本性质2  不等式两边都乘(或除以)同一个正数,不等号的方向不变.

不等式基本性质3  不等式两边都乘(或除以)同一个负数,不等号的方向改变.

师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.

强调:要特别注意不等式基本性质3.

实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

不等式的基本性质与等式的基本性质有哪些区别、联系?

学生活动:思考、同桌讨论.

 归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.

①若 ,则 , ;

②若 ,且 ,则 , ;

③若 ,且 ,则 , .

师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.

注意:不等式除了上述性质外,还有以下性质:①若 ,则 .②若 ,且 ,则 ,这些先不要向学生说明.

2.尝试反馈,巩固知识

请学生先根据自己的理解,解答下面习题.

例1  根据不等式的基本性质,把下列不等式化成 或 的形式.

(1)  (2)  (3)  (4)

学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.

所以

(2)根据不等式基本性质1,两边都减去 ,得

(3)根据不等式基本性质2,两边都乘以2,得

(4)根据不等式基本性质3,两边都除以-4得

【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与 或 对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

例2  设 ,用“<”或“>”填空.

(1)  (2)  (3)

学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.

解:(1)因为 ,两边都减去3,由不等式性质1,得

(2)因为 ,且2>0,由不等式性质2,得

(3)因为 ,且-4<0,由不等式性质3,得

教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

3.变式训练,培养能力

(1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)

①∵  ∴ ( ) ②∵  ∴ ( )

③∵ ∴( ) ④∵ ∴( )

⑤∵  ∴ ⑥∵  ∴ ( )

学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.

答案:

① (A) ② (B)

③ (C) ④ (C)

⑤ (C) ⑥ (A)

【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.

(2)单项选择:

①由 得到 的条件是( )

   A. B. C. D.

②由由 得到 的条件是( )

   A. B. C. D.

③由 得到 的条件是( )

   A. B. C. D. 是任意有理数

④若 ,则下列各式中错误的是( )

   A. B. C.  D.

师生活动:教师选出答案,学生判断正误并说明理由.

答案:①A②D③C④D

(3)判断正误,正确的打“√”,错误的打“×”

①∵ ∴ ( ) ②∵ ∴ ( )

③∵ ∴ ( ) ④若,则  ∴,( )

学生活动:一名学生说出答案,其他学生判断正误.

答案:①√ ②× ③√ ④×

【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.

(四)总结、扩展

1.本节重点:

(1)掌握不等式的三条基本性质,尤其是性质3.

(2)能正确应用性质对不等式进行变形.

2.注意事项:

(1)要反复对比不等式性质与等式性质的异同点.

(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.

3.考点剖析:

不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.

八、布置作业

(一)必做题:P61  A组4,5.

(二)选做题:P62  B组1,2,3.

参考答案

(一)4.(1)  (2)  (3)  (4)5.(1)  (2)  (3)  (4) (5)  (6)

(二)1.(1)  (2)  (3)

2.(1)  (2)  (3)  (4)

3.(1)  (2)  (3)

九、板书设计

6.1  不等式和它的基本性质(二)

一、不等式的基本性质

1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.

若 ,则 , .

2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若 , ,则 .

3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若 , ,则 .

二、应用

例1 解(1)(2)

(3)(4)

例2 解(1)(2)

 (3)

三、小结

注意不等式性质3的应用.

十、背景知识与课外阅读

盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的 ,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?


基本不等式教案 篇5

本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。

接下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。

问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。

在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。

在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。

让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

基本不等式教案 篇6

一、说教材

(一)、地位与作用:《不等式的基本性质》是初中数学北师大版八年级下册第一章第二节。在此之前,学生已学习了不等关系,这为过渡到本节的学习起着铺垫作用。不等式的基本性质在教材中起着承上启下的作用。关于它的学习是以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。

(二)、教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:

1、知识目标:掌握不等式的基本性质。

2、能力目标:能准确运用不等式的三条性质将不等式变形、化简,培养学生的观察、分析的能力。

3、情感目标:培养学生辨证唯物主义的观点。

(三)、教学重点、难点

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

重点:掌握并运用不等式的基本性质。

难点:不等式基本性质的发现过程。

根据本节课的特点和学生的知识能力水平,采用这样的教学方法。

二、说学法:采用合作交流的学习方法。

三、说教法:启发式的讲解法。

四、说程序

基本不等式教案 篇7

一、教材

不等式基本性质是八年级下册第一章第二节内容,本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。由此本节重点内容是不等式三条基本性质,难点是不等式第三条基本性质,在不等式两端同时乘以(或除以)同一个负数不等号方向改变学生在这一点应用上很难掌握。

另外,本节课在教材安排上意在通过等式基本性质引入新课教学,在新课教学中用不等式实例进行操作,进而推出不等式基本性质,学生通过观察、质疑、发问易于接受新知,根据新课程标准确定学习目标如下:

(一)知识与技能目标

掌握不等式基本性质,能熟练运用不等式性质解决简单的不等式问题问题

(二)过程与方法目标

1. 经历探索不等式基本性质的过程,体验数学学习探究的方法

2.通过观察、实验、猜想、推理等数学学习活动过程,发展合理的推理和初步论证能力

(三)情感态度与价值观目标

1.学生在探索过程中感受成功、建立自信

2.体验在研究过程中创造的快乐,并学会与人交流合作形成良好的人格品质

二、重点、难点

重点:掌握不等式基本性质及熟练应用性质解决实际问题

难点:第三条性质的应用

三、教法

以引导发现、活动参与、交流讨论为主,学生自己举出实际不等式例子,教师根据认识规律引导学生由等式性质向不等式知识的迁移,安排学生用一组数在不等式两端参与四则运算,学生通过与其他学生的交流讨论,总结规律得出不等式基本性质

在这一环节教师一方面不断引导学生积极参与教学过程,为适应学生思维发展水平有序引导学生观察分析,由认识到实践再到认识完成认识上的飞跃,圆满完成教学任务,另一方面,教师根据练习情况设疑引导,重在理解不等式性质应用,展开学生思维。

四、学情

一般说来,这个年龄段的学生开始有比较强烈的自我和自我发展的意识,对于与自己直观相冲突的现象和“挑战性“的任务很感兴趣,要在教学过程中给学生探究问题这样的做数学机会,学生能够在这些活动中 表现自我发展自我从而感到数学学习的重要性及其中的乐趣。

学生在学习本节内容时,可能会在应用第三条性质时遇到困难,尽可能引导学生多练习多总结最终完成学习过程,达到教学目标。

五、教学过程

本节课我安排了四个教学过程:

(一)回忆旧知,引出新知

经过以前的学习我们知道在等式的两端同时加上(或减去)同一个整式依然成立,这是等式的性质那么对于上节课我们所学的不等式又有哪些性质呢?这就是今天我们要共同探讨的问题——不等式基本性质。

在这一环节通过对等式性质的回忆进而导出不等式的基本性质,

不仅对旧知的巩固也激发了学生对新知的兴趣。

(二)自主参与探索,交流讨论总结性质规律

教师安排学生自己举出一个具体不等式,根据认识规律有序引导学生在不等式两端同时加上(或减去)同一个数,学生会发现不等号两端经运算比较大小后不等号方向没有发生改变,由此推出不等式第一条性质。

在引出第二条性质时,教师有意引导学生用正数参与两端的乘法(或除法)的运算,同学会发现不等号方向仍然没改变,这时可能会有学生发问:用负数呢?这就引起了学生的好奇心和探究热情,经学生自己动手实验与其他同学讨论得出用负数不等号方向发生了改变,至此就得到不等式的第二三条性质。

在这一环节教师运用了“自主参与”和“交流讨论”的教学方式,通过引导和质疑,突出重点,化解难点,从而完成教学任务,收到良好教学效果。

(三)应用新知,解决问题

我将上节课没圆满完成的问题再次提出:通过一棵树的树围可计算其生长年龄,某树栽种时树围是5cm ,以后每年树围增长3cm ,问这棵树至少生长多少年才能超过2.4m ?

上节课我们已经列出不等关系

设 至少生长x 年才能超过2.4m 则有不等关系

0.03x 0.05 > 2.4

现我们根据这节课所学将这个问题彻底解决。(将不等式性质应用全过程在板书出来)

再在黑板上列出两个例题 5x 3 3

要求学生仿照刚才不等式应用过程将其表示“x a) ”形式,并找两名同学板书。在这一环节根据初中学生开始对“有用”数学感兴趣选取第一道例题,学生会感到数学就在身边

在练习过程中教师根据普遍存在的问题加以强调并帮助学生改正,针对个别(较慢)学生再具体教学

(四)引导学生总结全课

在这节课我们知道了不等式三条基本性质,并能熟练应用解决简单的不等式问题

一元二次不等式课件(必备9篇)


经过多次优化我们为您制作了这份精选的“一元二次不等式课件”,本篇文章希望能够为您的工作和生活提供帮助。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。设计教案需要关注课堂互动和学生参与度的提高。

一元二次不等式课件(篇1)

教学内容

3.2一元二次不等式及其解法

三维目标

一、知识与技能

1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;

2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;

3.会用列表法,进一步用数轴标根法求解分式及高次不等式;

4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.

二、过程与方法

1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;

2.发挥学生的主体作用,作好探究性教学;

3.理论联系实际,激发学生的学习积极性.

三、情感态度与价值观

1.进一步提高学生的运算能力和思维能力;

2.培养学生分析问题和解决问题的能力;

3.强化学生应用转化的数学思想和分类讨论的数学思想.

教学重点

1.从实际问题中抽象出一元二次不等式模型.

2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.

教学难点

1.深入理解二次函数、一元二次方程与一元二次不等式的关系.

教学方法

启发、探究式教学

教学过程

复习引入

师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回顾下等比数列的性质。

生:略

师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

学生自己讨论

点题,板书课题

新课学习

1.一元二次不等式

只有一个未知数,并且未知数的最高次数是2的不等式。

2.三个“二次”之间的关系及一元二次不等式的解法

师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本打开到p77填表格。

生略

师学生讨论归纳出解一元二次不等式的步骤

一看:看二次项系数的正负,并且变形为

二算:,判断正负,有根则求并画出对应的函数图象

三写:写出原不等式的解集

练习反馈

[例题剖析]

例1解下列不等式

(1)(2)

(3)(4)

(5)(6)

课本80页练习

例2已知不等式的解集为试解不等式

变式:

已知

课堂

小结

1.三个“二次的关系”

2.解二次不等式的步骤

作业布置

课本第80页习题3.2A组第1.2.4题B组1

练习调配

设计42页全做,43页例1例2随堂练习2.3,4,5测评1、3、4、5、6、7、8、

一元二次不等式课件(篇2)

解一元二次不等式化为标准型。判断△的符号。若△<0,则不等式是在R上恒成立或恒不成立。

若△>0,则求出两根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

2.解简单一元高次不等式

a.化为标准型。

b.将不等式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

3.解分式不等式的解

a.化为标准型。

b.可将分式化为整式,将整式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。(如果不等式是非严格不等式,则要注意分式分母不等于0。)

4.解含参数的一元二次不等式

a.对二次项系数a的讨论。

若二次项系数a中含有参数,则须对a的符号进行分类讨论。分为a>0,a=0,a<0。

b.对判别式△的讨论

若判别式△中含有参数,则须对△的符号进行分类讨论。分为△>0,△=0,△<0。

c.对根大小的讨论

若不等式对应的方程的根x1、x2中含有参数,则须对x1、x2的大小进行分类讨论。分为x1>x2,x1=x2,x1<x2。

5.一元二次方程的根的分布问题

a.将方程化为标准型。(a的符号)

b.画图观察,若有区间端点对应的函数值小于0,则只须讨论区间端点的函数值。

若没有区间端点对应的函数值小于0,则须讨论区间端点的函数值、△、轴。

6.一元二次不等式的应用

⑴在R上恒成立问题(恒不成立问题相反,在某区间恒成立可转化为实根分布问题)

a.对二次项系数a的符号进行讨论,分为a=0与a≠0。

b.a=0时,把a=0带入,检验不等式是否成立,判断a=0是否属于不等式解集。

a≠0时,则转化为二次函数图像全在x轴上方或下方。

若f(x)>0,则要求a>0,△<0。

若f(x)<0,则要求a<0,△<0。

⑵特殊题型:已知一不等式的解集(含有字母),求另一不等式的解集(与原不等式系数大小相同,位置不同)。a.写出原不等式对应的方程,由韦达定理得出解集字母与方程系数间的关系。

b.写出变换后不等式对应的方程,由由韦达定理得出解集字母与方程系数间的关系。

c.将a中得到的关系变化后带入b的关系中,得到变换后方程的两根。

d.判断两根的大小,变换后不等式二次项的系数,从而写出所求解集。

一元二次不等式课件(篇3)

《一元二次不等式及其解法》

教 学 设 计 说 明

《一元二次不等式及其解法》教学设计说明

一.教学内容分析:

1.本节课内容在整个教材中的地位和作用.

必修五第三章不等式第二节一元二次不等式及其解法共有三个课时,本节课是第一课时,教学内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用.许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用. 2.教学目标定位.

根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标.第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系.第二层面是能力目标,培养学生运用数形结合与分类讨论等数学思想方法解决问题的能力,提高运算和作图能力.第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想.第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神. 3.教学重点、难点确定.

本节课是在复习了一元二次方程和二次函数之后,利用二次函数的图象研究一元二次不等式的解法.只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可.因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系. 二.教法学法分析:

数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感.为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动.我设计了①回忆旧知,服务新知,②创设情境,提出问题,③合作交流,探究新知,④数学运用,深化认知,⑤练习检测,反馈新知,⑥谈谈收获,强化思想,⑦布置作业,实践新知,环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节. 三.教学过程分析:

(一)联系旧知,构建新知

设置一系列的问题唤起学生对旧知识的回忆. 问题1:一元二次方程的解法有哪些呢?

(意图:让学生回顾一元二次方程的解法,为解一元二次不等式做准备.)

问题2:同学们还记得二次函数吗?二次函数的形式是怎样的?你记得二次函数的性质吗?

(意图:引导学生从图象的角度出发,并启发学生二次函数的图象是一条抛物线,其开口方向由二次项系数决定,为突出重点做准备)

(二)创设情景,提出问题

1、让学生动手画直角坐标系,然后沿x轴方向上下对折这张纸,观察它们的值有什么特点?

22、请在刚才的坐标系中画出y=x-7x+6的图像 问题1:

(1)x轴上方有无图像?若有请用红线描出。这部分图像对应的y值如何?(2)x轴下方有无图像?若有请用蓝线描出。这部分图像对应的y值如何?(3)红线与蓝线有无交点?若有请用绿色标出。

(4)你能找出上述各种情况的x的取值范围吗?请在图中写出。

问题2:你能说一说这两个不等式有何共同特点么?(1)含有一个未知数x;

(2)未知数的最高次数为2。通过两问题得出一元二次不等式的概念:一般地,只含有一个未知数,且未知数的最高次数为2的不等式,叫做一元二次不等式。

问题3:判断下列式子是不是一元二次不等式?

问题4:一元二次函数、一元二次方程之间有何联系呢?

一元二次方程的解即一元二次函数图象与x轴交点的横坐标,也就是说方程的解即对应函数的零点。

问题5:一元二次不等式如何求解呢?

(三)合作交流,探究新知

1. 探究一元二次不等式x2?x?2?0的解.

容易知道:一元二次方程x2?x?2?0的有两个实数根:x1??1或x2?2. 二次函数y?x2?x?2与x轴有两个交点:??1,0?和?2,0?. 思考1:观察图象一元二次方程的根与二次函数之间有什么关系? 思考2:观察图象,当x为何值时,y?0;

当x为何值时,y?0; 当x为何值时,y?0.

(设计意图 : ①体现学生的主体性;②有利于加强对图象的认识,从而加强数形结合的数学思想 ;③有利于加强学生理解一元二次不等式的解相关的三个因素;④为归纳解一元二次不等式做好准备.根据前面探讨的问题引导学生归纳一元二次不等式的解.)

2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:

2抛物线y?ax?bx?c与x轴的相关位置的情况,也就是一元二次方程2ax2?bx?c=0的根的情况,而一元二次方程根的情况是由判别式??b?4ac三 3 种取值情况(??0,??0,??0)来确定.

(设计意图:这里我将运用多媒体图标的形式来展现出其解法思路,学生有一个完整的逻辑思维,让学生在探究中建立知识间的联系,体会数形结合,强调突出本节的难点.)

(四)数学运用,深化认知.

2例1.求不等式2x?3x?2?0的解集. 2变式为:求不等式2x?3x?2?0的解集.

2例2.解不等式?x?2x?3?0.

(设计意图:先让学生来解答例题,若教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬.)总结:

解一元二次不等式的步骤:

一化:化二次项前的系数为正(a>0).二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.(五)练习检测,巩固收获

(设计意图:为了巩固和加深一元二次不等式的解法,让学生学以致用,接下来及时组织学生进行课堂练习.然后就学生在解题中出现的问题共同纠正.)

(六)归纳小结,强化思想

设计意图:梳理本节课的知识点,总结一元二次不等式解法的步骤:“一化,二判,三求根,四画图,五写解集”的口诀来帮助学生记忆和归纳,让学生掌握严谨的做题方法,知晓本节课的重难点.

(七)布置作业,拓展延伸

必做题:课本第80页习题A组 1,2.选做题:(1)若关于m的一元二次方程x

2?(m?1)x?m?0有两个不相 等的实数根,求m的取值范围.2(2)已知不等式x?ax?b?0的解集为x2?x?3?,求a,b的

?值.(设计意图:以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的反馈,选做题是对本节课知识的延伸,整体的设计意图是反馈教学,巩固提高.)四.教学总结

本节课的所有内容以习题的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而老师只须时刻关注学生的活动过程,不时给予引导,及时纠正.

一元二次不等式课件(篇4)

《一元二次不等式及其解法(第1课时)》教学设计

Eric 一 内容分析

本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

二 学情分析

学生已经掌握了高中所学的基本初等函数的图象及其性质, 能利用函数的图象及其性质解决一些问题。学生知道不等关系, 掌握了不等式的性质, 通过这部分内容的学习, 学生将学会利用二次函数的图象, 通过数形结合的思想, 掌握一元二次不等式的解法。

三 教学目标

1.知识与技能目标:(1)熟练应用二次函数图象解一元二次不等式的方法(2)了解一元二次不等式与相应函数, 方程的联系 2.过程与方法:(1)通过学生已学过的一元一次不等式为例引入一元二次不等式的有关概及解法(2)让学生观察二次函数,在此基础上, 找到一元二次不等式的解法并掌握此解法(3)在学生寻找一元二次不等式的过中程中培养学生数形结合的数学思想 3.情感与价值目标:(1)通过新旧知识的联系获取新知,使学生体会温故而知新的道理

(2)通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。

(3)在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

四 教学重点、难点 1.重点

一元二次不等式的解法 2.难点

理解元二次方程与一元二次不等式解集的关系

五 教学方法

启发式教学法,讨论法,讲授法

六 教学过程

1.创设情景,提出问题(约10分钟)

师:在初中,我们解过一元一次不等式,如解不等式x – 1 > 0,现在请同学们先画出函数y = x – 1 的图象,并通过观察图象回答以下问题: 1)x 为何值时,y = 0;2)x 为何值时,y > 0;3)x 为何值时,y 0的解集能从函数y = x – 1上看出来吗?

学生画图,思考。先把问题交给学生自主探究,过一段时间,再小组交流,此间教师巡视并指导。提问学生代表。

通过对上述问题的探究,学生得出以下结论:

因为上述方程x – 1 = 0以及不等式x – 1 > 0的左边恰好是上述函数y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3

练习:课本80页练习第1题(1)-(3)【灵活掌握】.师:今天我们这节课的内容有两个: 1)会一元二次不等式的解法 2)理解三个“二次”的关系

作业:课本第80页 习题 A

4.板书设计

§ 一元二次不等式及其解法

解不等式x2 – x – 6 > 0, 请先画出二次函数 y = x2 – x – 6的图像,并回答以下问题: 1)x 为何值时,y = 0;y > 0;y 0的解集呢?

七 教学反思

组1、2题 例,解不等式:

1)2x24x + 1 > 0;3)-x2 + 2x – 3

解:1)因为Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因为Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.

一元二次不等式课件(篇5)

1、一元二次不等式解法的探索

[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y

[师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,

2、讲解例题

[师]接下来请同学们再来分析几个具体例子

(板书)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

所以原不等式的解集是{x| x2 }

注:问题要顺利求解,应先考虑对应方程

的根的情况,然后画出草图,结合不等式写出解集。

(以下学生试着解决,并回答)

(2)分析一:结合开口向下的抛物线求解。

分析二:引导学生能否转化为熟知类型,与(1)中二次项系数作比较,只要不等式两边同乘以-1,并注意不等式要改变方向。

解:原不等式可变为 3x2-6x+2

方程3x2-6x+2=0的两根为 x1=1- , x2=1+

原不等式解集为: {x | 1-

(3)方程 4x2-4x+1=0有两等根 x1=x2=

所以原不等式的解集是{x |x }

变式训练:改成4x2-4x+1 0,请学生回答(使学生知道不等式的解也可能是一个值)。

(4)将原不等式变形为:x2-2x+3

方程x2-2x+3=0无实根

原不等式的解集是

变式训练: -x2+2x-3

[师]上述几例都有各自的特点,反映在哪两方面呢?注:引导学生总结:一是二次项系数,二是判别式 ,一般要先将二次项系数转化为正数。

一元二次不等式课件(篇6)

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:

填表:

当x 时,y = 0,即 2x-7 0;

当x 时,y

当x 时,y > 0,即 2x-7 0;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y0部分图象)

从上例的特殊情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b

2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

一元二次不等式课件(篇7)

1.创设情景——引入新课。我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就△>0,△<0,△=0的三种情况,总结二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程ax2+bx+c=0的.根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为“三步曲”法)。

4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1—4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。

一元二次不等式课件(篇8)

教学目标:

(1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

(2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

教学重点:一元二次不等式的解法(图象法)

教学难点:

(1)一元二次方程、一元二次不等式与二次函数的关系;

(2)数形结合思想的渗透

教学方法与教学手段:

尝试探索教学法、归纳概括。

教学过程:

一、复习引入

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的'吗?

学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:

填表:

当x 时,y = 0,即 2x-7 0;

当x 时,y

当x 时,y > 0,即 2x-7 0;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y0部分图象)

从上例的特殊情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b

2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

二、讲解新课

1、一元二次不等式解法的探索

[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

填表:方程x2-4x+3=0(即y=0)的解是

不等式x2-4x+3>0(即y>0)的解集是

不等式x2-4x+3

注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y

[师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,

2、讲解例题

[师]接下来请同学们再来分析几个具体例子

(板书)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

所以原不等式的解集是{x| x2 }

四、课后作业:书P21/习题1.5/1.3.5.6

五、教学设计说明:

1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

一元二次不等式课件(篇9)

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2—x—6=0,如果我把“=”改成“>”则变成一元二次不等式x2—x—6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x—7=0;②2x—7>0;③2x—7

基本不等式课件


古人云,工欲善其事,必先利其器。在每学期开学之前,幼儿园的老师们都要为自己之后的教学做准备。为了防止学生抓不住重点,教案就显得非常重要,有了教案上课才能够为同学讲更多的,更全面的知识。所以你在写幼儿园教案时要注意些什么呢?以下内容是小编特地整理的“基本不等式课件”,在此提醒你收藏本页,以方便阅读!

基本不等式课件 篇1

【学习目标】

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【能力培养】

培养学生严谨、规范的学习能力,分析问题、解决问题的能力。

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;及其在求最值时初步应用

【教学难点】

基本不等式 等号成立条件

【教学过程】

一、课题导入

基本不等式 的几何背景:如图是在北京召开的第24界国际数学家大会的会标,教师引导学生从面积的关系去找不等关系。

二、讲授新课

1.问题探究——探究图形中的不等关系。

将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有 。

2.总结结论:一般的,如果

(结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导)

3.思考证明:(让学生尝试给出它的证明)

4.特别的,如果a>0,b>0,我们用 分别代替a、b ,可得,

通常我们把上式写作:

①从不等式的性质推导基本不等式

用分析法证明:(略)

②理解基本不等式 的几何意义

探究:对课本第98页的“探究”( 几何证明)

注:在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数。本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数。

5、例:当时,取什么值,的值最小?最小值是多少?

6、课时小结

本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数( ),几何平均数( )及它们的关系( ≥ )。它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数。它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将进一步学习它们的应用)。

7、作业:

课本第100页习题[a]组的第1、2题

板书 设 计

课题: 3.4基本不等式

一、两个不等式

二、例题及练习

基本不等式课件 篇2

基本不等式是初中数学中重要的一个知识点。通过学习基本不等式,可以帮助学生更深入地理解不等式的性质,掌握不等式的解法和应用技巧,以及提高数学分析和推理能力。下面就从不等式的定义、基本不等式的证明、基本不等式的应用等方面来详细介绍基本不等式。

一、不等式的定义

不等式是数学中的一种基本概念,用来表示两个数之间的大小关系。比如,如果a>b,则可以表示为a-b>0;如果a≥b,则可以表示为a-b≥0。在不等式中,我们常用符号“>”、“≥”、“

二、基本不等式的证明

基本不等式是指若a、b为正实数,那么(a+b)²/4≥ab。这个不等式在解决很多数学问题时都有非常重要的作用,因此我们需要掌握基本不等式的证明方法。

证明方法1:

(a+b)²/4=(a²+2ab+b²)/4= [(a+b)²-2ab]/4

由于a、b为正实数,所以(a+b)²和2ab一定是正实数。

因此,(a+b)²-2ab≥0,即(a+b)²/4≥ab。

证毕。

证明方法2:

由于a、b为正实数,所以(a-b)²≥0。根据这个不等式,我们可以推导出:

a²+b²≥2ab

(a²+b²)/2≥ab

(a²+2ab+b²)/4≥ab

(a+b)²/4≥ab

证毕。

证明方法3:

设Δ=a²-2ab+b²=(a-b)²≥0

那么,a²-2ab+b²≥0,即a²+b²≥2ab

(a²+b²)/2≥ab,即(a+b)²/4≥ab

证毕。

通过上述三种证明方法,我们可以看到,基本不等式的证明方法可以有多种,但本质上是一样的。

三、基本不等式的应用

1.求解最优解

在某些问题中,需要求解若干变量的最大值或最小值,例如某个产品的利润最大化问题、最短路径问题等,这时我们可以将问题转化为一个不等式问题,然后运用基本不等式来简化求解过程。

2.推导其他不等式

基本不等式可以作为其他不等式的推导依据。例如,在求证某个不等式时,我们可以使用基本不等式将其转化为更简单的形式,从而更容易得到证明。

3.证明集合的包含关系

当我们需要证明两个集合的包含关系时,可以通过基本不等式来构造出一些包含于其中一个集合但不包含于另一个集合的数列,这样就容易得出它们之间的包含关系。

总之,基本不等式在数学中有着非常重要的作用,深入了解和掌握基本不等式,不仅可以提高数学思维能力,也可以帮助我们更好地理解和应用各种数学知识。

基本不等式课件 篇3

基本不等式是中学数学中的重要内容,它们可以作用于多种数学领域,包括代数、几何、概率等等。这种不等式是一个基本性质,它提供了一种有效地组织和比较数字和数学表达式的方式。本文将探讨基本不等式,并解释其重要性和应用范围。

基本不等式是指一个简单的数学规律,即对于任何正实数a和b,有如下关系式:

(a + b)² ≥ 4ab

当a和b相等时等式被取得,此时有a = b = (a + b) / 2。

这个不等式看上去非常简单,但它有它的特殊地位和应用。它是所有不等式中最基本也是最重要的,它可以应用到各种自然科学和社会科学领域中。例如,基本不等式可以用于优化无线网络传输速度和缩短计算机作业响应时间,还可以在物理和金融领域中被用来研究变化率和波动性等特征。

作为一个系统的理论工具,基本不等式的价值和应用远不止于此。尤其是它的推广版Sylvester不等式,将基本不等式引向了更复杂多样的领域。Sylvester不等式是基本不等式在矩阵学科中的一个推广。它是一个矩阵不等式,描述了不同形式的矩阵之间的比较规律。从线性代数、概率、统计以及其他领域中的应用可以看出,矩阵不等式在各种学科中都有越来越广泛的应用。

基本不等式是解决一些数学难题的一个强大工具,在应用中经常运用到。因此,学生无论是在数学课堂中还是考试中,都应该掌握这个基本数学概念,并了解它的应用。通过培养学生使用基本不等式和它的推广Sylvester不等式的能力,可以帮助他们更好地掌握高等数学中更复杂的概念和算法。

因此,掌握和理解基本不等式以及它的推广Sylvester不等式对数学学习者来说非常重要。通过对基本不等式的学习和掌握,可以帮助学生完成更复杂的数学问题,进一步培养他们在数学领域的创造性和解决问题的能力。

基本不等式课件 篇4

基本不等式是初中数学中的一个重要内容,也被称为柯西-施瓦茨不等式。它的意义不仅限于初中数学,在高中数学、大学数学等领域都有广泛的应用。基本不等式是数学中非常基础的概念,我们可以通过以下的主题范文来深入了解。

主题一:基本不等式的概念及其应用

基本不等式是初中数学中的基础概念,它是数学不等式中的重要内容。它起源于柯西-施瓦茨不等式,可以用于证明不等式以及优化问题。基本不等式的本质是数学中的向量内积,具有非常广泛的应用,比如在概率论、统计学、矩阵论、函数论、微积分等方面都有应用。

主题二:基本不等式的证明方法

基本不等式的证明方法主要有两种。一种是基于二次函数的方法,另一种是基于向量内积的方法。无论采用哪种方法,都需要通过简单的代数变化、平方等方法,将式子变形成为已知的不等式形式。利用这种方法,我们就可以推出基本不等式,从而应用到不等式证明等问题中。

主题三:基本不等式在函数极值问题中的应用

基本不等式在函数极值问题中也有广泛的应用。函数的极值可以通过求导数和函数值来求解,而基本不等式可以在求解函数极值过程中起到优化作用。通过基本不等式,可以很好地规避一些数学中的陷阱,从而获得更精确的结果。因此,基本不等式在函数极值问题中的应用是非常重要的。

主题四:基本不等式在概率论和统计学中的应用

基本不等式在概率论和统计学中也有广泛的应用。概率论中的卡方分布、t分布等都是基于基本不等式的优化结果。在统计学的研究中,基本不等式可以用于特征值的计算、回归分析等方面。因此,基本不等式在概率论和统计学中的应用也是非常重要的。

主题五:用基本不等式解决数学中的“热点”问题

基本不等式是数学中的热点问题之一,因为它在解决很多复杂的数学问题中都起到了重要作用。比如,在组合数学中,基本不等式用于计算多重组合数。在三角函数中,基本不等式用于计算三角函数的幂的和。在数值分析中,基本不等式用于优化函数逼近等方面。因此,我们可以用基本不等式解决数学中的一些“热点”问题,从而获得更深入的数学技巧。

总的来说,基本不等式是数学中一个非常重要的内容,它可以用于解决不等式证明、函数极值、概率论和统计学等领域的问题。同时,基本不等式也是数学中的“热点”问题之一,它为我们提供了更深入的数学技巧和思维方式。掌握基本不等式不仅可以提高数学水平,而且可以在其他领域带来更多的收获。

基本不等式课件 篇5

一、基本不等式的简介

基本不等式是初中数学中的一项重要内容,是不等式的基础。它可以帮助我们在学习不等式的过程中更加轻松的理解和掌握其他不等式的相关知识。它的基本形式是:

对于任意实数a1, a2, …, an,有

(a1^2 + a2^2 + … + an^2)×n ≥ (a1 + a2+ … + an)^2

二、基本不等式的证明

基本不等式的证明有多种方法,下面将以几何证明法和数学归纳法为例进行讲解。

几何证明法:

首先,我们根据勾股定理和三角形面积公式有:

a1^2=(a1 cos B1)^2+(a1 sin B1)^2

a2^2=(a2 cos B2)^2+(a2 sin B2)^2

……

an^2=(an cos Bn)^2+(an sin Bn)^2

因为正余弦函数在第一象限内单调递增,所以有:

sinB1

sinB2

……

sinBn

把以上不等式累加起来并乘以n,则有:

n(a1^2+a2^2+…+an^2)>=〖(a1cosB1+a2cosB2+…+an cosBn)〗^2+n(a1^2sin^2 B1+…..+an^2sin^2 Bn)

显然,n(a1^2sin^2B1+….+an^2sin^2Bn)=n(a1sinB1+…+ansinBn)^2

因此,原不等式即证。

数学归纳法:

当n = 2时,有

a^2 + b^2 >= 2ab

(a - b)^2 >= 0

显然成立。

假设n = k - 1时原不等式成立,即

(a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2

当n = k时,原不等式变为:

(a1^2 + a2^2 + … + ak-1^2 + ak^2) × k >= (a1 + a2 + … + ak-1 + ak)^2

因为(a1^2 + a2^2 + … + ak-1^2) × (k - 1) >= (a1 + a2 + … + ak-1)^2

又因为(a1^2 + a2^2 + … + ak^2) × 1 >= ak^2

因此有:

(a1^2 + a2^2 + … + ak-1^2) × (k - 1) + (a1^2 + a2^2 + … + ak^2) × 1 >= (a1 + a2 + … + ak-1)^2 + ak^2

(a1^2 + a2^2 + … + ak^2) × k >= (a1 + a2 + … + ak)^2

因此,当n = k时,原不等式也成立。

综合上述两种证明方法,我们可知,基本不等式是正确的。

三、应用基本不等式需要注意的问题

1. 基本不等式只适用于a1, a2, …, an均为实数的情形,不适用于其中有虚数的情形。

2. 如果不等式两侧都除以n的话,可以得到一个均值不等式:

(a1 + a2 + … + an) / n >= √(a1^2 + a2^2 + … + an^2)

这就是均值不等式的形式。

3. 基本不等式是一个有力的数学工具,它可以用于解决许多数学问题。 但在应用时,我们需要注意题目的条件,判断是否可以应用,以免掉进错误的陷阱。

四、结语

综上所述,基本不等式在初中数学中是一项基础性的内容,它的正确性是数学归纳法和几何证明法所证明的。应用时需要注意题目的条件,判断是否可以应用。相信通过学习和掌握基本不等式,我们可以更加轻松的掌握其他不等式的相关知识。

基本不等式课件 篇6

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。

第二组:-7 1+4; 2x ≤6, a+2 ≥0; 3≠4。

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1 (回答)用小于号“”填空。

(1)7 ___ 4;

(2)- 2____6;

(3)- 3_____ -2;

(4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

师:哪位同学来回答第二、三条性质?

生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

生乙:如果abc(或 );如果a>b,且cb,且c>0,那么ac>bd;(2)如果a>b,那么ac2>bc2;(3)如果ac2>bc2,那么a>b;(4)如果a>b,那么a-b>0;(5)如果ax>b,且a≠0,那么xa;生甲:(1)不对,当c=d≤0时,ac>bd不成立。生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。(4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。(5)不对,当a<0时,根据不等式基本性质3,得。(6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。课外做以下作业:略。教案说明(1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。(2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。(3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

基本不等式课件 篇7

基本不等式教学设计

数学与应用数学 钟林

课题:人教A版必修5第3章4节,基本不等式

【教学目标】

1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。

2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。

4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生

ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最

2值中的作用,提升解决问题的能力,体会方法与策略。

【重点难点】

重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。

2难点:在几何背景下抽象出基本不等式,并理解基本不等式。

【教学设计】

(一)问题导入

欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。

探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。

22ab那么正方形的边长为。

于是,4个直角三角形的面积之和S12ab。 正方形的面积S2a2b2。 由图可知S2S1,即a2b22ab。

当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab

所以a2b22ab。

探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。

梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。

ab因为EF是中位线,所以EF,

2由相似,可以得出GHab, 同样因为相似,有

AGABa, GDGHb又因为ab,所以AGGD,即AGAE,

ab。 2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近, 当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。

ab即,当且仅当ab时,ab。

2ab所以,ab,当且仅当ab时,等号成立。

2所以GHEF,即ab

(二)概念深入

根据上述两个几何背景,初步形成不等式结论:

若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立) 2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22

当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。

作法二(分析法):

要证明abab, 2只需证明ab2ab, 即证ab-2ab0, 即为a-b20,该式显然成立,所以,当ab时取等号。

于是有这样的结论:

称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数, 2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数

作法三(几何法):

如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。 从而有CDab,ODab。 2ab。 2ab当且仅当C点与圆心O点重合时,即a=b时,ab

2故再次证明:

aba0,b0,ab,当且仅当a=b时,等号成立。

2ab也说明了ab的几何意义:半径不小于半弦。

2由于直角三角形COD中,直角边CD

(三)例题讲解

例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?

(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?

(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)

对于x,yR,

(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;

s2(2)若xys(定值),则当且仅当xy时,xy有最大值。

4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)

1例2.求yx(x0)的值域。

x1变式1.若x2,求x的最小值.

x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数

x图象,使学生再次感受数形结合的数学思想。

ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制

2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。

(四)归纳小结&课后作业 基本不等式:

若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立) 2(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法。

作业:A组第4题,B组第1题,第2题

若a,bR,则ab

基本不等式课件 篇8

基本不等式课件

基本不等式是初中数学中的重要知识点之一,在学习这个知识点之前,我们先来了解下基本不等式的定义和公式:

定义:若a1,a2,...,an是n个非负实数,则有

(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。

公式:(a1+a2+...+an)/n≥(a1×a2×...×an)的n次方根。

这个公式的意义是,当n个数的平均值不小于这n个数的相乘积的n次方根时,我们就称这个不等式为基本不等式。

基本不等式的意义很重要,它是一种实用的数学工具,能够结合实际问题进行运用。在统计学中,我们经常需要对数据进行分析,计算某一组数的平均值。基本不等式告诉我们,对于一组非负实数,它们的平均值一定不小于它们的几何平均数。

下面我们来看一个简单的实例:

假设有两组数,分别为2,3,4和1,2,8,现在我们需要比较这两组数哪一组平均值较大。

我们可用基本不等式进行求解:

对于2,3,4,有(2+3+4)/3=3,(2×3×4)的1/3次方≈2.83,所以有3≥2.83。

对于1,2,8,有(1+2+8)/3=3.67,(1×2×8)的1/3次方≈2.19,所以有3.67≥2.19。

通过比较,我们可以发现,第一组数的平均值是小于第二组数的平均值的。

基本不等式虽然简单,但是在实际应用中有着广泛的应用。例如在金融学、经济学、医学等领域中,我们需要对数据进行分析,计算平均值。基本不等式能够帮助我们进行更加精确的计算,从而提高研究的准确性和可靠性。

在数学竞赛中,基本不等式也是一道基础题,掌握好它的原理和应用方法,就能够轻松应对数学竞赛中的各种不等式题,提升自己的数学能力。

综上所述,基本不等式是一项非常实用的数学工具,它能够帮助我们进行数据分析和计算,提高研究的准确性和可靠性。在数学的应用和研究中,掌握好基本不等式的原理和应用方法非常重要。

基本不等式课件 篇9

课题:3.4.3 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?

根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;

(二)能力目标:让学生探究用基本不等式解决实际问题

(三)情感、态度和价值观目标:

通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?

2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?

3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?

2.让学生探究用基本不等式解决实际问题;?

教学难点:1.让学生探究用基本不等式解决实际问题;?

2.基本不等式应用时等号成立条件的考查;?

六、教学过程 教师活动 学生活动 设计意图 (一)导入新课

(二)推进新课

已知 ,若ab为常数k,那么a+b的值如何变化?

若a+b为常数s,那么ab的值如何变化?

老师用投影仪给出本节课的第一组问题

(1)求函数y=2x2+ (x>0)的最小值。?

(2)求函数y=x2+ (x>0)的最小值。?

(3)求函数y=3x2-2x3(0

(4)求函数y=x(1-x2)(0

(5)设a>0,b>0,且a2+ =1,求 的最大值。?

(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ?

(四)例题精析?

【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?

当且仅当a=b时,a+b就有最小值为2k.?

当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?

学生完成

留五分钟的时间让学生思考,合作交流

(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?

学生思考、回答,

相关推荐

  • 不等式课件 不为明天做好准备的人是没有未来的,当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料通常是指书籍、报刊、图表、图片等。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?在这里,你不妨读读不等式课件,欢迎阅读,希望对你有帮助。教学目标:了解一元...
    2023-04-23 阅读全文
  • 不等式解法教案9篇 老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。制作合理充分的教案是巩固学生知识的有效途径,老师应该从什么方面去写教案课件?幼儿教师教育网编辑深度评估了这篇“不等式解法教案”强烈推荐给大家,如果您对这个话题有所兴趣请跟进我们的官网!...
    2024-06-29 阅读全文
  • 不等式的课件 老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!...
    2024-05-15 阅读全文
  • [荐]基本不等式教案8篇 依据您的要求,笔者检索出《基本不等式教案》这篇文章。教师每节课都需要一份完整的教学课件,因此我们必须认真地撰写每份课题策划和制作好每份教学课件。高质量的教案和课件是能够刺激学生的学习兴趣的。我们希望这篇文章可以对您有所帮助!...
    2023-07-12 阅读全文
  • 一元二次不等式课件(必备9篇) 经过多次优化我们为您制作了这份精选的“一元二次不等式课件”,本篇文章希望能够为您的工作和生活提供帮助。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。设计教案需要关注课堂互动和学生参与度的提高。...
    2024-07-30 阅读全文

不为明天做好准备的人是没有未来的,当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料通常是指书籍、报刊、图表、图片等。有了资料才能更好的在接下来的工作轻装上阵!所以,关于幼师资料你究竟了解多少呢?在这里,你不妨读读不等式课件,欢迎阅读,希望对你有帮助。教学目标:了解一元...

2023-04-23 阅读全文

老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。制作合理充分的教案是巩固学生知识的有效途径,老师应该从什么方面去写教案课件?幼儿教师教育网编辑深度评估了这篇“不等式解法教案”强烈推荐给大家,如果您对这个话题有所兴趣请跟进我们的官网!...

2024-06-29 阅读全文

老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!...

2024-05-15 阅读全文

依据您的要求,笔者检索出《基本不等式教案》这篇文章。教师每节课都需要一份完整的教学课件,因此我们必须认真地撰写每份课题策划和制作好每份教学课件。高质量的教案和课件是能够刺激学生的学习兴趣的。我们希望这篇文章可以对您有所帮助!...

2023-07-12 阅读全文

经过多次优化我们为您制作了这份精选的“一元二次不等式课件”,本篇文章希望能够为您的工作和生活提供帮助。每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。设计教案需要关注课堂互动和学生参与度的提高。...

2024-07-30 阅读全文
Baidu
map