三角形课件
发布时间:2023-06-05 三角形课件三角形课件。
每位教师都要为每一节课准备详尽的教案和课件,努力将它们设计得更加优美完善。教案不仅是衡量学习成果和提高教学效果的重要工具,也是教师们必备的必须物品。因此,希望我们的“三角形课件”能够满足您的需求,也欢迎你的阅读和分享,希望你能喜爱我们的作品!
三角形课件(篇1)
教学目标:
1.通过观察、操作、比较,发现三角形角的特征,会给三角形按角进行分类,理解并掌握三角形的种类特征,能解决一些生活中的实际问题。
2.在分类中进一步提高观察能力、操作能力,体会分类标准的严密性。
教学重点:三角形的分类标准
教学难点:以角为标准进行分类
教具准备:一支彩笔、一把尺子、一个双面胶、一把剪刀、手工纸两张、一个磁铁。每个小组准备一张A4纸。
设计过程:
预设的教师活动
可能的设计活动
设计说明
一、谈话导入
同学们,我们已经学过了哪些角?
课件出示锐角、直角、钝角。能说这些角的名称吗?
(课件演示)老师在每个角上添上一条线段把它们变成变成了什么图形?
什么是三角形呢?
请同学们用水彩笔和尺子任意画一个三角形。画好后用剪刀把它剪下来。
二、新授
1.小组内把剪下来的三角形分类。
如果和他们分法相同,请有序的的把三角形帖在它的同类三角形一起。
2.揭题:三角形的分类
3.小组讨论每类角的共同特征。
4.比较锐角三角形、直角三角形、钝角三角形的相同点和不同点。
6.如果我们把三角形看成一个大集体,这个大集体有几名成员。课件出示集合图。
三、巩固练习
1.
判断题。
①任意一个三角形,至少有两个角是锐角。
②最大的角是锐角的三角形一定是锐角三角形。
③直角三角形中有2个直角。1个锐角。
④一个三角形中只能有一个直角或者一个钝角。
2.猜一猜被信封遮住的是锐角三角形、直角三角形还是钝角三角形?
说说你的理由。
3.用一张正方形纸折出4个完全一样的直角三角形。
4.找出物品中哪些是我们今天学过的三角形。
5.用信封里的三角形拼成美丽的图形或图案,每组四名学生合作。还有四名学生到黑板上来拼。
生:直角、锐角、钝角、平角、周角
生:三角形
由三条线段围成的图形叫做三角形
组长来展示分类的情况。组长说这样分的理由。
组1:根据三角形大小来分。
组2:根据纸的颜色给三角形分类
组3:根据三角形的角的特点来分
揭示特征把三角形取名。锐角三角形、直角三角形、钝角三角形
相同点是:每个三角形都有2个锐角。
不同点是:它们的最大角不一样,有锐角、有直角、有钝角。所以三角形的名称是由三角形中的最大角决定的。
学生自由读题,用手势表示对与错。错题学生要说出自己的理由。
用一张正方形纸折出4个完全一样的直角三角形,有两种折法,一是,把正方形对角对折再对折,二是,把正方形对边对折成长方形,再沿着长方形的对角线对折。
通过复习角的知识,让学生对知识进行迁移,根据角的特点给三角形进行分类作好铺垫。
学生通过画、剪三角形让学生更深的理解封闭图形,也培养了学生的动手操作能力。
小组内进行分一分,说一说自己的分类的标准是什么。培养学生的小组合作的意识。
重视培养学生的观察能力的培养。
通过判断检验学生对知识的掌握情况和灵活运用知识的能力。
让学生猜一猜是什么三角形?培养了学生观察能力和逻辑思维的推理能力。通过折长方形,,不仅培养了学生的操作能力,还培养了学生数学思维的发散能力。
找找生活中的物品中哪些是今天我们认识的三角形。让学生体会学数学是有用的,数学就在我们的身边。让学生更爱数学、更喜欢数学。通过拼图让学生得到了数学美的熏陶。
三角形课件(篇2)
【教材分析】本课是苏教版四年级下册第七单元第一课时的内容。学生在已经直观认识了三角形,且对三角形有一些感性认识。所以教学例1时选择从生活中的场景入手,通过让学生画三角形、说三角形特点,逐步总结出三角形概念及基本特征。教学例2,也是从现实情境出发,通过测量人字梁高度,感知三角形的底和高,并由此抽象出三角形高和底的概念。从实例到抽象概念,使学生获得正确而清晰的表象。
【学情分析】学生在低年级时已经对三角形有了直观的认识和初步的感知,这种感知往往来自于生活,所以教学时例题的选择都是来源于现实生活,有利于学生对概念的抽象。画高对学生来说是一个难点,所以教学过程中要引导学生和已有知识进行练习,在比较中区分,从而正确的对知识体系进行重组和建构。
【教学目标】
1、知识与技能:使学生联系已有知识和经验,通过观察、操作、测量等具体活动,认识三角形的基本特征,初步形成三角形的概念,知道三角形的高与底的含义,会用三角尺画三角形的高(在三角形内)。
2、过程与方法:使学生经历探索和发现三角形基本特征的过程,积累一些观察和操作、比较和分析、抽象和概括等活动经验,体验数学抽象的一般过程,发展空间观念。
3、情感态度和价值观:使学生在参与数学活动的过程中,获得一些学习成功的体验,进一步激发数学学习的兴趣,树立学好数学的信心。
【教学重点】认识三角形的基本特征,理解三角形概念。
【教学难点】会画三角形底边上的高。
【课时安排】安排1课时【课前准备】课件,直角三角尺,学生每人一张学习单
【教学过程】
一、谈话导入出示大桥夜景,提问:同学们,你能从这幅图中看到什么?师:生活中你还在哪些地方见过三角形?多媒体展示存在于生活中的三角形。
揭题:生活中我们在许多地方见到过三角形,到底什么样的图形才能叫做三角形,三角形又有哪些特征呢?今天跟随老师一起来认识三角形(板书课题)
二、探究新知(一)、三角形概念、特征1、画三角形提出要求:刚才我们看了那么多的三角形,你能画出来一个吗?生尝试画三角形,教师巡视,收集学生存在的错误案例。
2、展示交流,抽象概念师提问:你画的三角形有什么特点?小组交流。
指名展示,并介绍所画三角形特点。
(1)三角形由三条边组成。师追问这三条边是什么线?根据学生回答板书:线段
(2)出示反例,,这三条线段能组成三角形吗?这三条线段应该是什么关系?板书:围成
(3)三条线段围在一起就是三角形了吗?出示反例。这三条线段应该怎样围在一起呢?板书:首尾相接抽象概念:根据我们刚才的交流不难发现,这些是三角形共同的特点。所以,我们把由三条线段首尾相接围成的图形叫做三角形。板书完整。
师:同位之间看着手中的图形互相说一说什么样的图形叫做三角形。
3、自学三角形各部分名称师:你知道三角形各部分的名称吗?自学书本75页。
组织交流:这是三角形的什么(边)?有几条边?顶点(有几个顶点)?角,有几个角?4、试一试提问:如果给你顶点让你画出一个三角形,你能画出来嘛?出示题目,自行阅读理解题目意思。学生绘制。
交流展示,谁愿意展示一下自己所画的三角形?提问:任选3个作为顶点,都能画一个三角形吗?你有什么发现?为什么下面3个点不能画出一个三角形。交流(找2名学生说)小结:在同一条直线上的点只能画出一条直线。所以三角形的顶点能不能在同一条直线上。
(二)、认识高和底1、教学三角形底和高的概念师:三角形在我们生活中还有很多的用处,出示屋顶图。从这几幅图中你又能看到什么?知道这是什么吗?如果学生回答不出则师简单介绍人字梁。
师:同学们手中也有一张人字梁图,你能量出图中人字梁的高度吗?学生尝试。
展示交流,指名演示度量过程并提问
(1)你量的是从哪里到哪里的距离?引导学生说出从人字梁的顶点到它对边的距离
(2)我们所量的这条线段和人字梁的底边在位置上有什么关系?(互相垂直)
(3)你能想办法验证一下吗?指名演示验证过程。
(4)师小结:通过刚才讨论我们可以发现人字梁的高度,其实就是从这个三角形的顶点(出示顶点)到对边所做的垂直线段的长度(边指边说)。
抽象概念:如果我们把这个人字梁所在的三角形画出来,那么从三角形的一个顶点向它的对边作一条垂直线段,这条垂直线段就是三角形的高(板书,画出高,和直角标志),而这条对边就叫做三角形的底(标出底)。
回忆刚才过程,说一说什么是三角形的高,什么是三角形的底?2、教学画高
(1)提问:如果已知三角形的底,怎样画出底边上的高呢?
(2)学生尝试画底边上的高。
(3)指名演示画高,总结画高的方法和注意点。
(4)对比画三角形底边上高的方法和过直线外一点画已知直线垂直线的方法。寻找相同和不同点。
三、练习巩固同学们这节课收获可不少,不仅知道了什么样的图形是三角形,还知道了三角形的特征,认识了三角形的底和高,也知道如何画底边上的高。接下来就是要检验你们的时刻了。做好准备了吗?
1、练一练第1题。
(1)学生同位之间互相说一说。
(2)指名说一说哪些是,哪些不是,为什么?
2、练一练第2题。
(1)说一说题目有哪些要求。注意取整厘米。
(2)学生独立完成。
(3)反馈交流。注意让学生表达清楚:第一个图形底边上的高为2cm。
底3、下图中底边上的高画的对吗?底底底④ ③ ② ①
(1)投影出示,先观察,思考如何改正?
(2)指名用直角三角尺把正确的画图方法摆出来。
(3)说说在画高时我们需要注意哪些问题。
4、练习十二第1题。
(1)独立完成,指名展示自己的作业,并说说画高的方法。
(2)改变第一个三角形的底,提问:这时该如何画高。指名演示。再改变底边,又该如何画?观察图1,你有什么发现?三角形有几条高?
(3)讨论直角三角形的的高。提问:这是一个什么三角形?你能指出它的两条直角边吗?如果以一条直角边为底(老师用手指),怎样画三角形的高?指名摆三角尺。你有什么发现?如果以另一条直角边为底呢?你又有什么发现?
(4)小结:直角三角形中以一条直角边为底,另一条直角边就是三角形的高。
(5)提问:你能画出这个直角三角形的第三条高吗?以哪条边为底?
5、练习十二第2题。
(1)学生按要求画出三角形。
(2)同桌互相检查所画的三角形是否满足要求,交流是怎样画的。
(3)展示学生作业,并提问:问什么条件相同,所画的三角形却不同呢?你有什么发现?
(4)如果用同一条底边,你能画出多少个等高的三角形?
四、全课总结提问:这节课学习了什么?你有哪些收获?还有什么疑问?
【板书设计】认识三角形由三条线段首位相接围成的图形叫三角形。
高底教学反思:本课教学过程中通过画三角形,说三角形特征,并用正反例引导学生建立正确的三角形概念,从而突出本课教学重点。而对于本课的教学难点,则通过让学生联系已有知识,对比知识之间的联系和区别,从而对知识体系进行重新建构,突破难点。而练习过程中,除了关注基本的知识技能的掌握,还通过一些题目发展学生的思维能力。
三角形课件(篇3)
题目:三角形的特性
时间:xxxx年4月20日
课时:1课时
来源:教科书第59页至61页,练习十五第1、2、3题
课型:图形与几何
授课对象:四年级学生
课标分析:
1、课标要求:联系生活实际,通过动手画、拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。
2、使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。
教材分析:
1、《三角形的特性》是人教版小学数学四年级下册第五单元的内容。
2、三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导出有关的性质,而三角形的稳定性在实践中有着广泛的应用。因此把握好这部分内容的教学不仅可以从形的方面加深学生对周围事物的理解,发展学生的空间观念,而且可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力,同时也为以后学习图形的面积计算打下基础。
学情分析:
在日常生活中学生经常接触到三角形,对三角形有一定的感性认识,而且本节课是在学生已经学习了线段、角、直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。这一阶段的学生已经积累了一些有关“空间与图形”的知识和经验,形成了一定程度的空间感,具备了一定的抽象思维能力。但是,几何知识就是初步的几何知识对于小学生来说都是很抽象的,要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分利用教具,学具,运用其直观性进行教学。
确立目标:
1、通过动手操作和观察比较,使学生进一步认识三角形,理解三角形的概念,认识三角形各部分名称,知道三角形的.底和高,会在三角形内画高。
2、通过摆一摆、拉一拉的实验,使学生理解三角形的稳定性,了解这一特性在生活中的应用。
3、培养学生观察、操作能力和应用数学知识解决实际问题的能力。
4、体会数学与生活的密切联系,培养学生学习数学的兴趣。
评价标准:
测评目标1:知道三角形的特征,正确说出三角形各部分的名称。
测评目标2:知道三角形的底和高的含义,能正确画出三角形的高。
测评目标3:掌握三角形的特性,了解这一特性在生活中的运用。
教学环节
环节1:
直观感知,导入新课
创设情境,生成问题。
1、说说生活中有哪些物体的形状是三角形的。展示学生收集的有关三角形的图片
2、课件出示埃及金字塔图片,简单介绍有关埃及金字塔的历史,帮助学生进一步了解古埃及文明史,激发学生的学习兴趣。让学生找出金字塔上的三角形,并用笔把三角形描出来。
3、课件出示大桥图片,先让学生整体观察大桥,感受大桥的宏伟、壮观,再让学生从大桥中找出各种各样的三角形,并用笔把三角形描出来
4、能手口一致地描绘三角形。让学生把描绘三角形的动作和语言描述紧密结合,增加学生对图中不同形状三角形的直观感受。
5、导入新课。(板书:三角形的特性)
师:我们大家认识了三角形,三角形看起来简单,但在工农业生产和日常生活中有许多用处,看来生活中的三角形无处不在,三角形还有些什么奥秘呢?今天这节课我们就一起来研究这个问题。
让学生在观察交流中复习学习过的知识,为后面的学习打下基础。
环节2:
操作感知理解概念
探索交流,解决问题
(一)三角形的概念
1、师:请你画一个自己喜欢的三角形,边画边想你是怎样画这个三角形的?你画的三角形有什么特点?教师根据学生的汇报板书,标出三角形各部分的名称。
师:同学们说得真好,现在请同学们把刚刚画的三角形标上各部分的名称。
2、概括三角形的定义。
师:那你认为什么样的图形才是三角形?由学生的回答总结出三角形的概念并板书:三条线段围成的图形叫做三角形。
怎样判断图形是不是三角形呢?“围成”和“组成”一样吗?有什么区别?
判断下面几个图形是不是三角形?课件出示。
3、认识三角形的底和高。
除了三角形概念,书中还向我们介绍了什么?自学课本60页余下的内容。
根据学生的回答小结出以下内容:
(1)三角形各部分的名称(边、角、顶点)
(2)如何用字母表示三角形。
(3)三角形的底和高。
师展示三角形高的画法并问:老师刚刚画的线段叫什么?(三角形的高)它所垂直的边叫什么?(三角形的底)在画的过程中让学感受三角形的底和高是一组互相垂直的线段,体会底与高的相互依存性,为学习三角形面积的计算奠定基础。
师:画三角形的高要注意什么?(用三角尺,画垂直符号)请同学们再画一个三角形并画出高,标上底和高。
指出这个三角形就可以表示为三角形ABC。请同学们把刚刚画的三角形也表示成三角形ABC。
(二)三角形的特性:
1、下面做一个游戏,请你用三根小棒摆一个三角形,用四根小棒摆一个四边形,你能摆几个?摆完以后小组内交流一下,看看你有什么发现。(让学生充分体会,无论怎么摆,所摆出的三角形大小、形状不变,摆出的四边形大小、形状可以发生变化。)
2、为什么呢?是什么确定了三角形的形状和大小呢?(角度确定形状,边长确定大小)
3、对给定的三角形、四边形进行拉伸.
给出教具,让学生拉一拉,看看有什么发现?(三角形三条边的长度确定了,这个三角形的形状和大小也确定了,不会发生变化了,由于四边形的角度会发生变化,所以它的形状也会发生变化,所以三角形具有稳定性。)根据学生的回答归纳出:三角形不易变形,具有稳定性。(板书)
4、看看下图中哪有三角形、四边形?想想它们有什么作用?
5、举出生活中应用三角形稳定性和四边形易变性的例子。
6、接着问:要使这个四边形像三角形一样拉不动,怎么办?
小结:三角形的这种特性在生活中的应用非常广泛,在今后学习数学的时候,我们应该多想想,怎样把数学中的有关知识应用到实际生活中去。
学生在已有知识的基础上自己动手画一个三角形,并观察总结出三角形的定义,三角形的特征。再在老师的指导下学会画三角形的高,最后通过学生动手拼三角形和四边形认识三角形不易变形的特性。
环节3:
巩固练习,提高认知
巩固应用,内化提高
1、完成60页做一做
2、指导学生完成练习十五1、2、3题。
先让学生尝试画,然后同桌交流画法,怎样画得又好又快?
环节4:
回顾反思,提高认识
回顾整理,反思提升
通过这节课的学习,你有什么收获?
1、三角形和四边形都是平面图形。
2、应用三角形的稳定性可以解决许多实际生活问题。
3、知道了用三角形三个顶点的字母可以表示一个三角形,会在三角形内画高。
在老师的眼里,三角形不仅具有稳定性,它还是一种美丽的图形。它和圆、长方形等一起构成了美丽的图形世界,可以说数学因为有了美丽的图形而五彩纷呈,生活因为有了美丽的图形而更加丰富多彩。
板书设计:
三角形的特性
1、定义:由三条线段围成的图形叫三角形。
2、特征:3条边,3个角,3个顶点。
3、特性:具有稳定性。
作业
教学反思
三角形课件(篇4)
一、创设情境,揭示课题
引入语:明年“六一”我们学校一年级有一批小朋友加入少先队,学校准备做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)同学们,红领巾是什么形状的?你会算三角形的面积吗?这节课我们就来一起研究、探索这个问题。(板书:三角形面积的计算)
二、探索交流、归纳新知
1.出示一个平行四边形
(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)
(2)观察:沿平行四边形对角线剪开成两个三角形。两个三角形的形状,大小有什么关系?(完全一样)三角形面积与原平行四边形的面积有什么关系?
(3)上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?
2.分组实验,合作学习。
(1)提出操作和探究要求。
让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。
屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?
②拼出的图形与原来三角形有什么联系?
(2)学生以小组为单位进行操作和讨论。
(3)展示学生的剪拼过程,交流汇报。
①各小组汇报实验情况。(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)
②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过实验,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形。每个三角形的面积与拼成的平行四边形的面积有什么关系?
3.归纳公式
(1)讨论:
A、三角形的底和高与平行四边形的底和高有什么关系?
B、怎样求三角形的面积?
C、你能根据实验结果,写出三角形的面积计算公式吗?
(2)归纳交流推导过程,说出字母公式。
根据学生讨论、汇报,教师进行如下板书:
因为:三 角 形 面 积=拼成的平行四边形面积÷2
所以:三 角 形 面 积=底×高÷2
师:为什么要除以2?
生:……
师:如果用S表示三 角 形 面 积,用α和h分别表示三 角 形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书S=ah÷2
同学们真了不起,得到了这个公式,我们就可以求出任何三角形的面积。用这个公式计算三角形的面积(指板书),需要知道什么条件?
三、应用新知,解决问题
师:有了公式,下面我们可以帮学校解决问题了。(回应引入问题)
1、(屏幕显示)出示85页例1:
学生独立完成(一生板演),集体订正。
师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)
2、独立完成P85做一做。
完成后交流、讲评。
四、深化理解、应用拓展
1.课本86页的练习第1题。课件出示下图:
2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。
3.想一想,下面说法对不对?为什么 ?
(1)三角形面积是平行四边形面积的一半。( )
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
(4)等底等高的两个三角形,面积一定相等。 ( )
(5)两个三角形一定可以拼成一个平行四边形。( )
4.求右图三角形面积的正确算式是( )
①3×2÷2 ②6×2÷2
③6×3÷2 ④6×4÷2
5.做课本86页第4题(然后汇报、评讲。)
要在公路中间的一块三角形空地(见下图)上种草坪。1O草坪的价格是12元。种这片草坪需要多少元?
五、回顾总结,深化提高
1.这节课我们探究学习了什么?是怎样探究的呢?(渗透数学方法)
2.今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
三角形课件(篇5)
一、说教材
1、我说课的内容是《九年义务教育人教版》第八册的《三角形的内角和》。
2、教材简析
三角形在平面图形中是简单的,也是最基本的多边形,这部分内容是在学生对三角形已经有了直观的认识,并且对三角形的特性及分类有了一定的了解的基础上进行学习的。通过这部分内容的学习,培养学生的实际操作能力、观察能力、小组合作交流能力、语言表达能力以及抽象的思维能力,为以后学习多边形打好基础。
3、教学目标
根据教材的内容以及学生的知识现状和年龄心理特点,我制定以下教学目标。
(1)知识目标:从实际出发,通过互动学习初步感知三角形的内角和是180度,在此基础上,用实验的方法加以探究。
(2)能力目标:通过教学活动,培养学生动手操作、归纳推理以及抽象概括的能力。
(3)情感目标:使学生经历探究的过程,体会与他人合作交流的乐趣,学会用数学的眼光去发现问题、解决问题。感受到数学的价值。
4、教学重点与难点。
《三角形内角和》的教学是学生从直观形象到抽象掌握的过程,即学生从感性认识到理性认识的升华,对学生发展类推的能力有着重要的作用。因此,我认为学生通过操作,自主探究三角形的内角和是180度是本节课的重点;采用多种途径证明三角形的内角和等于180度是本节课的难点。
5、教学准备
为了更好的达到教学目标,突出重点,突破难点,我准备以下教具和学具:课件、不同类型的三角形纸片、量角器、剪刀、胶水。
二、说教法学法
根据新课程教材的特点和学生实际情况,教学中以直观教学为主。运用动手观察,分组讨论等多种方法,采用现代化手段结合教材,让学生在“想一想”、“做一做”、“说一说”的自主探索过程发挥学生相互之间的作用,让学生自己动脑、动手、动口中促进思维的发展。培养学生的动手操作能力、语言表达能力和自学能力。
本节课在学生学习方法的引导上尽量体现:
①在具体的情景中,让学生亲身经历发现问题、提出问题、解决问题的过程,体验成功的快乐。
②通过师生、生生互动,探究、合作交流,完善自己的想法,形成自己独特的学习方法。
③通过灵活、有趣和富有创意的练习,提高学生解决问题的能力。
三、学生情况分析
学生在日常生活中接触了很多大小不同的角,但对于三角形内角和等于180度的知识,生活中很少接触,显得比较抽象,对于四年级的学生抽象思维虽然有一定的发展,但依然以形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。
四、说教学流程
为了达到本节课的教学目标,我这样设计教学流程:
1、设疑导入。
为了激起学生求知的欲望,再根据本课题的特点和四年级学生心理的特点,我采取了直接设疑导入。具体步骤如下:
(1)让学生汇报三角尺各个内角的度数,并计算出每个三角尺的内角和是多少度。
(2)提出问题:当学生答出三角尺的内角和度数之后,我问:所有的三角形的内角和都是180度吗?学生讨论之后引出课题。
2、动手操作,自主探究。
为创新学生的思维,张扬学生的个性,学生动手量、剪、拼等活动贯穿于整个课堂。我根据四年级学生的心理特点设计了这一环节,其目的是:让学生在活动过程中形成问题意识,从而展开想象,培养学生的问题意识。具体做法是:(1)先让学生思考如何验证三角形的内角和是180度,然后通过讨论交流得到几种验证方法。(2)让学生利用量角器量出学具三角形纸片的各个内角的度数,再求出三角形的内角和,初步感知三角形的内角和等于180度。(3)让学生利用剪拼的方法感知三角形的三个内角拼在一起是一个平角,从而得到结论。
3、巩固新知
本环节我设计了不同类型的习题。有操作题,计算题,画图题,拼角题等等。其目的是:通过这一环节,让学生掌握、理解三角形的内角和等于180度,并把所学知识回归于生活实践,从而达到情感、态度、价值观这一教学目标的实现。
五、板书设计
板书是课堂教学语言的一种表现形式,它具有启发性、指导性和应用性。精巧的板书设计有“引”和“导”的功能,“引”是引学生之思,“导”是导学生之路。
三角形课件(篇6)
各位评委、各位同行朋友:
大家上午好!
“三角形的内角和”是九年义务教育六年制新课程标准教科书第八册第二单元——认识图形中第三节的内容。
一、说教材和新课标
(包括教材、新课标和教学目标)
1、在学习本节内容——探索与发现三角形的内角和之前,学生已经掌握了有关角的分类和三角形的分类知识,知道平角的度数是180°,并且能够通过量角器测量角的大小。教材编排了通过小组合作学习形式,即每人随意画一个三角形,通过小组成员的分工与合作,求出每个同学画的三角形的内角和的度数。然后与学生共同分析各活动小组的“三角形内角和”的记录情况,进而归纳出三角形的内角和等于
180°。为证明这个结论的正确性和加深学生的认识,教材还编排了“拼一拼”(即把三角形的三个角撕下来拼在一起)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作环节。本节教材的最后编排了已在三角形中两个角的度数求第三个角的度数的内容。
2、新课程改革的重要目标就是要改变学生学习数学的方式,其中一个非常重大的变化就是由过去注重教师“怎么教”到现在更重视学生“怎么学”,因此我认为:学生“怎么学”比“学什么”更重要。一个学生如果掌握了“怎么学”,就如同拥有了点石成金的仙人指,这才是他一身中最可宝贵的、无穷无尽的财富。基于此,我们的教学目的就不言可愈了。
基于新课标的要求,本课的教学目标是:
1、通过小组分工合作学习与亲身体念,学习和探索三角形的内角和等于180°;
2、利用三角形的内角和等于180°这个已知条件进行有关角的计算;
3、培养学生自主学习。
二、说教法和学法
在本课题的教法和学法主要体现在以下两方面:
1、突出学生作为学习主体的作用
学生是学习的主体,教学中放手让学生去尝试、去思考,让他们亲身感受知识的来龙去脉、获取知识的认知规律。作为教师,应以学生的发展为立足点,以自主探索为主线,以求异创新为宗旨,采取多媒体辅助教学,尽可能地为学生创设参与的情境,充分调动学生学习的积极性,强化学生的主体地位,不断培养学生自学能力。根据本节课教材内容和编排特点,按照学生认知规律,遵循教师为主导,学生为主体的指导思想,我主要采取操作尝试、观察对比、发现归纳等方法进行教学。
2、让学生在创造中学习,在学习中创造
学会在具体情境中发现问题、提出问题并初步解决问题,体念探索的成功、学习的快乐。通过动手操作、独立思考和小组合作交流活动,完善自己的想法,提高自己的技能;通过动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节。鼓励学生大胆想象,通过自己的思考和探究,努力尝试去发现和创造,培养他们的创造精神。这也正是“新课标”赋予我们每一个教学工作者的神圣使命!
三、说教学过程
为了激发学生的学习兴趣,我事先邀请两个学生表演两个大小相去甚远的三角形的争辩:都说自己的内角和较大,用夸张搞怪的动作争得唾沫星四溅,以期引起学生的注意力,进而提出问题:到底谁说的正确呢?以“请你做裁判”为名引入课题。
接着进行小组分工合作学习活动,在小组内,每个同学画一个任意三角形,然后分工量角度、登记与求和,并对这些三角形的内角和的度数进行分析、归纳,得出三角形的内角和大约是180°左右的初步结论。接着由教师引导学生综合分析归纳各活动小组的计算结果,得出任何三角形的内角和都等于180°的结论。
为证明这个论断的正确性和加深学生的认识,教师接着组织学生进行“拼一拼”(即把三角形的三个角撕下来拼在一起拼成一个平角)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作活动,使学生更进一步确信:三角形的内角和等于180°。同时向学生灌输数学王国里有许许多多的规律和奥秘,有待同学们去努力探索,以激发学生的学习兴趣。
接下来是知识的应用:已知三角形中两个角的度数求第三个角的度数以及其他的相关知识和练习。
四、教学演示
1、两个学生表演争论自己的三角形内角和大些,以让大家做裁判为名引入课题;
2、指导小组合作学习活动,然后综合归纳:三角形的内角和等于180°;
3、引导学生实践操作:拼一拼、折一折(以证明三角形的内角和确实等于180°);
4、练习:判断题
①钝角三角形的内角和大于直角三角形的内角和。
②把一个三角形剪成两个三角形后,每个三角形的度数不再等于180°了。
③直角三角形中的两个锐角和等于90°
5、学习求三角形中角的度数的方法……
三角形课件(篇7)
一、教学目标
1、知识与技能:学生通过动手操作,实践学习,能够按照三角形各个角、各条边的关系,给在三角形分类。
2、数学思考:利用已有的分类知识,概况出三角形的特点。
3、解决问题:在分类的过程中掌握三角的共性与个性,从而为进一步学习三角形的认识奠定定基础。
4、情感与态度:在共同学习中,训练学生的自我探索能力,培养学生主动探索精神中和创新意识。
二、教学准备
1、课件一个。内有三角形分类的标准,按角分、按边分的集合图及各个练习。
2、每个学生课前准备好各不相同的6个三角形。
三、教学过程
(一)复习旧知导入新课
同学们,上节课我们已初步认识了三角形,知道每个三角形都有三条边,三个角和三个顶点。今天这节课我们一起来学习三角形的分类。
(二)探索交流,解决问题
师:老师给大家带来了一幅图片,这是?生:三角形。
师:这艘船里面有很多各种各样的三角形,我们整理一下,看看有几类三角形。要给三角形分类,就要依据一定的标准,三角形可以按照什么来分呢?生:可以按照角,也可以按照边。
师:我们回顾一下角的知识。角可以分为锐角、直角、钝角。(白板演示)师:拿出你们的自学探究1,把这艘大船上的三角形先按照角分一分。
1、小组合作、讨论。
学生动手操作,教师巡视。(学生拿出信封里的8个三角形,动手操作,有的用量角器量角的度数,并进行讨论)
2、选择一名同学上黑板分一分。
同学们,经过大家的合作、讨论,你发现了三角形的三个角有什么特征?(学生会说出:我发现有些三角形有3个锐角,有些有2个锐角。我发现三角形有2个锐角,1个直角,我发现三角形有2个锐角,1个钝角??)
3、师生共同优化
根据角你认为可以把三角形分成几类?(交流。最后结论:三个角都是锐角,两个锐角一个直角,两面个锐角一个钝角)
在这些三角形中一定会有几个锐角?第三个角又会出现几种情况?(锐角、直角、钝角)
那三角形按角的大小可分几类?(分三类。一类是三个角都是锐角,另一类是有一个角是直角,还有一类是有一个角是钝角,我觉得这样既简单又清楚三角形各类的特点)
请大家根据它们的主要特征,给这三类取个名字好吗?(三个角是锐角的叫锐角三角形,有一个角是钝角的叫钝角三角形,有一个角是直角的叫直三角形)
那为什么直角、钝角三角形只要说出有一个角是直角、钝角就可以,而锐角三角形要说出三个角都是锐角呢?(因为每个三角形都有2个锐角,而锐角三角形才有3个锐角,没有说出3个锐角。我们就不能确定它属于什么三角形)
4、得出结论。
三角形按角可分三类(幻灯片出示集合图)。
直角三角形
锐角三角形
钝角三角形
5、研究按边的分类
(1)根据角可以把三角形分成三类,你们还有其他发现吗?看看边有什么规律呢?(①我发现我这个锐角三角形三边相等。②我这个三角形只有两边相等。③我的这个三角形三边都不相等)
交流中得到:三角形按边的长短也有三种情况,一种是三边不相等,一种是两边相等,另一种是三边都相等。
(2)教师归纳:我们根据三角形三边的长短,可把三角形分为三种。(板书:按边分类)
①三边都不相等的三角形,我们把它叫做不等边三角形(任意三角形)。 ②两边相等的三角形,叫做等腰三角形,是特殊的三角形。③三边都相等的三角形叫等边三角形,是特殊的等腰三角形,也叫做正三角形。
6、认识等腰、等边三角形各部分的名称。
(1)课件出示。认识等腰三角形的腰和底,等边三角形的三条边。师生在交流中指出各部分名称:
等腰三角形中相等的两边我们把它叫做腰,另一边叫做底。我们把等边三角形叫做特殊的等腰三角形。等边三角形一定是等腰三角形,而等腰三角形只有两边相等,等腰三角形不一定是等边三角形。
(2)探究等腰三角形和等边三角形角的待征。
7、同桌合作研究这两种三角形的三个角。(量一量角的大小)
师生交流得出:等腰三角形两条腰所对的角叫底角,两个底角也相等。另一个角叫顶角。等边三角形的三个角都相等。
8、掌握按边分类三角形之间的关系。三角形按边分类的情况(课件出示集合图)。
(三)巩固应用,内化提高
1、说书上84页三个生活中的例子分别是什么三角形?
2、判断
(四)回顾整理,反思提升
今天这节课你们学会了什么?你是怎样学到这个知识的?最高兴的上什么?还有什么不懂的地方吗?对老师有什么建议?教学反思
在设计本课教学时,我觉得“要无限地相信学生的潜力”,我决定只要学生自己能说的、能做的我就绝对不说、不做。整堂课学生的自主学习相当充分,并不是留于形式,浮于表面,而是实实在在的自主学习。特别是在探索三角形分类的过程中,多次让学生观察、思考、讨论,自主探索三角形的分类知识,教师仅仅起了组织和引导的作用
三角形课件(篇8)
教学目标:
●让每位学生通过动手操作,经历给三角形分类的过程,认识并识别锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,了解各种类型三角形的特点。
●通过观察、比较、归类,培养学生的观察能力和思维能力。
●创设恰当的问题情景让学生充分地、主动地进行思考、归纳和相互讨论,激发其更加积极主动学习的精神和探索的勇气;通过小组合作探究,培养学生学会合作学习。
教学重点:
认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
教学难点:
理解并掌握各种三角形的特征。关键:学会根据事物的某一特征对其进行分类。教学准备:三角形卡片若干张
一、谈话导入
师:同学们,今天咱班来了许多客人,你能对教室里的人进行分类吗?(学生们想到按性别分、按发型分、按年龄分、按视力分、按身份分等多种不同的分类标准)很好,分类的标准不同,分的结果也不同。这节课我们就来研究《三角形的分类》。板书课题
二、探究新知
1、出示幻灯片1前置作业
2、研究分类标准
①师:下面我们就围绕这几个问题展开研究。首先,小组讨论我们可以按什么标准给三角形分类?你们组想怎样分
②师:小组代表来说说你们是怎样想的?组1:可以根据这些三角形角的特点来分类。组2:也可以根据边的特点给这些三角形分类。 ㈡三角形的分类
1、三角形的分类
师:老师也同意你们的观点,下面我们就根据三角形角和边的特点,来对这些三角形进行分类。
请同学们拿出课前老师发的信封,请小组长分好工,一起合作完成这个活动。开始吧。
2、学生汇报
师:同学们分好了吗?先请这个小组派同学到前面来说一说,你们是怎样对这些三角形分类的?
3、认识锐角三角形、直角三角形、钝角三角形
组1:我们组通过观察和测量,发现这些三角形有的三个角都是锐角,有的有一个角是直角,有的有一个角是钝角。所以我们将三个角都是锐角的三角形分为一类,把有一个角是直角的三角形分为一类,把有一个角是钝角的三角形分为一类。师:你说的真好。和他们组分的一样的举手?恩,实际啊在数学上根据三角形角的特征也是这样分类的。(师指着按角分的三角形逐一说)像这样,三个角都是锐角的三角形,我们就把它叫做——锐角三角形(板书);像这样,有一个角是直角的三角形,我们就把它叫做——直角三角形(板书);有一个角是钝角的三角形,我们就把它叫做——钝角三角形(板书)。
什么叫锐角三角形、直角三角形、钝角三角形呢?小组内练习说一说。谁来汇报?
4、小结。
师:在三角形这个大家庭中,根据角的特征,我们可以将它分为哪几类?(生说师出示幻灯片2集合图)
生:根据角的特征,我们可以将三角形分为锐角三角形、直角三角形、钝角三角形。
5、练习出示幻灯片3
6、出示幻灯片4小组合作学习三种三角形角的特点
7、学生汇报
师:根据三角形角的特点,我们可以把三角形分成这样三类。我们再来看看其他同学是怎样分的。请这个小组也派一名同学到前面来说一说,你们是怎样对这些三角形分类的?
组2:通过测量,我们发现有的三角形三条边的长度都相等,有的三角形有两条边长度相等,所以我们组这样进行分类:将三条边都相等的分为一类,有两条边相等的分为一类,其他的分为一类。
5、认识等腰三角形、等边三角形①认识等腰三角形
师:还有哪些同学是这样分的?同学们分得真仔细。
(师手指等腰三角形)同学们,象这样有两条边相等的三角形,叫做等腰三角形。(板书)
②学习各部分名称
师:我们来进一步认识等腰三角形,请同学们看屏幕。(出示幻灯片
5、
6、7)
在等腰三角形中,相等的两条边叫做它的腰,另一条边叫做它的底;两条腰之间的夹角叫做它的顶角,腰与底之间的夹角叫做它的底角。
同学们看,等腰三角形有几个底角?生:等腰三角形有两个底角。
师:这两个底角有什么关系呢?请同学们动手研究研究。生:我通过测量底角的度数,发现等腰三角形两个底角相等。师:有没有不一样的方法?
生:我将等腰三角形对折,发现两个底角重合,所以也发现两个底角相等。
师:谁来说说看你可以根据什么判断一个三角形是不是等腰三角形?生1:看这个三角形中是否有两条边相等。生2:看这个三角形中是否有两个角相等。 ③出示幻灯片8做一做
出示等腰直角三角板、红领巾、底角为75度的等腰三角形和底角为60度的等腰三角形,让学生逐一判断是否是等腰三角形。 ④认识等边三角形,了解它的特点
师:同学们,其实底角为60度的等腰三角形(幻灯片9),是等腰三角形的一种特殊情况。它的顶角也是60度,它的三条边都相等。象刚才同学们找出的4号、6号三角形都是这种情况。象这样,三条边都相等的三角形,我们把它等边三角形。
谁能完整地说说等边三角形有什么特点?
生:等边三角形三条边都相等,三个角都相等。
师:也就是说,根据三角形边的特点可以把三角形分为两类,一类是不等边三角形,一类是等腰三角形。等边三角形是特殊的等腰三角形。(出示幻灯片10集合图)
⑤出示幻灯片11做一做
师:你能从一些三角形中分辨出等腰三角形、等边三角形吗?
三、水平测试
师:刚才同学们通过观察,找到了给三角形分类的标准,并根据三角形角和边的特点对三角形进行了分类。老师要看看你们学的怎么样
㈠填空出示幻灯片12 ㈡判断出示幻灯片13 ㈢信封游戏出示幻灯片
三角形课件(篇9)
[设计思路]
这节课主要运用动手实践、自主探索、合作交流的学习方式,通过操作、讨论、交流等活动,使学生主动地获得数学知识的技能,发展学生的思维能力,培养学生创新意识。教学中加强数学知识与生活实际的联系,让学生体会到数学的价值,激发学生的学习兴趣,培养学生应用意识和实践能力。设计练习时应具有一定针对性、层次性、实践性,以此巩固三角形特征的认识。
[教学目标]
1、使学生联系实际和利用生活经验,通过观察、操作、测量、等学习活动认识三角形的基本特征,知道三角形各部分的名称,了解三角形的两边之和大于第三边。
2、让学生在由实物到图形的抽象过程中,在探索图形特征以及相关结论的过程中,进一步发展空间观念,锻炼思维能力。
[教具、学具准备]
学生准备小棒若干根(包括10cm、6cm、5cm、4cm长的小棒各一根),三角板,铁丝。
[教学过程]
一、创设情境,提出问题
1、(课件出示:如下图)师:老师每天上班都要从学校先经过加油站,再从加油站到学校,有没有更近一点的路呢?(从家直接去学校)
2、师:为什么从家直接去学校这条路最近呢?我们可以把这几个地点和路线看成什么图形呢?
3、谈话:三角形是我们过去认识的图形,这里面还有很多数学问题,今天同学要通过动手操作,自己来探索发现。(板书:三角形的认识)
[设计意图:创设学生熟悉的生活情境,提出问题引发学生深入思考,引起悬念,从而激起学生探索的愿望]
二、动手操作、探索新知
(一)感知三角形
1、师:生活中你在哪些地方见到过三角形?课件演示生活中的一些三角形。
2、师:同学们在生活中找出了许多三角形,你能想办法自己做个三角形吗?
学生操作,教师巡视指导
3、展示学生做出的各种三角形,并说说做的过程和方法(学生可能是用小棒摆,铁丝围,用纸折,用三角板画……)
指名让一名学生用小棒摆一个三角形,师故意拨动小棒,使学生明白摆小棒时应首尾相连。
4、师:同学们用自己的方法做出了不同的三角形,你们能自己画一个三角形吗?在课本第23页的点子图上自己画一个三角形。
5、师在黑板上画出三角形。
6、师:我们已经做了三角形,又画了三角形,你们知道三角形各部分的名称吗?自学课本第22页下面的图。
学生找出黑板上三角形的三条边、三个角、三个顶点。(师相机板书)
7、在自己画出的三角形上,标出各部分的名称。
8、小结:三角形是有三条线段围成的图形,它有三条边、三个角、三个顶点。
[设计意图:通过让学生自己动手做三角形、画三角形,并在学生摆小棒的过程中故意“捣乱”,让学生体验到三角形是由三条线段围成的图形,也为后面学生的活动打好基础;通过自学认识三角形有三条边、三个角、三个顶点,逐步形成三角形的概念。]
(二)感受三角形三条边的关系
1、谈话:刚才我们用小棒摆了三角形,如果任意给你们三根小棒能把他们围成三角形吗?(有的说“能”,有的说“不能”。)让我们动手实验一下吧!
小组活动要求:
a、从四根中任意选三根(小棒的长度分别为:10cm、6cm、5cm、4cm)
b、记录所选三根小棒的长度,看一看能否用选定的三根小棒围成一个三角形。
c、小组讨论有什么发现?
学生操作,教师巡视指导
2、展示和报告实验结果,说说选的哪三根小棒能围成三角形,哪三根小棒不能围成三角形。
3、说说能不能围成三角形跟小棒的什么有关?(长度)课件演示不能围成三角形的两种情况。
4、师:通过刚才的小组活动,老师的演示,你有什么发现?
引导学生说出:当两根小棒的长度之和等于或小于第三根时,就不能围成一个三角形。
5、观察能围成的三角形的三条边,看看有什么发现?
师生共同总结出:三角形两条边长度的和大于第三条边。
[设计意图:让学生动手操作、小组合作,让学生自己在操作过程中感受三角形三条边之间的关系;在交流中升华。培养学生动手操作能力,真正体现了学生学习方式的改善,体现了以学生发展为本的新理念。]
三、变式练习、加深理解
1、回到课开始的关于“老师去学校”的生活情境,现在可以说说什么从家直接去学校这条路近呢?
2、判断下面的线段能不能围成三角形?(“想想做做”第二题)
2厘米、4厘米、6厘米
5厘米、2厘米、5厘米
6厘米、2厘米、5厘米
总结窍门:只要看较短的两边之和大于第三边就能判断能否围成三角形。
3、把一根14厘米长的吸管剪成三段,用线串成一个三角形,能做多少个?如果每小段剪成整厘米长,能剪几个?
[设计意图:三个练习设计体现了一定的层次性,第一个练习前后呼应,让学生认识到数学知识源于生活,又用于生活;第二个练习旨在让学生学以致用,并总结出窍门;第三个练习有一定难度,拓展学生的思维,使不同的学生得到不同的发展,体现了“下要保底,上不封顶”的教学思想。
四、总结延伸
1、 师:这节课你对三角形有了什么新的认识?你有那些收获?
2、(课件演示)摇晃的椅子加了一根木棒就稳了,艾非尔铁塔高一千多米,这么多年依然雄伟壮观……这到底什么原因呢?其实这就跟三角形一个重要的特征有关,有兴趣的同学课后可以去查查资料研究研究。
三角形课件(篇10)
设计理念:
数学课程标准指出:有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本课的教学遵循学生的认知特点,为学生提供大量的观察、思考、操作、合作、交流、验证等空间和时间,使学生在自主探究和合作交流中,学会给三角形分类,掌握各类三角形的特征,体会数学的思想方法并获得广泛的数学获得经验。
教学内容:
人教版小学数学四年级下册第83—84页的内容。
学情与教材分析:
三角形对于学生来说是比较熟悉的,三角形的基本特征和各部分名称学生都已经掌握,而且学生已经学过了角的分类,认识了各种角的特征,这对于学生进一步学习三角形的分类打下了扎实的基础,在三角形分类的过程中,能沟通知识间的联系,掌握各种三角形的特征,培养学生的探究意识和合作意识。提高解决实际问题的能力,发展学生的空间观念。
教学目标:
1、通过观察、操作、比较,会根据三角形的角和边的特点进行分类,掌握各种三角形的特征。
2、在活动中渗透分类和集合的数学思想,培养学生动手操作能力和归纳概括能力,进一步发展学生的空间观念。
3、在三角形分类的过程中,沟通知识间的联系,培养学生的探究意识和合作意识。
教学重点:
会根据角和边的特点给三角形分类。
教学难点:
掌握各种三角形的特征。
教学准备:
课件、各类三角形学具、实验报告单、量角器、尺子等。
教学过程:
课前互动:用手比角。
一、创设情境,复习旧知
1、猜谜,复习旧知
师:孩子们,喜欢猜谜吗?(喜欢)今天,老师给大家带来了一个谜语,猜猜看。
课件出示:
形状似座山,
稳定性能坚。
三竿首尾连,
学问不简单。
——打一几何图形
师追问:猜得真准!你是怎么猜出来的?
2、导入、揭示课题
师:三角形有三个角和三条边,它的稳定性在日常生活中有着广泛的应用。你瞧,今天三角形王国的许多朋友来了(课件出示:不同形状的三角形),它们的形状一样吗?(不一样)对,它们形态各异,各有各的特点。这节课咱们就根据它们的特点来分分类。(板书课题:三角形的分类)
(设计意图:趣味竞猜,引“生”入胜。通过竞猜,唤起学生对三角形的角和边的有意注意,激活学生的学习热情,做到“课伊始,趣亦生”。)
二、实践操作,探究分类
师:孩子们,认真想一想,你要根据什么来给这些三角形分类?有不同意见吗?对,分类要按一定的标准进行,三角形可以按三个角和三条边的特点进行分类。接下来我们先按角来分。
(一)、按角分
1、师:老师把这些三角形放在小组长的1号信封里,在操作之前我们来看看学习提示,请位同学读一读。
学习提示:
A、每个组员从1号信封里取出2个三角形,仔细观察或比一比、量一量三角形三个角的每个角分别是什么角,标在三角形上。
B、有顺序地汇报,把同一类的三角形放在一起。
C、组长填写好报告单。
D、每组派一名代表汇报。
2、动手操作,合作分类。
3、全班汇报交流、评价。
师:你们组分成几类?哪几个分成一类?有什么特点?有不一样的分法吗?
4、课件展示,并根据各类三角形的特点起名称。
5、小结,师介绍三角形按角分的集合图并板书集合图。
6、比较三种三角形的异同点。
7、小结
(二)、按边分
1、师:学会了按角的特点给三角形分类,我们再来研究按边分的三角形。我把这些三角形放在小组长的2号信封里。操作之前请看学习提示,请位同学读一读。
学习提示:
A、每个组员从2号信封里取出1个三角形,用自己喜欢的方式研究三角形三条边的长度,你发现了什么?
B、有顺序地汇报,把同一类的三角形放在一起。
C、每组派一名代表汇报。
2、动手操作,合作分类
3、全班汇报交流、评价。
4、课件展示,并根据各类三角形的特点起名称。
5、认识等腰三角形和等边三角形各部分的名称,以及等腰三角形两底角的关系和等边三角形的三个内角的关系。
6、说一说生活中见过的等腰三角形和等边三角形,课件展示。
7、小结。
(设计意图:“自主学习的过程实际就是教学活动的过程”。以活动促学习是本节的教学定位。在活动中,给学生足够的时间和空间,自由的、开放的探究数学知识的产生过程。通过看一看、想一想、议一议、分一分、猜一猜等多种形式的学习,为学生提供更多“数学对话”的机会,力求让学生真正地动起来,充分展现做中学,从而获得对三角形边、角特征的认识,进而学会给三角形分类,促进学生的分类、概括、推理以及动手操作能力的提高,使他们在活动的过程中感悟出数学的真谛,逐渐养成探索的习惯,培养学生合作意识和创新能力。)
三、巩固练习,内化提高
1、猜角游戏
师:把三角形藏起来,只露出一个角,你能猜出是哪种三角形吗?(课件分别出示:露出一个直角、一个钝角、一个锐角)
追问:你是怎么猜出来的?
2、在点子图中画一个自己喜欢的三角形。
投影展示,介绍既是什么三角形又是什么三角形的知识。
(设计意图:多形式、多层次的练习力求把学生带人一个活动场,一个思维场,一个情感场!学生在这个场域中游历,逐渐地内化知识、增长智慧、提升能力。)
四、全课总结,课外延伸
1、这节课你有什么收获和大家一起分享,说说吧!
2、完成课本第87页第5题。
3、用三角形拼一幅美丽的图案。
(设计意图:通过总结帮助学生统揽知识要领,完善认知,使得对三角形有有更全面更深刻的理解,再把知识从课堂延伸课外,有效沟通数学与生活,实现小课堂大社会,体会数学知识在生活中的应用价值。)
三角形课件(篇11)
教学要求
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
教学重点
三角形的内角和是180°的规律。
教学难点
使学生理解三角形的内角和是180°这一规律。
教学用具
每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、出示预习提纲
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?
3、如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、展示汇报交流
1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4、指名学生汇报各组度量和计算的结果。你有什么发现?
5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。
12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13、出示教材85页做一做。让学生试做。
14、指名汇报怎样列式计算的。两种方法均可。
∠2=180°—140°—25°=15°
∠2=180°(140°+25°)=15°
课后反思:
对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。
三角形课件(篇12)
一、说教材
《三角形三边的关系》是人教版义务教育课程标准实验教科书《数学》第八册第82页的教学内容,属于"空间与图形"的领域。这部分内容是在学生知道了三角形有三条边、三个角和具有稳定性的基础上探索三角形三边的关系。大家知道,在平面图形里,三角形是由3条线段围成的,但并不意味着任意三条线段都能围成三角形。所以掌握这部分内容,可以进一步丰富学生对三角形的认识和理解;它既是对所学知识的延续,又是后继学习多边形的基础,在知识体系上具有承上启下的作用。
几何初步知识无论是线、面、体还是图形的特征、性质,对于小学生来说都比较抽象,要解决数学的抽象性和小学生思维之间的矛盾,就要充分运用直观性进行教学,让学生动手做数学,而不是用耳朵听数学,让学生经历"数学化"、"做数学"等过程,强调在教师的引导作用下,由"获得知识结论快乐"转变为"探究发现知识快乐",并注重与生活实际紧密联系,让学生获得良好的数学教育。依据新课标的精神、结合学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:
(一)教学目标
1、认知目标:通过创设情景、实物操作、观察比较,发现三角形任意两边之和大于第三边。
2、能力目标:培养学生自主探究、观察、比较和概括能力以及小组合作的意识,能根据三角形三边关系解释生活中的现象,提高解决问题的能力。
3、情感目标:结合教学内容,渗透数学文化、思想、方法的教育。
(二)说教学重难点
探究发现"三角形任意两条边的和大于第三边"是教学重点,而理解"任意两边"是本节课的教学难点。
接下来说说这节课的教法与学法
二、说教法
新课标指出,教无定法,贵在得法。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。新课程改革要求教师要由传统意义上知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;课堂教学要体现以学生为中心,让学生真正成为学习的主人。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在这一系列活动中经历"数学化"的过程
三、说学法
有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,动手操作法、观察发现法、自主探究法、合作交流法是这一节课的学习方法。整节课让学生体验"做数学"的过程。
以下是我的`而教学流程。
四、说教学流程教学流程按照8个环节进推进:
第一环节:矛盾冲突。
兴趣是最好的老师,上课一开始,我给学生变魔术,用长度分别是15厘米,13厘米10厘米的三根小棒首尾相接围成三角形,在学生认为我的魔术太简单而不屑一顾时,我让一个学生也上来变一个(给表演的学生提供长度是15厘米,9厘米,26厘米的小棒)学生围不了三角形。我说,他没能围出一个三角形,你能吗?(不能)问题到底出在哪?学生估计会把注意力集中在第三根小棒上,认为第三根小棒太长了,如果是这样,我就把第三根小棒换成5厘米的,还是围不了,此时,教师引导学生提出疑问:怎么就围不起来的呢?看来,看来,三根小棒是否能围成三角形跟它们的长度有关,这节课,老师和你们一起来研究三角形三边的关系。(板书课题)
在教师能变魔术,而学生却变不成的矛盾冲突中,可能已经有大部分学生开始这节课的数学思考了。此处"魔术"的价值不仅仅在于激发学生学习的兴趣,还在于成功地将学生引入到数学思考之中。
第二环节:初建模型。
新课标强调要从学生已有的生活经验出发,让学生动起来,活起来,让他们在猜想、质疑、验证、探究、问题解决等过程中,经历摆一摆、围一围、比一比、想一想、议一议等活动,努力营造协作互动、大胆表达课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
给学生提供研究的材料,(5根小棒,不同颜色长度不同,红色(2根)3厘米,绿色5厘米,蓝色7厘米,黄色8厘米。)并提出操作要求(ppt出示)
(1)从这5根小棒中任意选取3根围一个三角形;
(2)同桌2人合作,共同摆小棒。
(3)摆完后共同观察,并把结果记录在表格中。
(4)音乐响起开始,音乐停止时活动结束。
看哪一组完成最多最好。
这一环节是要发挥每个人的。作用,全员参与,人人有事做,避免小组合作流于形式。
反馈(1)3 3 5(2)3 3 7
(3)3 3 8(4)3 5 7
(5)3 5 8(6)3 7 8
(7)5 7 8(ppt出示表格)
观察:三根小棒在什么情况下能围城三角形呢?
最后引导归纳:三角形两条边的和大于第三条边(师板书)
随着教学活动的逐步展开,教师围绕"核心知识"精心设疑,引导学生操作观察比较,使学生的思考沿着教学目标不断深入。
第三个环节,完善模型。
回到变魔术的环节,验证学生没有围成的三角形三边的关系,9+155怎么也不能围成三角形呢?
完善性质:三角形任意两边的和大于第三边
验证老师变出的三角形三边的关系,10+13>15 10+15>13 15+13>10
第四环节:验证模型。
验证:让学生画出任意三角形,量出三条边的长短再算一算,三边之间的关系。
引导学生经历从特殊到一般的数学思考过程,让学生猜想,发现,归纳,验证,寻找反例等数学活动中思考、辨析、释疑、概括、推理,有效渗透从特殊到一般的数学思想,为学生构建了一种结构严谨、逻辑严密的数学思维模式。
第五环节:应用模型。
判断下面的小棒能否围成三角形
(1)2厘米3厘米8厘米()
(2)4厘米7厘米8厘米()
(3)6厘米5厘米8厘米()
(4)5厘米14厘米9厘米()
(5)5厘米9厘米13厘米()
第六环节:优化模型、并体会极限思想。
——优化
有的学生很快做出判断,他们有什么诀窍?
这一过程实际上是打破刚才建构的数学模型,抓住问题本质属性,留下两条短边与长边比较,形成最优化的数学模型结构——两条短边的和大于第三边,
——极限思想
让学生重点观察(4)中的数据
提问:5厘米和9厘米能与多长的小棒围成三角形?
学生思考:第三边不比4厘米短,不能超过14厘米(课件演示)
这一环节是通过直观操作让学生感悟数学的极限思想,让学生感受当两边的长度是5厘米和9厘米时,第三边的长度在4与14厘米之间,感受当第三边变成4厘米或14厘米时,三角形便不存在,将成为一条直线,感受量变到质变的过程,充满理性的思考的数学课堂才是真正扎实有效甚至高效的数学课堂。
第七个环节、走进生活
老师要去小雨家家访,走哪条路近?请你用今天学习的知识来解释
《三角形三边关系》说课
走小路近(让学生说明理由)
(ppt显示草坪)
还走这条路吗?
这一环节的设计不仅使学生深化了对三角形三边关系的理解,还让学生感知作为人还应该有一份社会责任,有一份人文情怀,彰显数学的大教育观。)
第八个环节:课后延伸。
播放《将军饮马》的故事(课件呈现图)
教师讲述:古希腊有一位聪明国人的学者,名叫海伦,有一天,一位将军不远千里来向他请教一个百思不得其解的问题,将军从A地出发到河边饮马,再到B地视察军营(出示图),怎么走路线最短?(出示路线图)你们能用今天学习的知识解决吗?
五、说板书设计
板书设计力求做到重点突出,一目了然。
纵观本节课,体验是学生学习的前提,是学生学习数学的本职与要求,可以说,没有体验就没有真正意义上的学习,慢慢跟着学生的脚步,让学经历的探索过程,在这一过程中,学生参与、经历、思考、反思、发展,作为教者,我们一路倾听花开的声音。
Yjs21.coM更多幼师资料延伸读
三角形全等课件
常言道,优秀的人都是有自己的事先计划。幼儿园教师在平时的学习工作中,都会提前准备很多资料。资料的定义比较广,可以指生活学习资料。参考资料可以促进我们的学习工作效率的提升。那么,你知道幼师资料的主要内容是什么吗?下面是小编帮大家整理的三角形全等课件,希望能为你提供更多的参考。
三角形全等课件 篇1
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。
教学目标:
1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识图能力;
3.让学生通过观察生活中的全等形和动手操作获得全等三角形的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重难点及突破:
重点:全等三角形的.概练和性质;
难点:能在全等变换中准确找到对应角、对应边。
教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。
教学准备:
1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。
教学流程:创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。
教学过程设计:
一、创设情境,引入新课。
1、与学生谈话,努力走近学生之中。
2、游戏情景,引入新课出示课件:大家来找茬游戏
引导:
1、观察两副图形在形状、大小、位置方面的共同点
2、两副图形形状、大小若相同该如何检验?
引导:什么样的图形叫做全等形?
定义:能够完全重合的两个图形叫做全等形;列举生活中的实例(一百元人民币)感知全等形。
二、合作交流,探索新知。
1、手脑并用,感受新知
用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。
2、观察诱导,探究新知。 (1)全等三角形相关概念
引导观察:课件操作演示两个三角形完全重合。引导学生类比得出全等三角形定义;
中国人民邮政
能够完全重合的两个三角形叫做全等三角形引导学生概括对应顶点、对应边、对应角定义;
全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。
(2)全等三角形的表达式
引导学生书写全等三角形的表达式:△ABC≌△DEF,读作:△ABC全等于△DEF。
温馨提示:
①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 ②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。
引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题
(3)全等三角形性质
引导学生观察并概括全等三角形性质
全等三角形的性质:全等三角形的对应边相等,对应角相等。用几何语言表达全等三角形性质:∵△ABC≌△DEF(已知) ∴AB=DE,AC=DF,BC=EF;
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)
3、合作交流,探究新知(1)手脑并用,体验新知
利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的图形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?
通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的方式使之重合。
(2)观察交流,探究新知
引导学生观察,交流探索规律。在全等三角形中,一般是:1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;
3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;
引导学生观察,交流发现规律。
针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。
三、合作交流,应用新知。
例:如图,△ABO≌△DCO,指出所有的对应边和对应角。
解:∵△ABO≌△DCO (已知) ∴AB=DC,BO=CO,AO=DO (全等三角形的对应边相等)
∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC (全等三角形的对应角相等)变式:若上图中△ABC≌△DCB,试写出这两个三角形中相等的边和相等的角。
解:∵△ABC≌△DCB (已知) ∴AB=DC,BC=CB,AC=BD (全等三角形的对应边相等)
∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC (全等三角形的对应角相等)
四、课堂练习,巩固新知。
(1)如图,△ABD≌△EBC,AB=3cm,BC=5cm,求DE的长.
解:∵△ABD≌△EBC,且AB=3cm,BC=5cm (已知)
∴AB=EB=3cm,BC=BD=5cm (全等三角形的对应边相等) ∴DE=BD-EB=5-3=2cm
(2)如图,已知△ABC≌△ADE,想一想: ∠ BAD= ∠ CAE吗?为什么?
解:相等,
∵△ABC≌△ADE(已知) ∴∠BAC=∠DAE(全等三角形对应角相等) ∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质)即∠BAC=∠DAE
五、师生互动,小结新知。
学习了这堂课你有哪些收获?并把它与同伴一起分享。
1、全等形的定义:能够完全重合的两个图形,叫做全等形。
2、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
3、全等三角形的性质:全等三角形对应边相等,对应角相等。
4、寻找全等三角形的对应边、对应角得规律。 (1)观察图形特点;
(2)观察表达式(对应关系)
六、布置作业。
课本P92习题15.1,第
2、4题。
七、教后感
······
板书设计:
15.1全等三角形
定义:
表示性质:
(学生板书)
三角形全等课件 篇2
教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。
设计理念:
针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:
1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。
教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)
师:请同学们先独立思考,然后小组交流意见
生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。
今天我们这节课来复习全等三角形。(引出课题)。
师:识别三角形及等的方法有哪些?
生:SAS 、 SSS、 ASA、 AAS 、 HL。
复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )
练习2、已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。
熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。
(1)求证:AB⊥ED
(2)若PB=BC,请找出右图中全等三角形,并给予证明。
用多媒体演示图形的变化过程。
师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。
生甲:AB垂直ED
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。
(根据学生的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?
生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。
师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)
例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。
教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。
(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度
关系如何?
生:基本相等。
生:长度相等。
师:如何来证明他们相等?注意审题。
学生先独立思考后,组内交流,等到有同学举手发言。
生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH
师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。
师:这样只能得到EF=FH。
生:再证明△FHC≌△FDC。
生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。
(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)
师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的识别法可以解决很多生活实际问题。
作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。
2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。
三角形全等课件 篇3
(一) 本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形与全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的`精神。
由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。
本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
首先,我出示一个实际问题:
问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……
然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以与毛毛一起来攻克这个难题呢?
这样设计的目的是既交代了本节课要研究与学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
数学教学的本质就是数学活动的教学,为此,本节课我设计了下列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。
活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。
活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。
活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。
教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。
活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺与剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。
活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。
活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。
最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。
若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?
活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。
教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。
例题教学是课堂教学的一个重要环节,因此,怎样充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。
首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。
问题1: 请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。
问题2: 你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?
这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。
在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:
(1) 基础知识应用。完成教材P139练一练2。
(四)课堂小结,建立知识体系。
(1) 本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。
(2) 你还有哪些疑问?
三角形全等课件 篇4
教学目标:
1、能根据方向与距离确定两地的相对位置,描述从一个地方到另一个地方的具体路线。
2、能正确运用所学知识准确地说出来去某个地方所走的路线,能与实际生活联系起来进行学习。
3、养成尊敬老人的传统美德。
教学重点:学会看简单地图上的路线图。
教学难点:
能用准确的语言描述从一个地方到另一个地方的具体路线。
教学设计:
(一)、情境创设:
师:首先请大家唱首歌:《让座》。
师:刚才我们唱的这首歌讲的是什么:叔叔给我们让座我们可以说是爱护儿童也就是爱幼的行为。那我们给婆婆让座是什么行为呢?预设(生:尊敬老人。)
师:对!尊敬老人是中华民族的传统美德。那我问问大家:重阳节这天,小红、小明和小刚三个好朋友约好去敬老院看望老人。(板书:看望老人)但三个小伙伴不认识路,他们手中只有一副地图,这可难住了三个小伙伴。大家能帮帮他们吗?老师把三个小伙伴去敬老院的路线图带来了。(课件出示主题图)看看你能从图中看懂什么?
(二)、探索新知:
1、观察路线图,学会从中获取信息。
说一说,在图中你获得了哪些数学信息?
你知道图上的符号表示什么意思?那些数又表示什么?图中的每一小段表示什么呢?
2、解决问题:
小红现在要去敬老院,她应该怎样走?敬老院与邮局都在小红家的西边,怎么区分敬老院与邮局的不同位置呢?你能用准确的语言描述吗?
请你说一说小明怎样走才能到敬老院?小刚呢?
①
请你思考后与你的同桌说一说“三个小朋友分别从自己家出发,怎样走才能到敬老院?”
出示课本第62面的“填一填”:三个小朋友分别从自己家出发。
小红向()走()米到敬老院;
小明向()走()米,再向()走()米到敬老院;
小刚向()走()米,再向()走()米到敬老院。
②学生看图试着完成,再小组交流,说一说为什么这样填。
③集体交流,教师根据学生的答案演示课件,验证结果、加深印象
你知道谁家离敬老院最近?谁家离敬老院最远?为什么?
如果三个小朋友看望老人后,他们怎么走才能回到自己的家?
三个小伙伴回到家后各自去做自己的事。小刚要去邮局,小红和小明要去书店,他们又应该怎样走呢?在小组内交流交流。
(三)、巩固练习:
1、帮三个小伙伴解决了问题,现在我们再帮城建局的叔叔们一个忙好吗?
在商场的东面60米的地方建一个游乐场,请用三角符号标出她的位置。在商场的西面20米的地方建一个停车场,请用圆形标出它的位置。如果你是设计师,你还想建什么?建在什么地方?把你的想法和同桌说一说。
2、有一天,三个小动物听说一个地方藏有宝贝,它们决定去寻宝,谁能说一说它们的寻宝路线,并算一算谁家离的最近?(参看课本的寻宝图)
3、小兔送信:
小兔要给4只小动物送信,你能说说它的送信线路吗?(学生独立思考,并在书上标出自己设计的路线,借助实物投影仪,让学生展示结果边说自己设计的路线,边用彩笔演示过程)
送完信后小兔回到家一共走了多少米?
小兔送信有几条路线?走哪条最近?
4、刚才你们在路线图中能够很好的分辨东南西北,那请你看一看现在你所在的教室,你能告诉我哪是东、南、西、北、吗?(复习教室中的方向)
①你能说一说,从你的座位,怎样走可以走出教室?(同桌互相说一说,然后学生边说边演示)
②从教室出发,怎样走可以走到办公室?
(四)、课后总结:
这节课我们主要学习了什么?你有什么收获?你认为自己在本节课的表现怎么样?你还想说些什么?
三角形全等课件 篇5
一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.
二、教学目标分析
知识与技能
1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.
2.能准确确定全等三角形的对应元素.
3.掌握全等三角形的性质.
过程与方法
1.通过找出全等三角形的对应元素,培养学生的识图能力.
2.能利用全等三角形的概念、性质解决简单的数学问题.
情感、态度与价值观
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.
三、教学重点、难点
重点:全等三角形的概念、性质及对应元素的确定.
难点:全等三角形对应元素的确定.
四、学情分析
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.
五、教法与学法
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.
六、教学教程
Ⅰ.课题引入
1.电脑显示
问题:各组图形的形状与大小有什么特点?
一般学生都能发现这两个图形是完全重合的。
归纳:能够完全重合的两个图形叫做全等形。
2.学生动手操作
⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。
⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?
(学生分组讨论、提出方法、动手操作)
3.板书课题:全等三角形
定义:能够完全重合的两个三角形叫做全等三角形
“全等”用“≌”表示,读着“全等于”
如图中的'两个三角形全等,记作:△ABC≌△DEF
Ⅱ.全等三角形中的对应元素
1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?
2.学生讨论、交流、归纳得出:
⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
Ⅲ. 全等三角形的性质
1.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边
有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
全等三角形的性质:
全等三角形的对应边相等.
全等三角形的对应角相等.
2.用几何语言表示全等三角形的性质
如图:∵ABC≌ DEF
∴AB=DE,AC=DF,BC=EF
(全等三角形对应边相等)
∠A=∠D,∠B=∠E,∠C=∠F
(全等三角形对应角相等)
Ⅳ.探求全等三角形对应元素的找法
1.动画(几何画板)演示
(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?
归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.
(2).说出每个图中各对全等三角形的对应边、对应角
归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.
3. 归纳:找对应元素的常用方法有两种:
(1)从运动角度看
a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.
b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
c.平移法:沿某一方向推移使两三角形重合来找对应元素.
(2)根据位置元素来推理
a.有公共边的,公共边是对应边;
b.有公共角的,公共角是对应角;
c.有对顶角的,对顶角是对应角;
d.两个全等三角形最大的边是对应边,最小的边也是对应边;
e.两个全等三角形最大的角是对应角,最小的角也是对应角;
Ⅴ.课堂练习
练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,
你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?
练习2.△ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗?请与同伴交
流并写出来.
Ⅵ.小结
1.这节课你学会了什么?有哪些收获?有什么感受?
2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的
Ⅶ.作业
课本第92页1、2、3题
三角形全等课件 篇6
各位老师:
大家好!我说课的内容是人教版八年级数学上册第十一章第二节《全等三角形的判定》第一课时,下面我将从教材、教法、学法、教学流程等几个方面和大家分享一下我对本节课的一些想法和体会。
一、教材分析:
1、教材地位及学情
本课落实了课程标准中的“掌握利用“边边边”证明两个三角形全等”的要求,主要讲的是如何利用“边边边(SSS)”的条件证明两个三角形全等。它是在学生学习了全等三角形的概念及性质后展开的,是证明两个三角形全等的重要方法之一,也是证明线段相等、角相等的重要依据,是学生学习几何部分重要的切入点之一。
因为八年级学生观察、分析问题能力较弱,他们还不具备独立系统地推理论证几何问题的能力,思维具有局限性,考虑问题还不够全面。在学习过程中,老师充分发挥主导作用,适时点拨、引导,尽可能调动所有学生的积极性,主动参与到合作与探索中来,使学生在与他人合作中获取新知。
2、教学重点、难点:
综合大纲要求及教材内容特点,本节课我将“用三角形“边边边”的条件进行有条理思考并进行简单的推理。”确定为教学重点,将“三角形全等条件的探索过程”确定为教学难点。
3、教学目标:根据新课程标准,为了突出重点突破难点,我制定了以下四维教学目标:
(1)知识技能:
①掌握“边边边”条件的内容
②能初步应用“边边边”条件判断两个三角形全等
(2)数学思考:使学生经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程
(3)解决问题:会用“边边边”条件证明两个三角形全等
(4)情感态度:通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力
二、教法分析
课程标准倡导“创造性的使用教材,优化教学过程,并强调与生活实际相联系。”根据教学内容和教学目标我选用了以下的教学方法。
1、问题引入法
我将本课的知识点融入到一个个探究问题中,环环相扣,激发学生参与和思考的热情。培养学生的自学能力、数学思维能力以及应变能力。
2、引导学生合作
结合教材设置探究问题,组织学生分组讨论、合作探究,促使学生在合作和分享中,自主探索和独立思考中提升自己。培养学生的团结协作的精神。
在整个教学过程中,我始终要为学生创始一种宽松、民主、和谐的学习氛围,并给予鼓励性的评价,让学生的思维走进课堂,走进数学。
3.多媒体演示
在本课中我运用了多媒体进行直观演示,增强教学的直观性,使学生获得感性认识,激发学生的学习兴趣。
三、学法分析
课程标准要求“从学生自身的生活经验出发,以学生能够接受、乐于参与和能够促进思考、拓展体验等方式创造一个生机盎然的学习空间。”针对本节教材特点和教学目的,在整个的教学过程中我强调自主探索,注重小组合作交流,让学生的学习在探究的过程中进行,使他们在自主探究的过程中理解和掌握三角形全等的条件,提高学生探究、发现问题的能力,同时注意精选习题,做多种形式的练习,在教学中力争把学生思维展开,注重培养学生的数学思维能力。
四、教学流程
关于本节课的教学过程我设计的如下五个节:环节一:创设情境,导入新课;环节二:师生互动,探索新知;环节三:题组跟进,巩固新知;环节四:反思小结,体验收获;环节五:课堂作业
环节一:创设情境,导入新课;
学校有两块三角形装饰板如下图,小明想知道这两块板是否全等,这两块板很重又固定在墙上,小明只有刻度尺,你能帮小明想个办法吗?
设计意图:通过同学们身边的事例来启发学生,带着问题展开学习,激发学生学习兴趣和探索欲望,让学生感受数学源于生活,又服务于生活。
教学效果:这个问题马上调动了学生的学习积极性,学习气氛高涨,学生带着这个问题很快进入新的课堂。
环节二:师生互动,探索新知
(一)温故知新
已知:△ABC≌△DEF
找出其中相等的边和角
设计意图:利用多媒体带领学生回顾全等三角形定义及性质,同时引出问题,为探究新知做好准备。
教学效果:因为上节课内容简单容易理解,学生很积极的抢答这个问题,学习效果非常好,很自然地就过渡到探究问题上。
(二)尝试发现,探索新知
探究一:先任意画一个△ABC。再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个(一边或一角分别相等)或两个(两边、一边一角或两角分别相等)。你画出的△ABC与△A′B′C′一定全等吗?
设计意图:学生利用自己手中的三角形纸板探索、研究,分小组进行讨论交流,受问题启发,从最少条件开始考虑,一个条件、两个条件、三个条件……经过学生逐步分析,各种情况渐渐明朗,进行交流,予以汇总、归纳。对学生渗透分类讨论的数学思想。
教学效果:学生讨论激烈,为一种情况争得面红耳赤,真正体会到与人合作其乐无穷!也真正落实了课标中的数学分类讨论思想。
探究二:先任意画出一个△ABC,再画出△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC.把画好△A′B′C′的剪下,放到△ABC上,它们全等吗?
设计意图:让学生动手实践,以学生的探求活动为主体,让学生参与、经历、体验、感悟“三角形全等条件”的形成与发展过程,并能概括说明得出结论。
教学效果:学生更加积极的活动,因为是自己实践得出的结论,有些同学很是兴奋,但有些同学没操作好,很是沮丧。课堂活跃,学生主动参与,每个学生的动手能力都得到了提高。
接下来是例题探究,由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以我设计了一个填空题作为铺垫,让学生自己尝试写出证明过程,我再重点板书解题过程,还强调了三角形全等的书写格式以及应注意的问题。本环节的设置使学生学会用“边边边”证明两个三角形全等,重点培养了学生独立系统地推理论证几何问题的能力。
教学效果:学生大声的和我一起归纳、齐声朗读解题过程!学生初步掌握了用符号语言证明两个三角形全等。
环节三:题组跟进,巩固新知
设计意图:练习一:学生体会公共边的应用,加强学生的观察能力;练习二:知识性总结,学生能够准确书写符号语言,为几何题的合情推理做好语言准备。练习三是一道开放性试题,让学生体验数学的发散思维。练习四是将实际问题抽象为数学问题的建模过程,锻炼学生从数学的视角来审视问题。
教学效果:这个环节的设置,为学生自主学习提供了空间,小组内自我评析,我给各小组打分评价,用小组量化评比的方式激励学生。错题自我改正后再师徒互教。学生学习积极性高,热情高涨。
为了突破难点我又设计了一道提高题,学生读题、思考、再小组交流得出各自的解题过程,让学生学会添加辅助线解决问题,实现四边形到三角形的转化。一题多解,变换角度对学生进行训练,从不同角度对问题进行分析,考虑问题全面。
教学效果:学生很快进入了思考,但很多学生不能解决这个问题,当别的同学提出自己的意见时,脸上露出了喜悦之情!最后在同学们共同努力下各种解题方法一一呈现!学生们的数学思考能力得到提高!
环节四:课堂小结
设计意图:学生在教师的指导下小组内交流,回顾本节课对知识研究的探索过程,小结方法和结论,提炼数学思想,掌握数学规律。
教学效果:学生积极发言,总结自己所学的内容,都由衷的感到喜悦和自豪!
环节五:课堂作业
针对不同层次的学生我设计了分层作业,有必做题和选作题,让不同层次的同学都能完成作业,体会到学习的乐趣!
五、教学评价:
通过本课的教学实践与反思我认为本课的亮点是:
1.本节课自始至终贯彻了以学生为“主体”,教师为“主导”小组合作的教学理念,是一节师生“双赢”的课堂,学生学得“精彩”,老师教的“享受”,学生成为学习的主人,真正把课堂回归给学生!
2.整节课形式活泼多样,学习气氛轻松、活泼而又团结互助,学生参与其中,乐在其中。
今后努力方向:
1、提高对课堂活动的控制,在小组讨论和展示的环节,把握好时间。
2、加强对学生发言的评价和引导。
通过这节课的教学实践我从备课环节到上课流程细微处的查缺补漏我深刻感受到自己的缺失与不足也看到自己的进步,从而更激励我用心钻研教材,留心教学环节,耐心引导学生。
以上是我对本节课的设计和思考,不足之处敬请各位指正。!
三角形全等课件 篇7
尊敬的各位评委老师:
大家好!今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》。下面,我将从教材分析、教学方法、教学过程等几个方面对本课的设计进行说明。
全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
学生在小学阶段已经学习了三角形的性质和类型,已经知道三角形可以分为锐角三角形、钝角三角形和直角三角形,但是对于全等三角形这一特殊的三角形却还是一个新的知识点。三角形是最基本的几何图形之一,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。学生对于研究它的全等的判定有着足够的感知经验,但是也存在着以下困难:全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前,学生所接触的逻辑判断中直观多余抽象,用自己的语言表述多于用数学语言表述。所以,怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的教学目标如下:
1.知识目标:
(1)理解全等三角形的概念。
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等。
(3)能熟练找出两个全等三角形的对应角、对应边。
2.能力目标:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力。
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3.情感目标:
(1)通过感受全等三角形的对应美激发热爱科学勇于探索的精神。
(2)通过自主学习的发展体验获取数学知识的感受,培养勇于创新,多方位审视问题的创造技巧。
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与学法的有机统一:一是看听结合,形成表象。看教师演示,听教师讲解,形成表象。二是手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
本节课的教学过程是:
首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。
其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。
最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
我以条理清楚为原则,既体现了学习目标,又突出了学习的重点,能够帮助学生更明了地理解这节课的知识点。特设计如下:
三角形全等课件 篇8
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
(1)动画(几何画板)显示:
一般学生都能发现这两个三角形是完全重合的。
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的'两位同学配合,把两个三角形放在一起重合。
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
(1) 投影显示题目:
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
三角形全等课件 篇9
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节。这是全章的开篇,也是全等条件的基础。它是继线段、角、相交线与平行线及三角形有关知识之后出现的。通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用。
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法。通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质。
1。了解全等三角形的`概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。
2。能准确确定全等三角形的对应元素。
1。通过找出全等三角形的对应元素,培养学生的识图能力。
2。能利用全等三角形的概念、性质解决简单的数学问题。
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度。
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期。为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识。
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合。
最新解直角三角形课件
为了让学生更好地掌握上课所学知识,老师需要提前准备教案,不能草率了事。教案是评价和总结教学过程的重要材料。笔者费心打造了这篇“解直角三角形课件”,希望能受到大家的青睐,供参考和使用,希望大家能够收藏并分享!
解直角三角形课件 篇1
一、说教材
今天我执教的这一课是二年级第二学期第五单元中《锐角、钝角、直角三角形》这一课。
教学目标:
知识与技能目标:知道三角形可以按角分为锐角三角形、钝角三角形和直角三角形以及它们的特征。能辨别锐角三角形、钝角三角形和直角三角形。
过程与方法目标:培养学生观察能力、动手操作能力和合作交流能力。
情感与价值观目标:提高学生对三角形的学习兴趣,感受三角形在生活中无处不在。
教学重点:
能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。
教学难点:
辨别锐角三角形、钝角三角形和直角三角形。
二、说教学过程
这节课由引入、新授、练习和总结四部分组成。
首先是从生活中引入三角形,让学生介绍和观察一些生活中的三角形,感受到三角形在生活中无处不在,以此引出课题。新授部分主要是由以下几个环节构成。
第一个环节通过学生动手操作来判断教师给出的6个三角形的三个角分别是什么角,并填写表格。这里不仅要学生把表格填写完整,还要学生总结出判断一个角是什么角的方法,首先用眼睛观察,如果明显比直角大或比直角小的就马上能够判断了,如果跟直角很接近或者拿不定主意的时候才要用直角量具去验证。填写表格不单单是记录数据,更重要的是让学生数形结合对锐角、钝角和直角三角形初步有所感知。
第二个环节是让学生通过观察刚才填写的表格来发现其中的规律,总结出这6个三角形中,每个三角形至少有2个锐角,最多有一个直角,最多有一个钝角。并且让学生通过验证自己带来的三角形,得出所有的三角形都有这样的特点。
第三个环节是根据刚才找到的三角形的角的特点,来给三角形分类。并且总结出三角形按角分类可以分成锐角、钝角和直角三角形三类。然后通过学生对刚才自己带来的三角形和老师出示的三角形进行判断,巩固三类三角形的定义,并总结出判断三角形属于什么三角形的方法。
第四个环节就是通过三角板和三角尺的比较,和改变三角板摆放的位置,让学生发现判断一个三角形是什么三角形只跟三角形角的特点有关,跟三角形的大小和它摆放的位置没有关系。最后的练习部分有两个练习,第一个练习是给出三角形的一个角让学生判断是什么三角形。给出一个直角和一个钝角时学生很容易就判断出来,但是给出一个锐角的时候,由于前面学习的负迁移,学生很容易脱口而出是锐角三角形,然后通过实际的演示、谜底的揭晓,让学生认识到判断一个三角形是锐角三角形必须要知道三个角都是锐角才行,给出一个锐角是不能判断它是什么三角形的。第二个练习其实是这节课的一个综合运用,学生不仅是要知道判断一个三角形是什么三角形的方法,还要以最快的速度来判断,也就是一开始讲的,明显比直角大或者小的角用眼睛就可以判断,比较像直角或者拿不定主意的时候一定要用直角量具去测量。最后总结的时候,还让学生把今天学到的知识跟自己的实际生活联系起来,整个一堂课从生活中提炼出数学知识,再把数学知识回归到生活中去。
解直角三角形课件 篇2
教学内容:等腰直角三角形(活动课)
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程:
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:得到一个什么图形?(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:那么,这样的三角形我们叫它什么三角形?
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究等腰直角三角形。
解直角三角形课件 篇3
一、 教材简析:
本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。
同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。
二、教学目的、重点、难点:
教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。
重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。
2、正确选择边与角的关系以简便的解法解直角三角形
难点:把实际问题转化为数学问题。
学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。
三、教学目标:
1、知识目标:
(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。
(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、
45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。
(3)运用三角函数解决与直角三角形有关的简单的实际问题。
(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、
2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。
3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.
四、、教法与学法
1、教法的设计理念
根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。
2、学法
学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。
解直角三角形课件 篇4
教学建议
1.知识结构:
本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.
2.重点和难点分析:
教学重点和难点:直角三角形的解法.
本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.
3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.
锐角三角函数的定义:
实际上分别给了三个量的关系:a、b、c是边的长、、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.
当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.
如:已知直角三角形ABC中,,求BC边的长.
画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式
,
由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得
.
即得BC的长为.
又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.
画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是
也就是
这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得
.
由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.
4. 直角三角形的解法可以归纳为以下4种,列表如下:
5. 注意非直角三角形问题向直角三角形问题的转化
由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例.
例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)
这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个解直角三角形的问题.
在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:
解:作于D,在Rt中,有
;
又,在Rt中,有
∴
又,
∴
于是,有
由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如
(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.
(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.
(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.
(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.
6. 要善于把某些实际问题转化为解直角三角形问题.
很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为解直角三角形问题.
我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?
据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为
,
另一条直角边为螺钉推进的距离,所以
,
设螺纹初始角为,则在Rt中,有
∴.
即,螺纹的初始角约为 .
这个例子说明,生产和生活中有很多实际问题都可以抽象为一个解直角三角形问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.
一、教学目标
1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;
3.通过本节的.学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.
二、重点·难点·疑点及解决办法
1.重点:直角三角形的解法。
2.难点:三角函数在解直角三角形中的灵活运用。
3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。
4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。
三、教学步骤
(一)明确目标
1.在三角形中共有几个元素?
2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?
(1)边角之间关系
(2)三边之间关系
(勾股定理)
(3)锐角之间关系 。
以上三点正是解直角三角形的依据,通过复习,使学生便于应用。
(二)整体感知
教材在继锐角三角函数后安排解直角三角形,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的。综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。
(三)教学过程()
1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)。
3.例题
【例1】 在中,为直角,所对的边分别为,且,解这个三角形。
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。
解:(1),
(2),
∴
(3)
∴
完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。
【例2】 在Rt中,,解这个三角形。
在学生独立完成之后,选出最好方法,教师板书。
解:(1),
查表得;
(2)
(3),
∴。
注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。
4.巩固练习
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力。
[参考答案]
1.(1);
(2)由求出或;
(3),
或;
(4)或。
2.(1);
(2)。
说明:解直角三角形计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出解直角三角形的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。
(四)总结扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。
2.幻灯片出示图表,请学生完成
四、布置作业
教材P.32习题6.4A组3。
[参考答案]
3.;
五、板书设计
解直角三角形课件 篇5
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形课件 篇6
一、麸曲白酒的生产工艺流程 当前麸曲白酒的生产,主要采用清蒸法和混烧法两种生产方法,其工艺流程如下: 1.混烧法工艺流程 2.清蒸法工艺流程 二、麸曲白酒生产工艺 (一)原料的粉碎 1. 原料粉碎的目的 原料粉碎可以促进淀粉的均匀吸水,加速膨胀,利于蒸煮糊化。通过粉碎又可增大原料颗粒的表面积,在糖化发酵过程中以便加强和曲、酵母的接触,使淀粉尽量得到转化,利于提高出酒率。原料粉碎后可使其中的有害成分易于挥发排除出去,有利于提高成品酒的质量。 2.粉碎要求 一般薯干原料经过粉碎应能通过直径为1.5―2.5毫米的筛孔,高梁、玉米等原料也不应低于这个标准。 3.粉碎设备及操作 薯干原料可用锤式粉碎机粉碎,高梁等粒状原料可用磙式粉碎机破碎。目前许多工厂的粉碎设备已和原料的气流输送设备配套,劳动强度和劳动条件得到极大的改善(气流输送详细内容请参阅酒精工艺第二节)。 (二)配料 1.配料的目的和要求 配料是白酒生产工艺的重要环节,其目的是要通过主、辅原料的合理配比,给微生物的生长繁殖和生命活动创造良好的条件,并使原料中的淀粉在糖化酶和酒化酶的作用下,尽可能多地转化成酒精。同时使发酵过程中形成的香味物质得以保存下来,使成品白酒具备独特的风格。配料时要根据原料品种和性质、气温条件来进行安排,并考滤生产设备、工艺条件、糖化发酵剂的种类和质量等因素,合理配科。 2.配料的主要依据 麸曲白酒的生产一般都在水泥池、石窖或大缸内进行,发酵过程中无法调节温度,只有适当控制入池淀粉浓度和入池温度,才能保证整个发酵过程在适宜的温度下进行。但入池温度往往受到气温的限制,因此只有通过控制入池淀粉浓度来保证发酵过程中产生的热量和酒精浓度,使不超过微生物正常活动所能忍受的限度。 (1)热量问题 酒精发酵是个放热过程,热量的产生有两种途径,即呼吸热和发酵热。产生呼吸热的反应式如下: C6H12O6十6O2 ――→ 6CO2十6H2O十热量(2817千焦耳) 在麸曲白酒发酵时,因为氧气少,所以呼吸热在总热量中占的比例很小,而是以发酵热为主 的,其反应式如下: C6H12O6 ――→2C2H5OH十2 CO2十热量(83.6―96.1千焦耳) 根据测定,每100克葡萄糖在酒精发酵时生成下列主要产物: 发酵产物 数量(克) 热能(千焦耳) 酒精 51.1 1500 甘油 3.1 60.2 琥珀酸 0.56 8.35 酵母残渣 1.3 21.55 二氧化碳 49.2 0 合计 1590.1 每100克葡萄糖具有1660千焦耳热量,因而在发酵过程中每100克葡萄糖能释放出70千焦耳的热量,相当于每克葡萄糖放出700焦耳的热。根据淀粉水解生成葡萄糖的数量,即每克淀粉在酒精发酵时能放出770焦耳热量。若以酒醅中含60%的水分计算,当酒醅中淀粉浓度由于发酵而降低1%时,酒醅温度应升高约2.4℃。考虑到热量散失和发酵过程中产生其它成分的影响,发酵过程中当淀粉浓度下降1%时,酒醅温度实际约升高2℃左右。 发酵温度的`高低与酵母的发酵力有着密切的关系。当温度升高,又有酒精存在时,酵母的发酵力会受到很大抑制。较高温度(例如36℃左右)会使酵母发酵到一定程度就停止。较低温度下发酵(例如28℃左右),酵母的酶活力不易被破坏,发酵持续性强,对糖分的利用比较彻底,因而出酒率也较高。麸曲白酒在发酵过程中,由于固体酒醅的传热系数较小,无法采取降温措施,只能靠控制入池温度和入池淀粉浓度来调节发酵温度,其中入池温度又往往受到气温的影响,所以主要是利用适当的入池淀粉浓度来控制池内发酵温度的变化,使发酵温度在整个发酵过程中不超过一定的限度,保证发酵的正常进行。根据酵母的生理特性,要求发酵温度最高不超过36℃6,若入池温度控制在18―20℃左右,也就是在发酵过程中允许升温在16―18℃左右的范围,根据每消耗1%淀粉浓度醅温约升高2℃计算,那末在发酵过程中可以消耗淀粉浓度9%左右,而一般酒醅的残余淀粉浓度为5%左右,说明入池淀粉浓度应控制在14―15%左右。如果采用续渣法生产,因为酒醅反复发酵,入池淀粉浓度可以适当提高一些,可控制在15―16%左右。如果采用配糟一次发酵法生产,因为配糟量较大(一般在1∶5左右),大多数酒糟可参与反复发酵,因此入池淀粉浓度可控制在13―14%左右。当然还要考虑到气温条件,原料品种和质量等其它因素的影响,应该根据具体情况进行灵活掌握。 (2)酒精浓度的问题 淀粉是产生酒精的源泉,在发酵过程中,当酒精达到一定的浓度时,会对微生物产生毒性,对酶起抑制作用,所以要在配料时注意适宜的淀粉浓度,使形成的酒精不超过微生物能忍受的限度。 根据淀粉经水解形成葡萄糖,又经酵母发酵转化成酒精的反应式计算,淀粉的理论出酒率为56.78%,或者说,每消耗1.53克淀粉可产生1毫升纯酒精。 酵母的品种不同,耐酒精的能力也不一样,一般在8.5%(容量),就明显阻碍酵母繁殖,酒精浓度达到12―14%(容量)时,酵母逐步开始停止发酵。但对酵母发酵而言,还受到温度、糖度、酵母品种等因素的影响。固体发酵白酒,酒醅所含水分较少,相对酒精浓度就较大,成熟酒醅中若含70%的水分,酒精浓度达7%(容量)时,那么相对酒精浓度就是10%(容量),这样的酒精浓度对酵母发酵还不致造成很大影响。 霉菌的蛋白酶在酒精浓度达4―6%(容量)以上时,酶活力就会损失一半,而霉菌的淀粉酶在酒精浓度高达18―20%(容量)以上时,酶活力才开始受到抑制。 从以上分析中可以看出,只要控制一定的酒精浓度(例如一般8%),对霉菌糖化和酵母发酵不会产生多大的影响。 (3)pH值问题 入池淀粉浓度过高,发酵过猛,前期升温过快,则因产酸细菌的生长繁殖,造成了酒醅酸度升高,影响出酒率和酒的质量。但各种微生物和各种酶都是由蛋白质所组成,微生物的生长和酶的作用都有适宜的pH值范围,如果pH值过高或过低,就会抑制微生物的生长,使酶活性钝化,影响发酵过程的正常进行。而适当的pH值可以增强酶活性,并能有效地抑制杂菌的生长繁殖。例如酵母菌繁殖的最适pH值为4.5―5.0,再低一些对酵母菌的生长繁殖影响也不大,但这样低的pH值对杂菌会产生很大的抑制力,若培养基的pH值为4.2或更低一点时,仅酵母可以发育,而细菌则不能繁殖,所以用调节培养基的pH值,来抑制杂菌的生长是个有效的方法。目前工厂里根据长期实践的经验,常用滴定酸度的高低来表示培养基或发酵醪中含酸量的多少。pH值是表示溶液中的H+浓度高低,而滴定酸度表示溶液中的总酸量,包括离解的酸和未离解的酸,它在某些情况下和pH值有一定的关系。麸曲白酒生产中,酸度最主要的来自酒醅,其次来自曲和酒母。在发酵过程中引起酸度增加的主要原因是杂菌的污染。 3.填充材料 酿制麸曲白酒,在配料时往往需要加入填充料,目的是为了调整淀粉浓度,增加蔬松性,调节酸度,以利于微生物的生长和酶的作用,并能吸收浆水和保持酒精,为发酵和蒸馏创造良好的条件。常用填充材料的种类和特性见表4―20。选用填充科要田地制宜,注意其特点和所含有害成分的影响。 常用作填充料的是稻壳、小米壳、花生壳等。以吸水性讲,玉米芯最大,这对出酒率有利。高梁壳含单宁较多,会影响糖化发酵。对酒的质量来讲,玉米芯含有较多的聚戊糖,生成的糠醛量较多。稻壳含有大量的硅酸盐,用量过多,会影响酒精的饲料价值。所以在选用各种填充料时要全面考滤,合理使用。 固态法麸曲白酒生产中,目前配料时均配人大量酒糟,主要是为了稀释淀粉浓度,调节酸度和疏松酒醅,并能供给微生物一些营养物质,同时酒糟通过多次反复发酵,能增加芳香物质,对提高成品白酒的质量有利。虽然酒糟经化验还含有5%左右的残余总糖,但主要是一些纤维素、淀粉l,6键结构的片段以及其它一些还原性物质,这些物质较难形成酒精,而被残留在酒糟中。 4.配料的比例和方法 由于原料性质不同、气温高低不同、酒糟所含残余淀粉量不同及填充料特性的不同,配料比例应有所变化。如果原料淀粉含量高,酒糟和其它填充料配入的比例也要增加;如果酒糟所含残余淀粉量多,则要减少酒糟配比而增加稻壳或谷糠用量。填充料颗较粗,配入量可减少。根据经验计算,一般薯类原料和粮谷类原料,配料时淀粉浓度应在14―16%左右为适宜。填充料用量占原料量的20―30%,根据具体情况作适当调整。粮醅比一般为1∶4―6。 例如以薯干粉为原料(以含淀粉为65%计算),采用清蒸一次发酵法生产,原料配比为: 冬天 薯干粉∶鲜酒糟∶稻壳=1∶5∶0.25―0.35 夏天 薯干粉∶鲜酒糟∶稻壳 =1∶6―7∶0.25―0.35 配料时要求混和均匀,保持疏松。拌料要细致,混蒸时拌醅要尽量注意减少酒精的挥发损失,原料和辅科配比要准。 (三)蒸煮 1.蒸煮的目的 蒸煮是利用水蒸汽的热能使淀粉颗粒吸水膨胀破裂,以便淀粉酶作用,同时借蒸煮把原料和辅料中的杂菌杀死,保证发酵过程的正常进行。在蒸煮时,原料和辅料中所含的有害物质也可挥发排除出去。 2.蒸煮过程中的物质变化 (1)淀粉 淀粉在蒸煮时先吸水膨胀,随着温度的升高,水和淀粉分子运动加剧,当温度上升到60℃以上,淀粉颗粒会吸收大量水分,三维网组织迅速扩大膨胀,体积扩大50―100倍,淀粉粘度大大增加,呈海绵状糊,这种现象称为糊化。这时淀粉分子间的氢键就被破坏,使淀粉分子变成疏松状态,最后和水分子组成氢键,而被溶于水,有效地被淀粉酶糖化。 原料不同淀粉颗粒的大小、形状、松紧程度也不同,因此蒸煮糊化的难易程度也有差异。麸曲白酒是采用固体发酵,原料蒸煮时一般都采用常压蒸煮。由于要破坏植物细胞壁,又考虑到淀粉受到原料中蛋白质和盐类的保护,以及为了达到对原料的杀菌作用,所以实际蒸煮温度都在100℃以上。 (2)蛋白质及含氮有机物质 由于常压蒸煮,温度不太高,蛋白质在蒸煮过程中主要发生凝固变性,极少分解。而原料中氨态氮在蒸煮时便溶解于水,使可溶性氮增加,有利于微生物的作用。 (3)糖分 蒸煮过程中使戊糖脱水成
解直角三角形课件 篇7
一、教材分析
(一)、教材的地位与作用
本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的'对学生进行这方面的能力培养。
(二)教学重点
本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。
(三)、教学难点
由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。
(四)、教学目标分析
1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。
2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。
3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。
二、教法设计与学法指导
(一)、教法分析
本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。
教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。
(二)、学法分析
通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。
学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。
(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。
三、教学过程设计
本节课我将围绕复习导入、探究新知、巩固练习、课堂小结、学生作业这五个环节展开我的教学,具体步骤是:
(一)复习导入
师:前面的课时中,我们学习了直角三角形的边角关系,下面老师来看看大家掌握得怎样?
1、直角三角形三边之间的关系?(a2+b2=c2,勾股定理)
2、直角三角形两锐角之间的关系?(∠A+∠B=900)
3、直角三角形的边和锐角之间的关系?
生:学生回忆旧知,逐一回答。
目的:温故而知新,使学生能用直角三角形的边角关系去解直角三角形。
师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的实际问题了,这节课我们学习“解直角三角形及其应用”,此环节用时约5分钟。
(二)探究新知
在这一环节中,我分如下三步进行教学,第一步:例题引入新课,得出解直角三角形的概念。
例1(课件展示)、如图,一棵大树在一次强烈的地震中于离地面10米折断倒下,树顶在离树根24米处,大树在折断之前高多少?
师:a或c还可以用哪种方法求?
生:学生讨论得出方法,分析比较,从而得出——使用题目中原有的条件,可使结果更精确。
师:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?
生:学生讨论分析,得出结论。
目的:使学生体会到(课件展示)“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”,此步骤用时约10分钟。
第三步:师生共同总结出解直角三角形的条件及类型。
师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?
生:学生交流讨论归纳(课件展示):解直角三角形,只有下面两种情况:
(1)已知两条边;
(2)已知一条边和一个锐角。
目的:培养学生善总结,会总结的习惯和方法,使不同层次的学生得到不同的发展,此步骤用时约3分钟。
(三)课堂练习:
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形课件 篇8
2.5 直角三角形(2) 〖教学目标〗 ◆1、掌握直角三角形斜边上中线性质,并能灵活应用. ◆2、领会直角三角形中常规辅助线的添加方法. ◆3、通过动手操作、独立思考、相互交流,提高学生的逻辑思维能力以及协作精神. 〖教学重点与难点〗 直角三角形的性质及其应用是初中几何部分比较重要的内容,是实验几何向论证几何过渡之后学生学习几何知识的一个新的起点,有着承上启下的作用,而“直角三角形斜边中线等于斜边一半”这一性质无论在几何计算中还是在相关的推理论证中都起到很重要的作用。 ◆教学重点:“直角三角形斜边上中线等于斜边的一半”这一性质的灵活应用. ◆教学难点:在直角三角形中如何正确添加辅助线. 〖教学准备〗:三角板,多媒体课件 〖教学过程〗: 二度备课: 先复习上节课所学的知识:如直角三角形的`定义及性质,判定一个三角形是直角三角形的方法。再让学生猜一猜:直角三角形斜边上的中线与斜边的一半有何数量关系,从而引出课题。 1、 直角三角形斜边上的中线等于斜边的一半 学生实验:每个学生任意画一个直角三角形,并画出斜边上的中线,然后利用圆规比较中线与斜边的一半的长短。 教师提问:让学生猜测直角三角形斜边上的中线与斜边一半的大小关系。 教师板书性质后可以演示一下教师预先准备好的证明过程给学生看,但不要求学生掌握。 课后反思: 培养学生的探索能力以及养成良好的合作交流能力。 课堂练习。 (1)直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为llll。 (2)已知,在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC=llll。 课后反思: 初步让学生巩固“直角三角形斜边上的中线等于斜边的一半”这一性质。 2、 直角三角形性质应用举例 例 如图2-18,一名滑雪运动员沿着倾斜角为30°的斜边,中A滑行至B。 已知AB=200m,问这名滑雪运动员的高度下降了多少m? 30° A B C 教师先引导学生理解题意后分析:书上分析。 教师板演解题过程: 解:如图作Rt△ABC的斜边上的中线CD,则CD=AD=1/2AB=1/2×200=100( 在直角三角形中,斜边上的中线等于斜边的一半) A ∵∠B=30°(已知) D ∴∠A=90°-∠B=90°-30° 30° C B (直角三角形两锐角互余) ∴∠DCA=∠A=60°(等边对等角) ∴∠ADC=180°-∠DCA-∠A=180°-60°-60°=60°(三角形内角和等于180°) ∴△ABC是等边三角形(三个角都是60°的三角形是等边三角形) ∴AC=AD=100 答:这名滑雪运动员的高度下降了100m。 课堂练习: P37、课内练习3、 师生小结 今天学习的直角三角形性质也是以后在直角三角形中一条常用的辅助线。 4、 布置作业 书上作业题 1、2、3、4、5
解直角三角形课件 篇9
2 .5 风 炭宝宝竹炭――呵护您的健康 教学目标 1、了解风是怎样形成的 2、知道风向、风速的表示方法和度量单位 3、学会用风向标、风速仪测定风向和风速的方法 4、了解风对人类活动和动物行为的影响 重点难点分析 重点:风的观测 难点:风的形成;目测风向、风速 教学过程 ◇视频片段《赤壁之战》引入课题《追寻风的足迹》。 演示并思考】把充满气体的气球充气口松开,会感到气球内的空气一涌而出,这是为什么? 一、风 1、风是空气的水平运动。 风是从高气压区流向低气压区的。 2、风的两个基本要素:风向和风速 1)风向是指风吹来的方向。 天气观测和预报中常使用8种风向。 表示方法:用一短线段表示。 用纸飞机测风向 【为什么做】 风向和风速是测量风的两个基本要素。观测风向的仪器叫风向标,由箭头、水平杆和尾翼三部分组成。那么风向标是怎样指示风向的呢?风向是由风向标箭头的方向来指示,还是由箭尾的方向来指示呢?风向又是怎么规定的呢?就让我们用纸飞机测风向这个简单的模拟实验来解决吧! 【怎样做】 折一纸飞机,中间用铅笔穿过(要让纸飞机能在铅笔上轻松转动)。用手握住铅笔,将纸飞机放在开启的电风扇前,观察纸飞机的机头和尾翼的指向。注意:此时人要站在纸飞机的后方。并借助指南针判断风向。 【学到了什么】 通过实验,使我们对风和风向有了一个直观的认识:纸飞机的箭头指向风来自的方向。同理,在气象观测中,风向是由风向标的箭头指向的。 同时也使我们明白:实验可以使我们更简洁明了地了解事物,也培养了我们的观察能力。 【进一步的研究】 (1)用纸飞机测风向的实验使你明白了风向标指示风向的事实。你是否在想:这是运用了什么原理呢?为什么风向标会有一定的指向呢?下面的文字,会帮助你有一个了解。 风向标是一种应用最广泛的测量风向仪器的主要部件。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。 地面风指离地平面10─12 米高的风。风的来向为风向,一般用十六方位或360°表示。以360°表示时,由北起按顺时针方向度量。 (2)你知道了风向的`测量方法,一定很想知道风速大小的测量方法。其实你也可以用简单的模拟实验来测量风速。请认真阅读下面的文字,你就会用生活中常见的小风车(参见三维风车式风速仪)或风压板来简单比较风速的大小了,动手试一试。 风向:指风吹来的 方向 ;天气观测和预报中常使用8种风向,即:东、南、西、北、东北、西北、东南、西南(图2―10)。 符号 代表东风。 (2)风速:指单位时间里空气在水平方向上移动的距离,其单位是:米/秒、千米/时或海里/小时表示。 测试风速的仪器叫风速计,它利用风杯在风作用下的旋转速度来测量风速。 风速仪有以下几种:①风杯风速表②桨叶式风速表③热力式风速表。 风速常用风级表示。 【阅读】各风级的名称、风速和目测结果 (3)风对人类的生活有很大的影响,有些动物的行为也和风有关。 【小结】
解直角三角形课件 篇10
等腰直角三角形
教学内容:等腰直角三角形(活动课)
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程():
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:“得到一个什么图形?”(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:“那么,这样的三角形我们叫它什么三角形?”
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究“等腰直角三角形”。
二、动手操作,探索新知。
1、
投影出示一个等腰直角三角形让学生试说。
边说边课件演示。
2、把刚才折成的等腰直角三角形再对折,看看又得到什么图形?
3、展开后把4个三角形都剪下来,重叠在一起,发现了什么?
4、取出其中一个等腰直角三角形指出已有的底和高。
提问:“斜边上的高你能不能画出来?”
出示探究要求:
①动手画出斜边上的高,同桌互相检验。
②量出斜边和斜边上高的长度,填在表格里。
③根据表格里的.数据,小组讨论,说说有什么发现?
④交流发现。
5、电脑演示并出示结论。
学生齐读:等腰直角三角形斜边上的高等于斜边的一半。
6、拼图游戏
(1)拿出2个完全一样的等腰直角三角形拼以前学过的平面图形。
(2)拿出4个完全一样的等腰直角三角形拼以前学过的平面图形。
学生小组合作拼图,到实物投影上展示。
(3)电脑演示拼成的没学过的平面图形。
三、合作交流,探求一题多解。
1、出示题目:已知等腰直角三角形的直
角边长是20厘米,求它的面积是多少?
2、出示题目:已知等腰直角三角形的斜边
长是20厘米,求它的面积是多少?
角形拼一拼、摆一摆。)
各小组汇报交流,说说想法。
教师板书各种解法。
四、
20厘米应用创新,总结升华。
1、一个边长为20厘米的正方形,连接
每边的中点,又得到一个正方形,求
涂色部分的面积是多少?
(学生互相探讨,交流解法。)
20厘米2、再连接空白部分正方形每边的中点,
所得的小正方形面积与空白正方形面
积有什么联系?与原正方形面积有什
么联系?你能求出它的面积吗?
(各小组之间互相讨论,说说想法。)
3、依次连接正方形每边的中点,每次得
到的新正方形面积与原正方形面积有什
么联系?从中你能发现什么规律?
(各小组之间互相讨论,交流发现的规律。)
五、回忆所学,谈谈收获。
本课我们学习了什么内容,你有什么收获?
2024解直角三角形课件汇编
教案课件是老师工作中一项必不可少的任务,每位老师每天都要写教案课件。教材是课堂教学中必备的参考资料。现在,幼儿教师教育网的编辑为大家推荐了一份名为“解直角三角形课件”的文章,希望你能阅读并发现其中的惊喜。祝你喜欢!
解直角三角形课件 篇1
教学内容:等腰直角三角形(活动课)
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程:
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:得到一个什么图形?(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:那么,这样的三角形我们叫它什么三角形?
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究等腰直角三角形。
解直角三角形课件 篇2
一、麸曲白酒的生产工艺流程 当前麸曲白酒的生产,主要采用清蒸法和混烧法两种生产方法,其工艺流程如下: 1.混烧法工艺流程 2.清蒸法工艺流程 二、麸曲白酒生产工艺 (一)原料的粉碎 1. 原料粉碎的目的 原料粉碎可以促进淀粉的均匀吸水,加速膨胀,利于蒸煮糊化。通过粉碎又可增大原料颗粒的表面积,在糖化发酵过程中以便加强和曲、酵母的接触,使淀粉尽量得到转化,利于提高出酒率。原料粉碎后可使其中的有害成分易于挥发排除出去,有利于提高成品酒的质量。 2.粉碎要求 一般薯干原料经过粉碎应能通过直径为1.5―2.5毫米的筛孔,高梁、玉米等原料也不应低于这个标准。 3.粉碎设备及操作 薯干原料可用锤式粉碎机粉碎,高梁等粒状原料可用磙式粉碎机破碎。目前许多工厂的粉碎设备已和原料的气流输送设备配套,劳动强度和劳动条件得到极大的改善(气流输送详细内容请参阅酒精工艺第二节)。 (二)配料 1.配料的目的和要求 配料是白酒生产工艺的重要环节,其目的是要通过主、辅原料的合理配比,给微生物的生长繁殖和生命活动创造良好的条件,并使原料中的淀粉在糖化酶和酒化酶的作用下,尽可能多地转化成酒精。同时使发酵过程中形成的香味物质得以保存下来,使成品白酒具备独特的风格。配料时要根据原料品种和性质、气温条件来进行安排,并考滤生产设备、工艺条件、糖化发酵剂的种类和质量等因素,合理配科。 2.配料的主要依据 麸曲白酒的生产一般都在水泥池、石窖或大缸内进行,发酵过程中无法调节温度,只有适当控制入池淀粉浓度和入池温度,才能保证整个发酵过程在适宜的温度下进行。但入池温度往往受到气温的限制,因此只有通过控制入池淀粉浓度来保证发酵过程中产生的热量和酒精浓度,使不超过微生物正常活动所能忍受的限度。 (1)热量问题 酒精发酵是个放热过程,热量的产生有两种途径,即呼吸热和发酵热。产生呼吸热的反应式如下: C6H12O6十6O2 ――→ 6CO2十6H2O十热量(2817千焦耳) 在麸曲白酒发酵时,因为氧气少,所以呼吸热在总热量中占的比例很小,而是以发酵热为主 的,其反应式如下: C6H12O6 ――→2C2H5OH十2 CO2十热量(83.6―96.1千焦耳) 根据测定,每100克葡萄糖在酒精发酵时生成下列主要产物: 发酵产物 数量(克) 热能(千焦耳) 酒精 51.1 1500 甘油 3.1 60.2 琥珀酸 0.56 8.35 酵母残渣 1.3 21.55 二氧化碳 49.2 0 合计 1590.1 每100克葡萄糖具有1660千焦耳热量,因而在发酵过程中每100克葡萄糖能释放出70千焦耳的热量,相当于每克葡萄糖放出700焦耳的热。根据淀粉水解生成葡萄糖的数量,即每克淀粉在酒精发酵时能放出770焦耳热量。若以酒醅中含60%的水分计算,当酒醅中淀粉浓度由于发酵而降低1%时,酒醅温度应升高约2.4℃。考虑到热量散失和发酵过程中产生其它成分的影响,发酵过程中当淀粉浓度下降1%时,酒醅温度实际约升高2℃左右。 发酵温度的`高低与酵母的发酵力有着密切的关系。当温度升高,又有酒精存在时,酵母的发酵力会受到很大抑制。较高温度(例如36℃左右)会使酵母发酵到一定程度就停止。较低温度下发酵(例如28℃左右),酵母的酶活力不易被破坏,发酵持续性强,对糖分的利用比较彻底,因而出酒率也较高。麸曲白酒在发酵过程中,由于固体酒醅的传热系数较小,无法采取降温措施,只能靠控制入池温度和入池淀粉浓度来调节发酵温度,其中入池温度又往往受到气温的影响,所以主要是利用适当的入池淀粉浓度来控制池内发酵温度的变化,使发酵温度在整个发酵过程中不超过一定的限度,保证发酵的正常进行。根据酵母的生理特性,要求发酵温度最高不超过36℃6,若入池温度控制在18―20℃左右,也就是在发酵过程中允许升温在16―18℃左右的范围,根据每消耗1%淀粉浓度醅温约升高2℃计算,那末在发酵过程中可以消耗淀粉浓度9%左右,而一般酒醅的残余淀粉浓度为5%左右,说明入池淀粉浓度应控制在14―15%左右。如果采用续渣法生产,因为酒醅反复发酵,入池淀粉浓度可以适当提高一些,可控制在15―16%左右。如果采用配糟一次发酵法生产,因为配糟量较大(一般在1∶5左右),大多数酒糟可参与反复发酵,因此入池淀粉浓度可控制在13―14%左右。当然还要考虑到气温条件,原料品种和质量等其它因素的影响,应该根据具体情况进行灵活掌握。 (2)酒精浓度的问题 淀粉是产生酒精的源泉,在发酵过程中,当酒精达到一定的浓度时,会对微生物产生毒性,对酶起抑制作用,所以要在配料时注意适宜的淀粉浓度,使形成的酒精不超过微生物能忍受的限度。 根据淀粉经水解形成葡萄糖,又经酵母发酵转化成酒精的反应式计算,淀粉的理论出酒率为56.78%,或者说,每消耗1.53克淀粉可产生1毫升纯酒精。 酵母的品种不同,耐酒精的能力也不一样,一般在8.5%(容量),就明显阻碍酵母繁殖,酒精浓度达到12―14%(容量)时,酵母逐步开始停止发酵。但对酵母发酵而言,还受到温度、糖度、酵母品种等因素的影响。固体发酵白酒,酒醅所含水分较少,相对酒精浓度就较大,成熟酒醅中若含70%的水分,酒精浓度达7%(容量)时,那么相对酒精浓度就是10%(容量),这样的酒精浓度对酵母发酵还不致造成很大影响。 霉菌的蛋白酶在酒精浓度达4―6%(容量)以上时,酶活力就会损失一半,而霉菌的淀粉酶在酒精浓度高达18―20%(容量)以上时,酶活力才开始受到抑制。 从以上分析中可以看出,只要控制一定的酒精浓度(例如一般8%),对霉菌糖化和酵母发酵不会产生多大的影响。 (3)pH值问题 入池淀粉浓度过高,发酵过猛,前期升温过快,则因产酸细菌的生长繁殖,造成了酒醅酸度升高,影响出酒率和酒的质量。但各种微生物和各种酶都是由蛋白质所组成,微生物的生长和酶的作用都有适宜的pH值范围,如果pH值过高或过低,就会抑制微生物的生长,使酶活性钝化,影响发酵过程的正常进行。而适当的pH值可以增强酶活性,并能有效地抑制杂菌的生长繁殖。例如酵母菌繁殖的最适pH值为4.5―5.0,再低一些对酵母菌的生长繁殖影响也不大,但这样低的pH值对杂菌会产生很大的抑制力,若培养基的pH值为4.2或更低一点时,仅酵母可以发育,而细菌则不能繁殖,所以用调节培养基的pH值,来抑制杂菌的生长是个有效的方法。目前工厂里根据长期实践的经验,常用滴定酸度的高低来表示培养基或发酵醪中含酸量的多少。pH值是表示溶液中的H+浓度高低,而滴定酸度表示溶液中的总酸量,包括离解的酸和未离解的酸,它在某些情况下和pH值有一定的关系。麸曲白酒生产中,酸度最主要的来自酒醅,其次来自曲和酒母。在发酵过程中引起酸度增加的主要原因是杂菌的污染。 3.填充材料 酿制麸曲白酒,在配料时往往需要加入填充料,目的是为了调整淀粉浓度,增加蔬松性,调节酸度,以利于微生物的生长和酶的作用,并能吸收浆水和保持酒精,为发酵和蒸馏创造良好的条件。常用填充材料的种类和特性见表4―20。选用填充科要田地制宜,注意其特点和所含有害成分的影响。 常用作填充料的是稻壳、小米壳、花生壳等。以吸水性讲,玉米芯最大,这对出酒率有利。高梁壳含单宁较多,会影响糖化发酵。对酒的质量来讲,玉米芯含有较多的聚戊糖,生成的糠醛量较多。稻壳含有大量的硅酸盐,用量过多,会影响酒精的饲料价值。所以在选用各种填充料时要全面考滤,合理使用。 固态法麸曲白酒生产中,目前配料时均配人大量酒糟,主要是为了稀释淀粉浓度,调节酸度和疏松酒醅,并能供给微生物一些营养物质,同时酒糟通过多次反复发酵,能增加芳香物质,对提高成品白酒的质量有利。虽然酒糟经化验还含有5%左右的残余总糖,但主要是一些纤维素、淀粉l,6键结构的片段以及其它一些还原性物质,这些物质较难形成酒精,而被残留在酒糟中。 4.配料的比例和方法 由于原料性质不同、气温高低不同、酒糟所含残余淀粉量不同及填充料特性的不同,配料比例应有所变化。如果原料淀粉含量高,酒糟和其它填充料配入的比例也要增加;如果酒糟所含残余淀粉量多,则要减少酒糟配比而增加稻壳或谷糠用量。填充料颗较粗,配入量可减少。根据经验计算,一般薯类原料和粮谷类原料,配料时淀粉浓度应在14―16%左右为适宜。填充料用量占原料量的20―30%,根据具体情况作适当调整。粮醅比一般为1∶4―6。 例如以薯干粉为原料(以含淀粉为65%计算),采用清蒸一次发酵法生产,原料配比为: 冬天 薯干粉∶鲜酒糟∶稻壳=1∶5∶0.25―0.35 夏天 薯干粉∶鲜酒糟∶稻壳 =1∶6―7∶0.25―0.35 配料时要求混和均匀,保持疏松。拌料要细致,混蒸时拌醅要尽量注意减少酒精的挥发损失,原料和辅科配比要准。 (三)蒸煮 1.蒸煮的目的 蒸煮是利用水蒸汽的热能使淀粉颗粒吸水膨胀破裂,以便淀粉酶作用,同时借蒸煮把原料和辅料中的杂菌杀死,保证发酵过程的正常进行。在蒸煮时,原料和辅料中所含的有害物质也可挥发排除出去。 2.蒸煮过程中的物质变化 (1)淀粉 淀粉在蒸煮时先吸水膨胀,随着温度的升高,水和淀粉分子运动加剧,当温度上升到60℃以上,淀粉颗粒会吸收大量水分,三维网组织迅速扩大膨胀,体积扩大50―100倍,淀粉粘度大大增加,呈海绵状糊,这种现象称为糊化。这时淀粉分子间的氢键就被破坏,使淀粉分子变成疏松状态,最后和水分子组成氢键,而被溶于水,有效地被淀粉酶糖化。 原料不同淀粉颗粒的大小、形状、松紧程度也不同,因此蒸煮糊化的难易程度也有差异。麸曲白酒是采用固体发酵,原料蒸煮时一般都采用常压蒸煮。由于要破坏植物细胞壁,又考虑到淀粉受到原料中蛋白质和盐类的保护,以及为了达到对原料的杀菌作用,所以实际蒸煮温度都在100℃以上。 (2)蛋白质及含氮有机物质 由于常压蒸煮,温度不太高,蛋白质在蒸煮过程中主要发生凝固变性,极少分解。而原料中氨态氮在蒸煮时便溶解于水,使可溶性氮增加,有利于微生物的作用。 (3)糖分 蒸煮过程中使戊糖脱水成
解直角三角形课件 篇3
2 .5 风 炭宝宝竹炭――呵护您的健康 教学目标 1、了解风是怎样形成的 2、知道风向、风速的表示方法和度量单位 3、学会用风向标、风速仪测定风向和风速的方法 4、了解风对人类活动和动物行为的影响 重点难点分析 重点:风的观测 难点:风的形成;目测风向、风速 教学过程 ◇视频片段《赤壁之战》引入课题《追寻风的足迹》。 演示并思考】把充满气体的气球充气口松开,会感到气球内的空气一涌而出,这是为什么? 一、风 1、风是空气的水平运动。 风是从高气压区流向低气压区的。 2、风的两个基本要素:风向和风速 1)风向是指风吹来的方向。 天气观测和预报中常使用8种风向。 表示方法:用一短线段表示。 用纸飞机测风向 【为什么做】 风向和风速是测量风的两个基本要素。观测风向的仪器叫风向标,由箭头、水平杆和尾翼三部分组成。那么风向标是怎样指示风向的呢?风向是由风向标箭头的方向来指示,还是由箭尾的方向来指示呢?风向又是怎么规定的呢?就让我们用纸飞机测风向这个简单的模拟实验来解决吧! 【怎样做】 折一纸飞机,中间用铅笔穿过(要让纸飞机能在铅笔上轻松转动)。用手握住铅笔,将纸飞机放在开启的电风扇前,观察纸飞机的机头和尾翼的指向。注意:此时人要站在纸飞机的后方。并借助指南针判断风向。 【学到了什么】 通过实验,使我们对风和风向有了一个直观的认识:纸飞机的箭头指向风来自的方向。同理,在气象观测中,风向是由风向标的箭头指向的。 同时也使我们明白:实验可以使我们更简洁明了地了解事物,也培养了我们的观察能力。 【进一步的研究】 (1)用纸飞机测风向的实验使你明白了风向标指示风向的事实。你是否在想:这是运用了什么原理呢?为什么风向标会有一定的指向呢?下面的文字,会帮助你有一个了解。 风向标是一种应用最广泛的测量风向仪器的主要部件。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。 地面风指离地平面10─12 米高的风。风的来向为风向,一般用十六方位或360°表示。以360°表示时,由北起按顺时针方向度量。 (2)你知道了风向的`测量方法,一定很想知道风速大小的测量方法。其实你也可以用简单的模拟实验来测量风速。请认真阅读下面的文字,你就会用生活中常见的小风车(参见三维风车式风速仪)或风压板来简单比较风速的大小了,动手试一试。 风向:指风吹来的 方向 ;天气观测和预报中常使用8种风向,即:东、南、西、北、东北、西北、东南、西南(图2―10)。 符号 代表东风。 (2)风速:指单位时间里空气在水平方向上移动的距离,其单位是:米/秒、千米/时或海里/小时表示。 测试风速的仪器叫风速计,它利用风杯在风作用下的旋转速度来测量风速。 风速仪有以下几种:①风杯风速表②桨叶式风速表③热力式风速表。 风速常用风级表示。 【阅读】各风级的名称、风速和目测结果 (3)风对人类的生活有很大的影响,有些动物的行为也和风有关。 【小结】
解直角三角形课件 篇4
1教学目标
(一)知识目标
1、使学生理解直角三角形中五个元素的关系,及什么是解直角三角形;2、会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
(二)能力训练点
1、通过综合运用勾股定理,直角三角形的两个锐角互余及边角之间的关系解直角三角形,逐步培养学生分析问题、解决问题的能力;2通过数行结合的运用,培养学生添加适当辅助线的能力。
(三)情感目标
渗透数形结合的数学思想,培养学生学以致用的良好的学习习惯.
2学情分析
九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养。
为实现本节既定的教学目标,根据教材特点和学生实际水平对本节教学采用的基本策略是:
①创设问题情境,激发学生思维的主动性。
②以实际问题为载体,结合简单教具及多媒体提供的图象,引导学生建立数学模型,把实际问题抽象为数学问题。
③把实际问题中提供的条件转化为数学问题中的数量,掌握探索解决问题的思想和方法。
④课堂尽量为学生提供探索、交流的空间,发动学生既独立又合作的愉快的学习。
由于大部分学生的阅读分析能力相对较弱,教学中引导学生讨论、交流,罗列出问题中的所有已知条件、未知条件,探索已知与未知之间的数量关系,进而结合勾股定理、三角函数关系式寻求解决的方案,从而达到解决的目的。
有效的数学学习活动,不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课的例题与练习题的已知、未知都有所不同,合理引导,利用这种“不同”让学生在探究学习中得到提高,获得知识,也是本节课追求的主要目标。
我打算采用“创设情境———自主探究———合作交流———达标训练———反思归纳”的流程来进行本节课的教学。
3重点难点
1.重点:直角三角形的解法.
2.难点:把实际问题抽象为数学问题,建立数学模型;三角函数在解直角三角形中的灵活运用;j解直角三角形时,在已知的两个元素中,为什么至少有一个元素是边.
4教学过程4、1第一学时教学活动活动1【讲授】教学活动
1.我们已经掌握了Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又可启发引导学生思考,为什么两个已知元素中必有一条边呢?从而激发学生的学习、探索热情。
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师让学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题评析
例1在Rt△ABC中,∠C为直角,AC= BC=,解这个三角形.
例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 =35,解这个三角形(精确到0、1).
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.
议一议
在直角三角形中,
(1)已知a,b,怎样求∠B的度数?
(2)已知a,c,怎样求∠B的度数?
(3)已知b,c,怎样求∠B的度数?
你能总结一下已知两边解直角三角形的方法吗?与同伴交流。
.
(三)巩固练习
在△ABC中,∠C为直角,AC=4,BC=4,解此直角三角形。课本74页。
1、找四名学生板演,重视过程的规范性和完整性;2、学生独立完成,教师简评。
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.
试一试
(四)总结与扩展
引导学生小结:
1、在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2、解决问题要结合图形(没有图形时要先画草图)。
解直角三角形课件 篇5
二、基础知识:
1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,
2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗
杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆
3、如图:B、C是河对岸的两点,A是对岸岸边一点,测得∠ACB=450,
BC=60米,则点A到BC的距离是 米。
3、如图所示:某地下车库的入口处有斜坡AB,其坡度I=1:1.5,
则AB=
三、典型例题:
例2、右图为住宅区内的两幢楼,它们的高AB=CD=30米,两楼间的距
线的夹角为300时,求甲楼的影子在乙楼上有多高?
例3、如图所示:某货船以20海里/时的速度将一批重要货物由A处运往正西方的B处,
经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台
风中心正以40海里/时的速度由A向北偏西600方向移动,距离台风中心200海
里的圆形区域(包括边界)均会受到影响。
(1)问B处是否会受到台风的影响?请说明理由。
(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?
四、巩固提高:
的.位置升高 米。
2、如图:A市东偏北600方向一旅游景点M,在A市东偏北300的
公路上向前行800米到达C处,测得M位于C的北偏西150,
A、sin450 B、sin600 C、cos300 D、cos600
A向外移动到A,使梯子的底端A到墙根O的距离等于3米,
5、如图所示:某学校的教室A处东240米的O点处有一货物,经过O点沿北偏西600
方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。
(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?
(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的
解直角三角形课件 篇6
教学目标:
1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。
2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。
3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。
教学过程:
一、创设情景,揭示课题。
1、学生拿出课前准备好的正方形纸沿对角线对折。
提问:得到一个什么图形?(三角形)
2、通过观察、测量和比较说说这个三角形的特征。
(两条边相等,一个角是直角)
提问:那么,这样的三角形我们叫它什么三角形?
揭示课题,板书:等腰直角三角形
这节课就让我们一起来研究等腰直角三角形。
二、动手操作,探索新知。
1、斜边
45
直角边
认识各部分名称和各个角的度数。
投影出示一个等腰直角三角形让学生试说。
边说边课件演示。
45
90
接着让学生指着折成的等腰直角三角形同桌
直角边
互相说各部分名称和每个角的度数。
解直角三角形课件 篇7
教学建议
1.知识结构:
本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.
2.重点和难点分析:
教学重点和难点:直角三角形的解法.
本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.
3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.
锐角三角函数的定义:
实际上分别给了三个量的关系:a、b、c是边的长、、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.
当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.
如:已知直角三角形ABC中,,求BC边的长.
画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式
,
由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得
.
即得BC的长为.
又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.
画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是
也就是
这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得
.
由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.
4. 直角三角形的解法可以归纳为以下4种,列表如下:
5. 注意非直角三角形问题向直角三角形问题的转化
由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例.
例如,在锐角三角形ABC中,,求这个三角形的未知的边和未知的角(如图)
这是一个锐角三角形的解法的问题,我们只需作出BC边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个解直角三角形的问题.
在Rt中,有两个独立的条件,具备求解的条件,而在Rt中,只有已知条件,暂时不具备求解的条件,但高AD可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:
解:作于D,在Rt中,有
;
又,在Rt中,有
∴
又,
∴
于是,有
由此可知,掌握非直角三角形的图形向直角三角形转化的途径和方法是十分重要的,如
(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.
(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.
(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.
(4)如图,等腰三角形AOB是正n边形的n分之一.作它的底边上的高,就得到直角三角形OAM,OA是半径,OM是边心距,AB是边长的一半,锐角.
6. 要善于把某些实际问题转化为解直角三角形问题.
很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为解直角三角形问题.
我们知道,机器上用的螺丝钉问题可以看作计算问题,而圆柱的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm的螺丝钉,若每转一圈向前推进1.25mm,螺纹的初始角应是多少度多少分?
据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC的长为
,
另一条直角边为螺钉推进的距离,所以
,
设螺纹初始角为,则在Rt中,有
∴.
即,螺纹的初始角约为 .
这个例子说明,生产和生活中有很多实际问题都可以抽象为一个解直角三角形问题,我们应当注意培养这种把数学知识应用于实际生活的意识和能力.
一、教学目标
1.使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;
3.通过本节的.学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯.
二、重点·难点·疑点及解决办法
1.重点:直角三角形的解法。
2.难点:三角函数在解直角三角形中的灵活运用。
3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。
4.解决办法:设置疑问,引导学生主动发现方法与途径,解决重难点,以相似三角形知识为背景解决疑点。
三、教学步骤
(一)明确目标
1.在三角形中共有几个元素?
2.如图直角三角形ABC中,这五个元素间有哪些等量关系呢?
(1)边角之间关系
(2)三边之间关系
(勾股定理)
(3)锐角之间关系 。
以上三点正是解直角三角形的依据,通过复习,使学生便于应用。
(二)整体感知
教材在继锐角三角函数后安排解直角三角形,目的是运用锐用三角函数知识,对其加以复习巩固。同时,本课又为以后的应用举例打下基础。因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的。综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。
(三)教学过程()
1.我们已掌握Rt的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢,激发了学生的学习热情。
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)。
3.例题
【例1】 在中,为直角,所对的边分别为,且,解这个三角形。
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。
解:(1),
(2),
∴
(3)
∴
完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边。计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。
【例2】 在Rt中,,解这个三角形。
在学生独立完成之后,选出最好方法,教师板书。
解:(1),
查表得;
(2)
(3),
∴。
注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些。但先后要查两次表,并作一次加法(或减法)或者使用计算器求平方、平方根及三角正数值等。
4.巩固练习
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握。为此,教材配备了练习P.23中1、2练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力。
[参考答案]
1.(1);
(2)由求出或;
(3),
或;
(4)或。
2.(1);
(2)。
说明:解直角三角形计算上比较繁琐,条件好的学校允许用计算器。但无论是否使用计算器,都必须写出解直角三角形的整个过程。要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯。
(四)总结扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素。
2.幻灯片出示图表,请学生完成
四、布置作业
教材P.32习题6.4A组3。
[参考答案]
3.;
五、板书设计
解直角三角形课件 篇8
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4、3A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
解直角三角形课件 篇9
一、 教材简析:
本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。
同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。
二、教学目的、重点、难点:
教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。
重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。
2、正确选择边与角的关系以简便的解法解直角三角形
难点:把实际问题转化为数学问题。
学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。
三、教学目标:
1、知识目标:
(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。
(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、
45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。
(3)运用三角函数解决与直角三角形有关的简单的实际问题。
(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、
2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。
3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.
四、、教法与学法
1、教法的设计理念
根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。
2、学法
学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。
解直角三角形课件 篇10
第一方面:教材分析
1、本节的地位作用
《解直角三角形》,是前面学过的相似及函数问题的`延续和综合应用,同时也是高中继续学习解斜三角形的重要预备知识。它的学习还蕴含着数学建模和转化化归的数学思想,所以,本节内容无论在本单元,还是整个初中教材甚至中考中都具有重要的地位。
2、学习目标
由于本节课是第一课时,主要是使学生理解直角三角形的边角关系,并能运用关系解直角三角形和与之相关的实际问题,所以我参考课标提出的阶段性要求,确立本节的教学目标是:
(1)会根据直角三角形已知元素,解直角三角形。
(2)通过对解直角三角形的学习,我们能感知未知元素与已知元素的关系,体会知识点之间的内在联系。
(3)培养学生问题意识,渗透转化思想和数学建模意识。
3、本节课重点是解直角三角形,这是因为它和相似等知识一样,是以后会解题的重要工具,将被广泛的应用。
难点是选择合适的边角关系。这是因为在解直角三角形时,需要学生根据已知条件,结合图形,经过分析,选择准确简单的关系式,而学生刚学三角函数,应用还不灵活,所以感到困难。
第二方面:教法分析
本节课我选用了引导发现法和归纳总结法,并应用了媒体教学。这是因为课标提出“教学活动是师生之间,学生之间交往互动与共同发展的过程,教师是教学活动的引导者与合作者。”这两种方法可以让老师成为导演,学生扮演演员,充分发挥学生的主体地位。而媒体的使用可以满足学生的好奇心,课堂容量增大,最大限度的提高课堂效率。
第三方面:学法指导
为了充分发挥导学案的以案导学的作用,在学案中我根据学习内容的需要,增加了“老师温馨提示”栏目,让学生在课前预习时降低学习难度,能够跳一跳,摘到桃子。在教学时,我注意引导学生养成及时归纳、总结规律方法,有目的学习的好习惯。
第四方面:教学程序设计
本节课的教学我按照学案导学的“学——研——展——教——达”的教学模式展开。
1、在学这个教学环节,我在课前下发学案,让学生在学案的引领下,充分感知本节课要学习的内容,记录预习疑惑,及查阅相关资料。及时发现自身学习本节内容的不足之处,在上课时能够积极思考,合作,交流,展示。
2、在研这个环节,我精心设计问题,将本节的唯一知识点———解直角三角形,遵照“由特殊到一般”的原则转变为探索性问题的问题点、能力点,既学案中第二个大问题的里4个小问题,通过对知识点的教师设疑、学生质疑、解释、归纳总结等一系列师生研讨活动,得出解直角三角形的定,挖掘出它的内涵和外延,从而激发学生主动思考,逐步培养学生探究精神以及对教材的分析,归纳,演绎的能力,让学生学会看书,学会自学,进而突出本节重点。
3、在展这个环节我以本节例题即学案中的例1为基础,采用变式训练,逐渐增加问题难度,让学生在不同的问题中,多角度领悟本节重点知识——解直角三角形问题的实质,通过“兵教兵,兵强兵,兵练兵”的方法,让学生充分展示和反馈,帮助学生理解解直角三角形的注意事项,及怎样选择合适的边角关系式,怎样引辅助线,怎样写解题过程等问题,达到突破本节难点的目的。
4、在教这个环节我在学生理解解直角三角形方法的基础上,应用它解决生活中的实际问题,即学案上拓展提升问题,它实质也是本节例题的一个变式训练,培养学生一题多变,一题多解的思维方式,让学生体会数学知识的螺旋上升美。并且我精选了贴近学生生活情境的实际背景,寓德育与数学一体,生活与数学一体。激发学生的学习兴趣,提升学生的创新思维和合作意识,让数学思维好的同学吃的饱,使不同的人在数学上有不同的发展。
5、通过达标检测这个环节,及时反馈本节学生存在的问题,当堂点评,充分发挥小组的合作精神。
6、作业紧紧围绕巩固本节所学内容展开,有一定的梯度,让不同程度的学生都有所收获。板书设计本着重点突出的原则,让学生对本节课的主要知识一目了然,加深印象。
第五方面:设计理念
在设计本节课时,我力求让学生意识到:要解决老师课堂上提出的问题,看书不看详细不行,只看书不思考不行,思考不深不透还不行,如本节的复习提问部分,我虽然在导学案中给出了,但我在提问时却换了一个方式提问,目的让学生真正理解学案内容。而不是照着学案念,在讲授本节课时,我尽量实现自己角色的转变,让自己从讲台走下来,成为“平等中的首席”。
总之,我尽量创设适当和适合的教育情境,因为我知道,如果将15克盐放在我面前,无论如何都难以下咽,但是,把它放在鲜美的汤中,在享受佳肴时,15克盐早已被吸收。情境之余知识,犹如汤之余盐,盐要溶入汤中,才能被吸收;知识需要溶入情境中,才能显示出活力和美感!
三角形内角和课件(汇编六篇)
在教学工作者开展教学活动前,常常需要准备教案,教案是实施教学的主要依据,有着至关重要的作用。那么大家知道正规的教案是怎么写的吗?以下是小编精心整理的四年级下册数学《三角形内角和》教案,欢迎大家分享。
三角形内角和课件 篇1
学情分析:
学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
教学目标:
1、知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。
3、情感态度:使学生体验数学学习成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
探索发现和验证三角形的内角和是180度。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具准备:
教师准备:多媒体课件、不同类形大小不一的三角形若干个、记录表
学生准备:量角器、直尺、剪刀
教学过程:
一、激趣导入
多媒体展示三角形
出示谜语:形状似座山,稳定性能坚
三竿首尾连,学问不简单?(打一图形名称)
(预设:三角形)
师:谁能介绍介绍三角形?
(生1:三角形有三条边、三个顶点、三个角。
生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。)
师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形)
师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。
师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。
师:今天我们就来研究一下三角形的'内角和。
二、学习目标
1、通过动手操作,使学生理解并掌握三角形内角和是180度的结论。
2、能运用三角形的内角和是180度这一规律,求三角形中未知角的度数。
3、培养动手动脑及分析推理能力。
三、自主学习(展示量角法)
1、理解三角形的内角、内角和
(1)板书展示三角形
师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。)
师:你能过来指指吗?同意吗?内角有几个?
师:为了研究方便,我们把三角形的三个内角分别标上∠1、∠2、∠3。
师:你能像老师一样把你的三角形标上∠1、∠2、∠3吗?
(2)三角形的内角和
师:什么是三角形的内角和?
(三角形三个角的度数的和,就是三角形的内角和,即:∠1+∠2+∠3)
师:就是把∠1+∠2+∠3加起来。
师:根据我们以前的经验,我们怎么知道∠1、∠2、∠3的度数呢?(预设:用量角器量)
师:请同学们拿出量角器,量一量你画的三角形的三个内角,并算出他们的和。(4分钟)
学生测量(1分40)汇报结果(5人)。
教师填写测量汇报单。
师:观察汇报的结果,你有什么发现?(所有三角形内角和度数不一样、三角形内角和都在180度左右)
四、合作探究
师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。?(8分钟)(剪拼法)
1、操作验证探索三角形内角和的规律(6分钟)
(1)操作验证:小组合作
拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺?剪刀
(老师要给学生充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
2、学生汇报
(1)转化法:
生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。
师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。
(2)折拼法
生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。
师:他们是用折拼法验证三角形的内角和是180度(动手能力真强)
(3)剪拼法
生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。)
标记上之后再拼一拼,可见标记的方法很科学。(20分钟)
3、教师演示
师:我们再来感受一下怎么验证三角形的内角和的?
师:这是什么三角形?把他折一折。
师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度)
师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。
师:注意观察。
师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。
师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟)
4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。)
师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)
师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟)
师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°
师:你们能用今天的发现做一些练习吗?
五、测评反馈
1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?
六、课后作业
69页第1题、第3题。
七、板书设计
三角形内角和课件 篇2
一、教学目标
课程标准这样描述:通过观察、操作了解三角形内角和是180。
分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。
课前我对学情进行了分析:
1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。
2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。
通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:
1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°并会应用这一规律解决实际的问题。
2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。
二、评价设计
针对这一目标的完成,我设计了一下评价方式:
1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。
2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。
3、操作反应评价:通过学生在研究三角形内角和过程中的测量、简拼、折等活动对学生进行评价
评价题目
1、通过3个练习题(1、做一做。2、说一说3、拼一拼、想一想)
检测学习目标1的掌握情况。
2、通过小组、同桌合作、汇报,教师引导学生理解本节课所蕴含的学习方法,检测学习目标2的掌握情况
三、教具学具准备
教具准备:课件、3个直角三角形,2个锐角三角形、2个钝角三角形、一张表格
学具准备:三角板、量角器。
四、教学过程
这节课的教学我通过一下四个环节完成。
1、观察猜测,引入新知;
2、动手操作,探索新知;
3、巩固新知,拓展应用;
4、总结评价、延伸知识。
第一环节,观察猜测,引入新知。
由图形引入,让学生指出锐角三角形,直角三角形,钝角三角形的三个内角,发现在这些三角形中最大的内角是钝角。问:想看钝角三角形72变吗?我们一起来看一看。课件演示:
(1)钝角变小,另外两个角怎样变?
(2)钝角变大,另外两个角怎样变?
(3)钝角变大、变大、变大再变大,还能再大吗?发现再大就成平角了。平角多少度?这时把三角形三个内角的'加起来,和可能多少呢?猜测:180度。
这只是我们的猜测,(板书:猜测)数学是要用事实说话的,这节课我们就来学习三角形的内角和。(板书课题)这样由三种变化的三角形引入新课,激发学生兴趣的同时为后面的学习做准备
第二环节,动手操作,探索新知。
1、直角三角形的内角和。
(一)直角三角形内角和
先让学生观察一副三角板的内角和,发现都是180度,和猜测是一样的,是不是所有的直角三角形内角和都是180度呢?课件出示一些直角三角形,让学生用手中的工具验证你的猜测。
四人小组合作,拿出学具袋里三个红色的直角三角形和表格,用不同的方法验证猜测。学生可以“量一量”,也可以“剪一剪”,还可以“折一折”。汇报时要让学生说一说方法,同时在课件上展示。
这个环节引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。
(二)、锐角三角形、钝角三角形的内角和
课件出示将锐角三角形、钝角三角形,问:你能利用我们刚才学到的知识来研究它们的内角和吗?动手试一试,可以同桌讨论。(学生操作,汇报,课件演示)让学生模仿老师操作说理。由此得到了锐角三角形和钝角三角形的内角和也是180度。我们就可以说所有三角形的内角和都是180度。这是三角形的一个特性。
这样引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。
第三环节、巩固新知,拓展应用
用三角形的这一特性来解决一些问题
1、基本练习
通过做一做和说一说这两个练习来强化学生认知。
2、拓展练习
拼一拼、想一想
(1)两个三角形拼成大三角形,说出大三角形的内角和
(2)一个三角形去掉一部分
引导学生发现,无论三角形的形状或大小如何改变,内角和都是180度,看来三角形的内角和度数和他的大小形状都无关。
(3)再把这个三角形剪去一部分剪成一个四边形,它的内角和是多少度?
(4)如果变成五边形,你还能求出他的度数吗?
充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。
第四环节、总结评价、延伸知识
通过这个环节让学生谈一谈自己的收获或感受,对本节课的知识进行拓展升华。
五、板书设计:
三角形的内角和
猜测(180度)
验证:测量、撕拼、折叠结论
三角形的内角和是180度
我的板书简明扼要,体现了本节课的重点,而且是对本节课学习方法的一个回顾。
三角形内角和课件 篇3
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)、创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)、自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的.内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)、应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)、课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
三角形内角和课件 篇4
一、学生知识状况分析
学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。
活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验。
二、教学任务分析
上一节课的学习中,学生对于平行线的'判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:
知识与技能:(1)掌握三角形内角和定理的证明及简单应用。
(2)灵活运用三角形内角和定理解决相关问题。
数学能力:用多种方法证明三角形定理,培养一题多解的能力。
情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
三、教学过程分析
本节课的设计分为四个环节:情境引入——探索新知——练习反馈——课堂小结
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理。
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6—38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1)(2)(3)(4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?
(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?
活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明。
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知
活动内容:
①用严谨的证明来论证三角形内角和定理。
②看哪个同学想的方法最多?
方法一:过A点作DE∥BC
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
方法二:作BC的延长线CD,过点C作射线CE∥BA。
∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。
教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
三角形内角和课件 篇5
【教学目标】
1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】
探究发现和验证"三角形的内角和为180度"的规律。
【教学难点】
理解并掌握三角形的内角和是180度。
【教具准备】
PPT课件、三角尺、各类三角形、长方形、正方形。
【学生准备】
各类三角形、长方形、正方形、量角器、剪刀等。
【教学过程】
口算训练(出示口算题)
训练学生口算的速度与正确率。
一、谜语导入
(出示谜语)
请画出你猜到的图形。谁来公布谜底?
同桌互相看一看,你们画出的三角形一样吗?
谁来说说,你画出的是什么三角形?(学生汇报)
(1)锐角三角形,(锐角三角形中有几个锐角?)
(2)直角三角形,(直角三角形中可以有两个直角吗?)
(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)
看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)
看到这个课题,你有什么疑问吗?
(1)什么是内角?有没有同学知道?
内:里面,三角形里面的角。
三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.
(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。
(3)大胆猜测一下,三角形的内角和是多少度呢?
【设计意图】
创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样".这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。
二、探究新知
有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?
1、确定研究范围
先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?
只研究你画出的那一个三角形,行吗?
那就随便画,挨个研究吧?(太麻烦了)
怎么办?请你想个办法吧。
分类研究:锐角三角形,直角三角形,钝角三角形(贴图)
2、探究三角形的内角和
思考一下:你准备用什么方法探究三角形的内角和呢?
小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?
小组汇报:
(1)量一量:把三角形三个内角的度数相加。
直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?
(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。
能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?
(3)折一折:把三角形的三个角折下来,拼成了一个平角。
这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。
总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?
3、演绎推理的方法。
正方形四个角都是直角,正方形内角和是多少度?
你能借助正方形创造出三角形吗?(对角折)
把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°
再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°
这种方法避免了在剪拼过程中操作出现的误差,
举例验证,你发现了什么?
通过验证,知道了直角三角形的`内角和是180度。
你能把锐角三角形变成直角三角形吗?
把锐角三角形沿高对折,分成了两个直角三角形。
一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)
通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?
通过刚才的计算,你发现了什么?(锐角三角形内角和180°)
钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°
通过验证,你又发现了什么?(钝角三角形内角和180°)
4、总结
通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)
5、想一想,下面三角形的内角和是多少度?(小--大)
你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)
【设计意图】
为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。
三、自主练习
1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)
2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)
3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)
师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。
4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?
【设计意图】
练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。
四、课堂总结
同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?
真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。
课后反思
《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°".
本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然".
为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。
教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:
1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。
2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。
教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。
三角形内角和课件 篇6
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
二、教学重、难点:
重点:探索并发现三角形内角和等于180°。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
教具:课件、三角形若干。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
三、教学过程
(一)创设情境,导入新课
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
(板书课题:三角形内角和)
(二)自主探究,发现规律
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。
小组活动记录表
小组成员的姓名
三角形的形状
每个内角的度数
三角形内角的和
(要求:填完表后,请小组成员仔细观察你发现了什么?)
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的.方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
板书:(三角形内角和等于180°。)
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
(三)巩固练习,拓展应用
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
说明:一个钝角三角形说:我的两个锐角之和大于90°。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
(四)课堂总结
让学生说说在这节课上的收获!
三角形内角和课件(集合七篇)
前辈告诉我们,做事之前提前下功夫是成功的一部分。在平日里的学习中,幼儿园教师时常会提前准备好有用的资料。资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。参考相关资料会让我们的学习工作效率更高。那么,关于幼师资料你了解哪些内容呢?小编陆续为大家整理了三角形内角和课件(集合七篇),可能你会喜欢,欢迎分享。
三角形内角和课件 篇1
知识与技能
1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。
探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。
情感态度与价值观
探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。
教学重点:
1、探索和发现三角形三个内角和的度数和等于180o。
2、已知三角形的两个角的度数,会求出第三个角的度数。
教学难点:
已知三角形的两个角的度数,会求出第三个角的度数。
方法与过程
教法:主动探究法、实验操作法。
学法:小组合作交流法
教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。
教学课时:1课时
教学过程
一、预习检查
说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。
二、情景导入呈现目标
故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。
三、探究新知
自主学习
比一比量一量
(1)什么是内角?
(2)如何得到一个三角形的内角和?
(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。
(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。
3、说一说,做一做。
(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。
(度。
四、当堂训练(小黑板出示内容)
°,一个等腰三角形,它的一个底角是。
厘米的三根小棒不能围成一个三角形。
性。
,这是一个()三角形。
三角形、()三角形、()三角形。
6、交流学案第三题。 先独立做,最后组内交流。
五、点拨升华
任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。
六、课堂总结
通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。
七、拓展提高
妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。
板书设计:
三角形的内角和
测量三个角的度数求和:结论:
教学反思:三角形内角和等于撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。
当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。
三角形内角和课件 篇2
教学过程:
一、激趣引入
(一)认识三角形内角
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
生1:三角形是由三条线段围成的图形。
生2:三角形有三个角,……
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)
(二)设疑,激发学生探究新知的心理
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
生:想。
师:那就让我们一起来研究吧!
(揭示矛盾,巧妙引入新知的探究)
二、动手操作,探究新知
(一)研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形)
师:也就是这个三角形各角的度数。它们的和怎样?
生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么?
生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和
1。猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
生1:180°。
生2:不一定。
2。操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
2)小组汇报结果。
师:请各小组汇报探究结果。
生1:180°。
生2:175°。
生3:182°。
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
3课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、 按要求计算。(数学信息较为隐藏和生活中的实际问题)
3、游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
五、全课总结。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
三角形内角和课件 篇3
【教学目标】
1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、经历猜测——验证——得出结论——解释与应用的过程,体验“归纳”、“转化”等数学思想方法。
3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。
【教学重、难点】
教学重点:引导学生发现三角形内角和是180°。 教学难点:用不同方法验证三角形的内角和是180°。 【教学过程】
一、创设情景,提出问题
小游戏:猜一猜藏在信封后面的是什么三角形。(出示)
师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。
【设计意图:运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。】
二、动手实践、自主探究
师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?
1.从特殊入手——计算直角三角板的内角和。
(1)师生拿出30度直角三角板
师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?
(2)再拿出45度直角三角板。
师:这是什么三角形?这个角是多少度?它的内角和是多少度?
(3)师:通过刚才的计算,你有什么发现?
生:这两个三角形内角和都是180°。
【设计意图:这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形——“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。】
2、由特殊到一般——猜想验证,发现规律。
(1)提出猜想
师:其他所有三角形的内角和是否也是180°?
生:是、 不是……
师:有的说是,有的说不是,我们的猜想对不对呢,需要验证。
(出示小组调查表。)
(2)验证猜想(生测量计算,师巡视指导,收集回报的素材)
师:哪个小组愿意将您们组的发现与大家分享一下?
生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是 度 度 度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)
师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!
【设计意图:实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。】
(3)揭示规律
师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的内角和是——180度,钝角三角形的内角和也是——180度,这就验证了我们的猜想。现在我们可以说所有的三角形的内角和是(完善课题180°)。
注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)
师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)
(4)方法提升。
师:我们从直角三角形——锐角三角形——钝角三角形——推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。
【设计意图:通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性。】
3、剪拼法再次验证——转化思想的运用。
师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。
生探究,师巡视指导,收集汇报素材。(呈现作品——说方法——统计点评)
班内交流,汇报撕拼法、折叠法。
师:将三角形的内角通过剪拼、折叠,转化成平角,你们应用了一种重要的数学思想——转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。
【设计意图:孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。】
4.展示——再次强化。
师:现在大家知道这几个三角形的内角和是多少度吗?
师:我们可以请电脑来给我们验证一下。
(引入白板,通过拖动演示三角形从小到大度数的不断变化)
结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。
【设计意图:让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。】
三、巩固应用,内化提高
1.介绍科学家帕斯卡(白板出示帕斯卡的资料)
2.练习
(1). 做一做:在一个三角形中,∠1=140度, ∠3=25度,求∠2的度数。
(2). 求出下列三角形中各个角的度数。(书88页第9题)
(3). 算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
【设计意图:练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感。素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。】
四、课后思考、拓展延伸
同学们,数学奥妙无穷,三角形是边数最少的封闭平面图形,那么,四边形五边形六边形(出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。
三角形内角和课件 篇4
本课是三角形的内角和是北师大版四年级下册第二单元的内容,是三角形的一个重要性质,也是进一步学习几何的基础,经过第一学段以及本单元的学习,学生对于三角形已经有了直观的认识,这为感受、理解、归纳三角形内角和的概念打下坚实的基础,学好本课,对以后学习几何能起到承前启后的效果。
基于对教材以上的认识以及课程标准的要求,我拟定以下教学目标: 知识目标:使学生理解并掌握三角形内角和是180°。
能力目标:①通过学生画、量、猜、剪、拼、折、观察等活动,培养学生探索、发现、观察以及动手操作能力。
②能运用三角形内角和是180°解决实际问题。
情感目标:让学生体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角和都是180°的过程。让学生在动手实验中得到结论,感悟学习中的快乐
“授之于鱼不如授之于渔”,对于四年级的学生来说应进一步提高他们对问题的思考策略,在研究三角形的内角和是180°这一核心问题时,我先让学生独立思考、然后小组合作,通过量一量、剪一剪、拼一拼、折一折等活动来探究三角形内角和的秘密,完成了对新知识的建构,体现了学生动手实践、合作交流、自主探索的学习方法。既培养了学生的观察能力,同时又培养了学生的探索能力和创新精神。
长期以来,我们的教育进行的是颈部以上的学习,它只强调记忆、思维。荷兰教育家弗来登塔尔认为:数学学习是一种活动,这种活动与游泳、骑自行车一样,不经过亲身体验,仅仅看书本、听讲解、观察他人的演示是学不会的。因此将课堂还给学生,努力营造学生在教学活动中自主学习的时间,使他们课堂教学中重要的参与者,与创造者,学生动手实践、合作交流、自主探索的学习方法。本着这样的指导思想,在教学设计上,我力求充分体验以学生发展为本的教育理念,将教学思路拟定为:复习引入、猜想验证、巩固内化、拓展延伸。运用课件教学直观明了便于理解。
强调面向全体学生的同时,关注每个学生个体差异,因材施教、课堂遵循先易后难、先差生后优生的原则,完成大纲目标的同时,也去挖掘优生的潜能,全面提高学生的成绩。
教学的艺术不至于传授知识,而在于唤醒、激发和鼓励,上课伊始,我先让学生复习三角形的有关知识为切入点,以旧引新使学生明确学习方向。学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半甚至没有结果。这时我让学生大胆猜想,形成统一的认识,使后面的探索和验证活动有了明确的目标。为此我精心设计了以下三个问题:什么是三角形的内角?什么是三角形的内角和?同学们先猜一猜三角形的内角和是多少度?可能学生都会猜180°。“那每一个三角形的内角和都是这个度数吗?你敢肯定吗?你能用什么方法去说服别人吗?”估计学生都得把刚才量的三角形的三个角的度数加起来进行验证。根据学生的回答我一一板书。(板书180°、180°、182°、179°、178°)同学们请仔细观察这一个个数据,你有什么发现?可能有的同学会说我们用量的方法得到三角形的内角和有的是180°,有的比180°大,有的比180°小。为什么会出现这种情况:测量时有误差。
“那你还有其他的方法来验证三角形的内角和就是180°吗?请你们利用老师提供的学具先独立思考,然后小组合作验证。”
当学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的探究活动,在活动中,我把“放”和“引”有机的结合,鼓励学生积极开动脑筋,从不同途径探索解决问题的方法。通过一系列“动”的过程,在大量感知的基础上,使学生能自己发现并总结出知识的规律,内化这一活动,使之不仅知其过程而且知其结果,从感性认识上升到理性认识,完成了认识上的飞跃,实现了知识的再创造。
当学生验证有困难时,我会适时的引导。“既然你们都猜三角形的内角和是180°,能不能把它转化成我们上册学过的某个知识点呢?”由于学生已经有了角大小比较的经验,会有一些学生想到把三角形的三个角撕下来拼在一起与平角作比较,从而得到三角形的内角和是180°。我让这些孩子到前面展示并鼓励全班同学都动手做一做,使更多的学生明白这个猜想是正确的。“同学们你们把三角形的三个角撕下来拼在一起得到什么结论?”估计会有下面精彩的回答:各种形状的三角形内角和都是180°;我不用撕,直接折也能得到三角形的内角和都是180°;老师我在验证直角三角形的时候有一个更好的方法,只要把两个锐角折成一个直角与原来的直角相加不也是180°吗;(有创新)老师也用折角的方法验证了各种形状的三角形。(课件……)通过课件的直观演示,又一次证实了学生的猜想是正确的。,每个孩子都是独有的个体,在合作中互补,确实有利于难点的突破。验证三角形的内角和是本节课的难点,所以我让孩子们合作验证。在合作中交流,在合作中相互学习。“同学们,通过刚才的活动,你现在可以肯定的告诉老师三角形的内角和是多少度了吗?这个三角形的内角和是多少度?(出示一个大三角形)把它剪小后问:现在呢?(剪几次)那现在你对三角形的内角和是180°还有怀疑吗?谁能用一句话总结出来?
我这样现场操作,让学生能从视觉上又一次证实了三角形的内角和不管形状和大小统统都是180°。
有人说:教育是一棵树摇动另一棵树,是一朵云推动另一朵云,一个心灵震撼另一个心灵。老师的一个眼神、一个微笑便能给孩子带来幸福和满足。适时的评价更能激起孩子思维的火花。当学生终于发现了三角形的内角和是180°这一秘密时,我会及时给学生评价:“同学们,你们经过画、量、剪、拼、折、观察等活动,自己发现并验证了三角形的内角和是180°(板书完整课题内角和是180°)这一重要规律,多了不起啊,老师由衷的为你们感到高兴。并祝贺你们孩子们。”我想得到老师这样的评价,学生们的高兴劲可想而知,解决问题的欲望也会更加强烈。拓展延伸。
在数学学习的研究中,常常有一些现实的、有趣的富有挑战性的题目呈现在孩子面前,有些题目带有明显的开放性,它把一个不确定的问题转化、分解为多个确定性的问题来解答。应该说这样的问题给孩子的思维空间是非常大的。
“下面三角形,剪掉一个40°的角,不改变其他角的度数,剩下图形的内角和是多少度?”我想会有学生利用自己的经验不假思索就会回答“140”,这时我不做任何评价,微笑着看着大家,“都同意这个答案吗?”引发了学生的再思考,我想最终一定会有学生发现“老师,剪掉这个40°的角以后,实际上就变成了一个四边形,要求四边形的内角和,就把它分割成两个三角形,一个三角形的内角和是180°,那两个三角形就是360°。我进而让学生引导“那么五边形的内角和又是多少度呢?”由于上一题的思路孩子们很快就会分割成三个三角形,即3个180°,共540°。“那六边形、七边形、一百边形的内角和又是多少度呢?”这时孩子会边画、边思考、边讨论,四边形能分割成两个三角形,五边形能分割成三个三角形,那六边形就能分割成四个三角形,最后孩子们终于发现了任意多边形的内角和等于边数减2的差乘180°。教学同时也是一门有遗憾的艺术。我认为对遗憾的态度应该约拿,并不断地探究、不断地改进,为此我思考着、探索着实践着。我想经过自己孜孜不倦的努力,一定会使预设的数学活动过程成为智慧和人格不断生成的过程。最后我希望每一个老师都能利用自己的人格魅力塑造出具有良好的习惯、健全的人格、坚定的信念、卓越成就的学生。布置作业。课后练一练1————5题
本课时间安排:检查上一课作业,练习3分钟。导入2分钟。新授25分钟。拓展,作业5分钟。在教学活动中及时了解学生掌握情况,随时调整教学方案,完成教学任务。
三角形内角和课件 篇5
教学内容:
义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.
教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)
2.请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!
1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)
学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)
这个三角形各角的度数。它们的和是多少?
把三角形三个内角的度数合起来就叫三角形的内角和。
2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
90°+60°+30°=180°。
3.从刚才两个三角形内角和的计算中,你发现什么?
这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。
1.猜一猜。
猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!
2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示
组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.
(2)小组汇报结果。
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
1.用拼合的方法验证。
小组内完成,活动的要求同上.
2.汇报验证结果。
先验证锐角三角形,我们得出什么结论?
(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
直角三角形的内角和也是180°。
钝角三角形的'内角和还是180°)。
3.课件演示验证结果。
请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
我们可以得出一个怎样的结论?
为什么用测量计算的方法不能得到统一的结果呢?
三、解决疑问。
现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)
在一个三角形中,有没有可能有两个钝角呢?
四、应用三角形的内角和解决问题。
2. 85页做一做:
在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数.
180° 180° 180°
三角形内角和180°
三角形内角和课件 篇6
《三角形的内角和》教学设计
下肥镇学校:张海波
一、教材内容:人教版四年级下册数学第67页例6
二、教材内容分析
《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形进一步研究,探索三个内角的和。教材中安排了学生对不同形状的三角形进行度量,运用计算、测量、撕拼、折叠、推理等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,培养了学生的空间观念。
三、三维目标 知识与技能:
1、理解和掌握三角形的内角和是180°。
2、运用三角形的内角和的知识解决实际问题。 过程与方法:
经历三角形内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观:
在学习活动中,渗透探究知识的方法,提高学习的能力,培养创新精神和实践能力。
四、教学重点:理解和掌握三角形内角和是180°
五、教学难点:三角形内角和的探究过程。
六、教具准备:课件。
七、学具准备:三角板一副,锐角三角形、直角三角形、钝角三角形纸各一张,固体胶,剪刀一把,量角器一个。
八、教学过程:
一、创设情景,引出问题
1、复习
上节课我们学习了三角形的分类的知识,你还记得吗?让我们来试一试,一会老师出示三角形你来说出名称。
2、师:请同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
这节课我们就来研究三角形的角的知识——三角形的内角和(板书课题)
二、探究新知
1、三角形的内角、内角和
看了课题,你有什么疑问? 出示自主探究
(1)什么是三角形内角 (2)三角形有几个内角 (2)内角和指的是什么
生:三角形里面的三个角都是三角形的内角。有三个内角,三角形的三个角的度数的和,就是三角形的内角和。
2、研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形) 师:也就是这个三角形各角的度数。它们的和怎样? 生:是180°。 师:你是怎样知道的? 生:90°+60°+30°=180°。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么? 生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
3、猜一猜。
师:(拿出一个任意三角形)问:这个三角形的内角和是多少度? 师:是不是所有的三角形的内角和都是180°呢?你能肯定吗? 师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?自学67页例六,想象可以用什么方法验证呢? 生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧! 师:用量角器测量你们小组内的任意一个三角形每个内角的度数。最后要求计算出三个角的和是多少?填在表格里 4.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。(教师巡视指导)
(2)小组汇报结果。
师:请各小组汇报探究结果。
生1:我们小组的测量结果是?
生2:175°。
生3:182°。
„„ 5..继续探究
师:没有得到统一的结果,怎么办?还有其它办法吗?请自学教材67页例六,想出办法。
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以
拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
(1.)用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:出示自学指导。小组内完成,仍然先分工怎样才能很快完成任务,开始吧。
(2.)汇报验证结果。 学生上台演示。
师:先验证锐角三角形,我们得出什么结论?
生1:我们小组是这样做的锐角三角形的内角拼在一起是一个平角,所以我们小组得出结论锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。 师:对,这就是测量的误差。
4、折拼
师:有没有别的验证方法?
师:我在电脑里收索到折拼的方法,请同学们看一看他是怎么折的(课件演示)。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。
四、知识应用
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧! 1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、求出三角形各个角的度数。
3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70度,它的顶角是多少度?
4.游戏巩固
请你设计一个三角形,并说出每个内角的度数,比一比谁设计的三角形更特别。
五、全课总结。 这节课你有哪些收获?
三角形内角和课件 篇7
【教学目标】
1、知识与技能:
(1)理解和掌握三角形的内角和是180°。
(2)运用三角形的内角和知识解决实际问题和拓展性问题。
2、过程与方法:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感态度与价值观:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。
【教学重、难点】
教学重点:理解掌握三角形的内角和是180°。
教学难点:运用三角形的内角和知识解决实际问题。
【教具准备】
教学课件、各种三角形
【教学过程】
一、创设情景,引出问题
1、猜谜语:
形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一图形名称)
2、猜三角形
师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?
3、引出课题。
师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)
二、探究新知
1、三角形的内角和
师:三角形内角和指的是什么?
2、猜一猜。
师:这个三角形的内角和是多少度?
3、验证。
让学生用自己喜欢的方式验证三角形的内角和是不是180°。
4、学生汇报。
(1)测量
师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?
(2)剪拼
A、学生上台演示。
B、请大家三人小组合作,用剪拼的方法验证其它三角形。
C、师演示。
(3)折拼
师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(4)结论:三角形的内角和是180。
(5)数学小知识。
5、巩固知识。
(1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?
(2)把两个小三角形拼在一起,问:大三角形的内角和是多少度。
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数。
2、判断。
3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、求四边形、五边形内角和。
四、总结。
师:这节课你有什么收获?
五、板书设计:(略)
三角形课件(精华15篇)
教学过程中教案课件是基本部分,每天老师都需要写自己的教案课件。教案是教师自我认知和自我管理的重要手段,如何写出让自己满意教案课件?小编已经为您搜集整理了一篇符合您需求的“三角形课件”,请将这篇文章保存下来以方便日后查看!
三角形课件【篇1】
教学目的:
1使学生理解三角形的意义,掌握三角形的特征和特性,。
2经历度量三角形边长的实践活动,理解三角形三边不等的关系
3通过引导学生自主探索、动手操作、培养初步的创新精神和实践能力。
4让学生树立几何知识源于客观实际,用于实际的观念,激发学生学习兴趣。
教学重点:
掌握三角形的特性
教学难点;
懂得判断三角形三条线段能否构成一个三角形的方法,并能用于解决有关的问题;
教学过程:
一、联系生活
找一找生活中有哪些物体的形状或表面是三角形?请收集和拍摄这类的图片。
二、创设情境,导入新课:
1让学生说说生活中有哪些物体的形状是三角形的`。展示学生收集的有关三角形的图片
2播放录像
师:接下来来看老师收集的到的一组有关三角形的录像资料。
3导入新课。
师:我们大家认识了三角形,三角形看起来简单,但在工农业生产和日常生活中有许多用处,看来生活中的三角形无处不在,三角形还有些什么奥秘呢?今天这节课我们就一起来研究这个问题。(板书:三角形的认识)
三、师生互动引导探索
(一)三角形的意义:
3要使平行四边形不变形,应怎么办?试试看。
4那些物体中用到三角形,你知道为什么了吗?三角形的这种特性在生活中的应用非常广泛,在今后学习数学的时候,我们应该多想想,怎样把数学中的有关知识应用到实际生活中去。
(三)三角形两边之和大于第三边
1师:在我们围三角形的时候,有一组同学的三条线段围不成三角形,看来不是任意三个小棒就可以围成三角形,这里面也有奥秘。
这与它三条线段的长短有关。现在我们就来讨论这个问题——到底组成三角形的这三条线段有什么特点?
2学生小组活动:(时间约6分钟)。
下列每组数是三根小木棒的长度,用它们能摆成三角形吗?(学生每回答一题后就利用电脑动画进行演示:三条线段是否能组成三角形)
(1)6,7,8;
(2)5,4,9;
(3)3,6,10;
你发现了什么?
3学生探讨结束后让学生代表发言,总结归纳三角形三边的不等关系。学生代表可结合教具演示。
教师问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的大小关系来检验)。
4得到结论:三角形任意两边之和大于第三边(电脑显示)。
教师问:三角形的两边之和大于第三边,那么,三角形的两边之差与第三边有何关系呢?
感兴趣的同学还可以下课继续研究。
5巩固练习:为了营造更美的城市,许多城市加强了绿化建设。这些绿化地带是不允许踩的。(电脑动画演示有人斜穿草地的实践问题)。他运用了我们学习过的什么知识?
6(1)有人说自己步子大,一步能走两米多,你相信吗?为什么?
(由学生小组讨论后回答。然后电脑演示篮球明星姚明的身高及腿长,以此来判断步幅应有多大?)
7有两根长度分别为2cm和5cm的木棒
(1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?
(2)用长度为1cm的木棒与它们能摆成三角形吗?为什么?
(3)在能摆成三角形,第三边能用的木棒的长度范围是
四、反思回顾
通过这节课的学习,你有什么收获?
板书设计
三角形的认识
由三条线段围成的图形叫做三角形.
三条边、三个角、三个顶点
特性:稳定性
两边之和大于第三边
三角形课件【篇2】
【教学内容】:人教版五年级上册第五单元第84~85页内容
【教学目标】:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
【教学重点】:探索并掌握三角形的面积公式,能正确计算三角形的面积。
【教学难点】:理解三角形面积公式的推导过程。
【教学准备】:每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,每小组各一个长方形、正方形和平行四边形的纸模型;一条红领巾;多媒体课件。
【教学过程】:
一、动手操作,发现规律
1、师:同学们,我们来玩一个游戏好吗?(好)。请大家拿出信封内的长方形、正方形和平行四边形,听好了,既然是游戏当然就有游戏规则,请想一想,如何在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考或讨论有几种折法,再开始折,并用彩色笔画出折痕。
2、小组学生代表上台汇报操作结果。
3、师根据汇报有选择地在黑板上贴出以下四种折法:
4、让学生观察后提问。
师:这三个图形分别折成了两个形状、大小完全一样的什么图形?
生:这三个图形分别折成了两个形状,大小完全一样的三角形。
师:如果我们知道长方形长为30厘米,宽为20厘米,它的面积是多少?每个三角形的面积是多少?你是怎样求出来的?
生1:长方形的面积是30×20=600(平方厘米)
每个三角形的面积是600÷2=300(平方厘米)
师:如果我们知道正方形边长为30厘米,它的面积是多少?每个三角形的面积又是多少呢?为什么?
生2:正方形的面积是30×30=900(平方厘米)
每个三角形的面积是900÷2=450(平方厘米)
师:如果我们知道平行四边形的底为40厘米,高为20厘米,它的面积是多少?每个三角形的面积呢?为什么?
生3:平行四边形的面积是40×20=800(平方厘米)
每个三角形的面积是800÷2=400(平方厘米)
【设计意图】:通过动手操作,即做到复习旧知,又让学生初步理解三角形的面积与平行四边形之间的联系,为新知的探索做好铺垫。
5、引出课题。
师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
【设计意图】:从不会计算的面积图形中揭示课题,激发学生的探究兴趣。
6、板书课题:三角形的面积
二、探索三角形面积计算公式
1、玩游戏,小组内交流问题。
师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:
(课件出示以下问题)
A、两个完全一样的三角形能拼出什么图形?
B、拼成图形的面积你会算吗?
C、拼成的图形与原来每一个三角形有什么联系?
(学生在小组里动手拼一拼,并相互交流以上问题)
相关文章推荐:
1.小学数学教学设计方案《分桃子》
2.小学数学《乘法分配律》教学设计及反思
3.《同分母分数加减法》小学数学教学设计
4.小学数学《平行四边形的面积》教学设计
5.小学数学《圆的面积》教学设计
6.小学数学《克和千克》教学设计与反思
7.优秀的小学数学《可能性》教学设计与反思
8.人教版小数的初步认识教学设计
9.《图形中的规律》教学预设教案
10.《生命生命》教学设计
三角形课件【篇3】
一、教学目标:
1、知识与技能:
学生能准确理解并描述三角形的基本概念,包括三角形的定义、组成元素(边、角)及其特性。
学生能够识别和区分不同类型的三角形(等腰三角形、等边三角形、直角三角形等),并掌握它们的性质和特征。
2、过程与方法:
通过观察、比较、分类、动手操作等活动,引导学生探究三角形的特征,培养学生的空间观念和几何直观能力。
利用实例分析,使学生学会运用三角形的知识解决实际问题,提升逻辑推理能力和数学应用能力。
3、情感态度与价值观:
培养学生对数学学习的兴趣,体验数学的精确美和简洁美,形成认真细致的`学习态度和科学严谨的思维习惯。
二、教学内容与过程:
1、导入新课:
设计生活中的三角形实例引入,如桥梁结构、金字塔形状等,引导学生思考这些物体为何选择三角形构造,初步感知三角形稳定性的特点。
2、新知讲解:
定义讲解:三角形是由三条线段首尾相连围成的平面图形,有三条边、三个顶点和三个内角。
展示各类三角形模型,让学生观察并总结各类三角形的特点,如等腰三角形、等边三角形、直角三角形等。
引导学生理解并掌握三角形的内角和等于180度的定理,并进行证明或验证。
3、实践活动:
组织小组合作,利用教具制作不同类型的三角形,通过测量和计算加深对三角形特性的理解。
设计一些实际问题情境,让学生运用所学知识解决问题,例如测量无法直接到达的两点间的距离,或者利用三角形稳定性原理设计简单的结构模型。
4、小结与作业:
回顾本节课所学知识点,强调三角形的重要性质及在日常生活中的应用。
布置课后作业,巩固所学知识,可以包括基本概念的默写、不同类型三角形的辨认以及相关习题的解答。
三、教学评价:
通过课堂观察、小组讨论、实践活动参与情况及课后作业完成质量等方面对学生的学习效果进行全面评价,确保每个学生对三角形有深入的理解和掌握。
三角形课件【篇4】
教学目标:
1、在原有的认知基础上,通过自学书本、观看视频讲解,逐步认识三角形,知道三角形各部分名称并概括出三角形的定义;学会用符号语言表示三角形。
2、认识三角形的高和底,会画三角形的高。
3、联系生活实际、通过实验操作理解三角形的稳定性及其应用,感受到三角形的三边长度固定,形状大小就确定的稳定性的本质。
4、培养学生的空间观念;感受数学与生活的联系,学会用数学的眼光看生活。
教学重点:
三角形的概念,感知稳定性。
教学难点:
高的画法和意义。
教学预设过程:
一、谈话引入
1、孩子们,三角形,你认识了吗?(认识了)
相信大家已经进行了自学,认真看过学习视频了,那今天这节课我们要做些什么呢?
二、汇报自主学习导学单
1、画三角形、揭示概念
(1)请小老师上台画三角形。
(2)什么叫三角形呢?师板书:由3条线段围成的图形叫做三角形
(3)哪位小老师给大家介绍一下,你对“围成”二字的理解呢?强调出:三角形每相邻两条线段的端点相连。
(4)还知道三角形有()个顶点、()条边、()个角?师板书:3个顶点、3条边、3个角
2、学会用符号语言表示三角形
为了表达的方便,现在可以给这个三角形取个名字了吧!
引导说出:三角形ABC,师标出字母ABC
说一说角A角B角C,各条线段的名称。
3、认识三角形的'高和底,会画三角形的高
(1)汇报导学单上高和底的概念
(2)“三角形高的认识”学习视频回顾
(3)找出黑板上三角形的3组顶点与对边。揭示板书:3条高
(4)同桌交流导学单上画高的过程
(5)指名板演:作高
4、三角形的稳定性及应用
(1)交流导学单上第5小题。师板书:稳定性
(2)拿出学具,拼摆三角形及四边形
(3)同桌互相交换,拉一拉,谈发现;前后排的同学转过来比一比,谈发现。
(4)说一说生活中哪里有应用到三角形的稳定性呢?
三、巩固练习、应用新知
1、快速找出对应的顶点和对边
2、请画出下面三角形中指定底边上的高。
三角形的认识——姜微微
(1)实物投影校对。
(2)直角三角形中,两条直角边互为高和底。
(3)利用第3个三角形找一找外高,指一指。
3、实践操作
四、课堂总结
[课件演示]画一个三角形及一条底边上的高,旋转三角形。
师:孩子们,让我们静静地看大屏幕,静静地回忆。
三角形课件【篇5】
一、为什么要学习三角形?
三角形是几何学中的基本形状之一,也是我们日常生活中经常遇到的形状。它在建筑、艺术、设计等领域有着重要的应用。同时,通过学习三角形,我们可以培养观察、推理和解决问题的能力,提高我们的空间认知能力。
二、三角形的定义和基本概念
1. 三角形的定义:三角形是由三条线段组成的封闭图形,其中任意两条线段之间的夹角都小于180度并且相交于一个顶点。
2. 三角形的元素:三角形的元素包括三条边和三个角度。
3. 三角形的分类:
(1) 根据边长的关系,可以将三角形分为等边三角形、等腰三角形和普通三角形。
(2) 根据角度的关系,可以将三角形分为锐角三角形、直角三角形和钝角三角形。
三、三角形的性质和定理
1. 三角形的内角和定理:三角形的三个内角的和永远等于180度。
2. 三角形的外角和定理:三角形的一个外角等于其不相邻的两个内角之和。
3. 直角三角形的性质:直角三角形中,两条直角边的平方和等于斜边的平方。
4. 等腰三角形的性质:等腰三角形中,底边上的两个角度相等。
5. 等边三角形的性质:等边三角形的三个角度都是60度。
四、三角形的周长和面积计算
1. 三角形的周长:三角形的周长等于其三条边的长度之和。
2. 三角形的面积:根据三角形的基本公式,三角形的面积等于底边乘以高再除以2。
3. 三角形的面积公式的推导:通过将三角形分成两个直角三角形,可以推导出三角形的面积公式。
五、三角形的应用
1. 三角形在建筑中的应用:三角形在建筑中具有很大的应用价值,它可以提供稳定性,并帮助设计出优美、舒适的建筑。
2. 三角形在艺术中的应用:三角形是艺术设计中最常见的图形之一,它可以用来构建稳定的图案和形状。
3. 三角形在导航中的应用:通过计算三角形的边长和角度,我们可以确定导航中的位置和方向。
六、总结
通过学习三角形的定义、性质和应用,我们可以更好地理解和应用几何学的基本概念和方法。三角形作为几何学中的基本形状之一,它不仅在实际生活中广泛应用,也是培养我们观察、推理和解决问题能力的好材料。希望通过这份课件,你可以对三角形有更深入的了解和认识。
三角形课件【篇6】
教学内容:
苏教版九年义务教育六年制小学数学第八册P47―49三角形的面积,“练一练”及练习十第1―3题
教学目标:
1、理解和掌握三角形的面积计算公式。
2、通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重、难点:
理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。
教具学具准备:
1、若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。
2、每个学生准备一个长方形、两个平行四边形,一把剪刀。
一、导入课题:
1、师:同学们,今天我们要学习三角形的面积,板书:三角形的面积),看到课题,你想知道什么?
[可能出现:a、三角形面积计算公式是什么?b、三角形面积是怎样推导出来的?c、学三角形的面积有什么作用?]
2、解决方案:
师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?
(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)
师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。
[评析:谈话式导入,学生看课题提出自己想知道的问题,参与了课堂学习目标的制定。课堂导入找准教学起点,沟通了新旧知识的联系,让学生明白本课的学习也是运用转化的方法进行研究,激发了学生的学习兴趣,调动了学生的情感,为新知的学习打下了基础。]
三角形课件【篇7】
一、教学内容
《三角形的特性》是人教版小学数学四年级下册第五单元中第一课时的内容。
二、教学目标
1、知识目标:理解三角形的定义,知道三角形各部分的名称,理解三角形稳定性的特征,并学会给三角形画高。
2、能力目标:培养学生的观察分析和动手操作能力以及对数学知识应用的能力,进一步发展空间观念。
3、情感目标:体验数学与生活的联系,培养学生学习数学的兴趣。
三、教学重、难点
教学重点:理解三角形的定义,三角形稳定性的特征。
教学难点:掌握三角形高的画法。
四、教学过程
(一)导入。
1、课件出示一组情境图:同学们,我们以前学过三角形,仔细观察一下你能在图上找到三角形吗?
2、三角形在我们的生活中有着广泛的应用,这节课我们就来探究一下三角形的特性。(板书课题:三角形的'特性)
(二)操作感知,理解概念。
1、发现三角形的特征。
(1)师生每人画出一个三角形。
小组内展示画的三角形,你发现它们有什么共同点?
(2)让学生在自己画的三角形上尝试标出边、角、顶点。(指生上台板演。)
2、概括三角形的定义。
(1)学生动手摆三角形。思考:什么样的图形叫三角形?(可结合课本理解)
(2)学生回答。
(3)你认为定义中哪些词最重要?(理解“三条线段”“围成”。)
3、用字母表示三角形。
为了表达方便,我们通常把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC。
4、认识三角形的底和高。
(1)复习过直线外一点做已知直线的垂线段。
(2)小组合作学习三角形高的画法。
自学提示:什么是三角形的高?
作三角形的高用什么学具?
怎样作三角形的高?
(3)小组代表展示问题并演示三角形高的作法。
(4)思考:三角形有几条高?应怎样画它们?
(三)实验解疑,探索特性。
1、提出问题。
(课件出示图)同学们,在生活中三角形有着广泛的应用,仔细观察为什么把物体的这些部分做成三角形的,它具有什么特性?为了解决这个问题我们来做个实验吧。
2、实验解疑。
下面,请大家都来做一个实验。
学生拿出三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?
实验结果:三角形具有稳定性。
请学生举出生活中应用三角形稳定性的例子。
(四)巩固运用,提高认识。
指导学生完成练习十五1、2、3题。
(五)课堂小结。
通过这节课的学习,你有什么收获?
五、板书设计
三角形的特性;
三角形有三个顶点,三个角,三条边;
由三条线段围成的图形叫做三角形;
三角形具有稳定性。
三角形课件【篇8】
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:
全等三角形的性质。
教学难点:
找全等三角形的对应边、对应角
教学用具:
直尺、微机
教学方法:
自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的'两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用
(1) 投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将
从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
三角形课件【篇9】
一、设计思路
本课教学设计思路:唤起内驱,激发兴趣,让学生享受自由呼吸的课堂,感受三角形的特点引发思考。感知三角形的本质属性并表达出来。体会三角形的高和底的相互依存性。
本课教学内容是人教版小学数学四年级下册第五单元第一课时内容,是本单元的起始部分,也是三角形认识的第二学段,内容包括三角形各部分的名称,三角形的特征、定义、高和底的含义,三角形是平面图形中最简单最基本的多边形,学好本课将会为以后学习习近平面几何、立体几何打下基础。
数学课标解读中说:图形与几何的学习有助于学生更好地认识和理解人类的生存空间;有助于培养学生的创新精神;初步发展空间观念,学会推理;有助于学生全面、持续、和谐的发展。所以在教学时我善于强调现实背景,联系生活经验和活动经验,经常运用观察、操作、推理想象(猜想)、作图设计等手段。培养学生的符号意识,和应用意识。
二、教学目标
1、知识与能力:联系实际和利用生活经验,通过观察、操作、测量、联想等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形的底和高的相互依存的关系。
2、方法与途径:在认识三角形的基本特征及底和高的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。
3、情感与评价:认识到三角形是日常生活中的常见图形,在学习活动中进一步产生学习图形的兴趣和积极性。
4、现代教学手段:多媒体辅助教学。
三、教学重点与难点
教学重点:认识三角形的基本特征,认识三角形的底和高。
教学难点:懂得底和高的对应关系,会画三角形指定边上的高。
四、教学准备
教学准备:小棒、三角板、导学案、多媒体课件等。
五、教学过程
一、猜谜引入,激发兴趣。
谈话:同学们,我们玩一个猜图形游戏好不好?
四条边一样长,四个角一样大,方方正正什么形?
没有角,像个车轮转转转,像个钟面圆又圆什么形?
三个角尖尖的,三条边直直的,三角三边紧相连什么形?
提问:你在生活中的什么地方见过三角形?
出示:关于三角形的图片并欣赏。
揭示:同学们都有一双善于发现的眼睛,看来三角形在我们的生活中无处不在,今天这节课就让我们一起走进三角形的世界,来认识三角形。(板书课题《三角形的认识》)
【设计意图:数学来源于生活。三角形的稳定性决定了它在生活中的广泛应用。结合身边熟悉的物品、结合生活中常见的例子,导入新课的学习,激发学生的兴趣,让学生产生进一步探究的欲望。】
二、探索新知
活动一:认识三角形
1、激趣:想动手做一个三角形吗?首先,我们要明确活动要求。
出示要求:(1)用你手中的学习材料,做出一个三角形。
(2)小组成员比较所做的三角形,看看有什么共同点。
2、操作:学生分组活动,教师巡视。
3.交流:指名某组代表上台介绍,别的小组补充。(材料:小棒、三角尺、方格纸、点子图、白纸)
4、画:闭上眼睛想一想你心目中的三角形是什么样子的,画在展评单上。
5、概括特征:
观察比较:刚才我们一起完成的三角形做法不同,材料不同,大小各异,但是它们是具有共同特征的,你发现了吗?
得出:三个顶点、三条边、三个角。
板书:三角形各部分名称。
出示课件:判断下面哪些图形是三角形。
6、理解意义:什么样的图形叫做三角形?
7、感受围成:以小组为单位选择自己的伙伴感受围城是什么意思?
拓展延伸:由4条线段围成的图形叫什么形?五条线段围成的图形呢?由几条线段围成的图形是6边形?我们利用这样的方式就可以认识更多的多边形。
【设计意图:三角形的定义较难用学生容易理解的数学语言进行表达,教材采取的策略是让学生做中感悟,比较概括。因此,尊重教材设计的意图,精心组织学生在小组里的操作与交流的活动,让学生在操作中充分感悟三角形的特点。在抽象出多种方式创造出的三角形后,通过异中求同的方式,提取出三角形的本质特征:三条边、三个角、三个顶点。】
活动二:理解三角形高和底的含义。
自学课本66页,同伴交流,组内探讨,完成展评单上的活动二,比一比,哪组同学最会学习。
1、从三角形的一个到它的作一条垂线,顶点到垂足间的线段叫做三角形的高,这条对边叫做三角形的.
2、思考:一个三角形可以画几条高?
3、独立完成:画出每个三角形底和高。
交流小结:在直角三角形中,把一条直角边看作三角形的底,另外一条直角边就是这个三角形的高。
【设计意图:学生有了前面学习的基础和经验,本环节我大胆放手让学生通过独学、对学、群学、合作交流、展示汇报等活动充分理解三角形高和底的含义,并且知道人的身高只有一个,而三角形却有三条高,并会做高。】
三、巩固练习、闯关游戏。
完成检测反馈。
【设计意图:课堂练习是学生学习过程中不可缺少的重要环节,是学生巩固新手知识、形成技能技巧、发展智力的重要手段,同时也是培养创新精神的重要途径。】
四、再现知识,总结评价。
师:这节课你有什么收获,对于三角形的知识,你还有那些问题和疑惑?
这节课我们明确了三角形的特征:三个角、三条边和三个顶点,知道了高是从顶点出发画出来的,研究了顶点的特性,下节课我们还要继续探究三角形的其他奥秘。
板书设计:
(略)
三角形课件【篇10】
教学目标:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:理解三角形面积公式的推导过程。
教学准备:每小组各一个长方形、正方形和平行四边形的纸;每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,一条红领巾;多媒体课件。
教学过程:
一、动手操作,发现规律
1、师:同学们喜欢玩儿游戏吗?(喜欢)今天我们就来玩一个游戏,好吗?(好)。请各小组拿出为大家准备的长方形、正方形和平行四边形,听好了,既然是游戏当然就有游戏规则,请想一想,如何在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考、讨论有几种折法,再开始折,并用彩色笔画出折痕。看看哪一个小组完成得又好又快!
2、小组学生代表上台汇报操作结果。
3、师根据汇报有选择地在黑板上贴出以下四种折法:
4、让学生观察后提问。
师:这三个图形分别被折成了两个形状、大小完全一样的什么图形?
生:这三个图形分别折成了两个形状,大小完全一样的三角形。
师:如果我们知道长方形长为30厘米,宽为20厘米,它的面积是多少?被折成的每个三角形的面积是多少?你是怎样求出来的?
生1:长方形的面积是30×20=600(平方厘米)
每个三角形的面积是600÷2=300(平方厘米)
师:如果我们知道正方形边长为30厘米,它的面积是多少?每个三角形的面积又是多少呢?为什么?
生2:正方形的面积是30×30=900(平方厘米)
每个三角形的面积是900÷2=450(平方厘米)
师:如果我们知道平行四边形的底为40厘米,高为20厘米,它的面积是多少?每个三角形的面积呢?为什么?
生3:平行四边形的面积是40×20=800(平方厘米)
每个三角形的面积是800÷2=400(平方厘米)
【设计意图】:通过动手操作,既做到复习旧知,又让学生初步理解三角形的面积与平行四边形之间的联系,为新知的探索做好铺垫。
5、引出课题。
师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
【设计意图】:从不会计算面积的图形中揭示课题,激发学生的.探究兴趣。
6、板书课题:三角形的面积
二、自主探索,得出公式
1、玩游戏,小组内交流问题。
师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:
(课件出示以下问题)
A、两个完全一样的三角形能拼出什么图形?
B、拼成图形的面积你会算吗?
C、拼成的图形与原来每一个三角形有什么联系?
(学生在小组里动手拼一拼,并相互交流以上问题)
【设计意图】:给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。
2、学生代表上台演示汇报(2名学生,1人汇报,1人演示)
生1边演示,生2边汇报:
我们用2个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以一个三角形的面积=底×高÷2。
师:哦!原来是这样!同学们,你们明白了吗?请把掌声送给刚才这两位小老师。
师:刚才这个小组是用两个完全一样的锐角三角形来拼组的。你们还有其他新的发现吗? (寻找用直角三角形拼组的小组代表汇报)
(学生汇报的过程略)
师:汇报得真好!还有吗?
(点名用钝角三角形拼组的小组代表汇报)
(学生汇报的过程略)
【设计意图】:让各组学生口头表达自己小组的推导过程,锻炼学生整理思维、理顺思路的能力和口头表达能力。
3、根据学生的汇报,老师小结。
(每一种拼组学生汇报后都贴在黑板上。在老师小结时,应故意把其中的一个三角形拿掉,并画虚线表示。)
师:看来不管是锐角三角形、直角三角形,还是钝角三角形,只要两个完全一样的三角形就能拼成一个平行四边形,其中一个三角形的面积是拼成的平行四边形面积的一半。
追问:是不是任意一个三角形面积是任意一个平行四边形面积的一半?
(师任意拿起一个三角形和不等底等高的平行四边形的纸板,让学生对比进行引导) 生:不是。三角形的底和高必须与平行四边形的底和高相等时才对。
同学们现在说的很有道理,我们再来回忆一下刚才大家拼图形的过程。
老师板书:
三角形的面积是与它等底等高的平行四边形面积的一半。(板书)
师:看来,我们通过玩一玩,拼一拼,知道了怎样求一个三角形的面积了。那谁来说一说三角形的面积的计算公式是什么?
生:三角形的面积=底×高÷2(老师板书)
师追问:同学们,老师有点不明白,为什么写这个公式时用三角形的底乘高呢?“底×高”表示什么意思?为什么要“÷2”?
生:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。
(学生加深对三角形面积计算公式的理解后,生齐读公式)
【设计意图】:通过小结追问,让学生更进一步对三角形的面积=底×高÷2的理解,为下一步解决实际问题做好充分的准备。
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?
生:s=ah÷2(师板书)
4、介绍教材P85页的数学知识。
师:同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,2000多年以前,我们的祖先就已经发现了,请看屏幕。(多媒体出示P85页的数学知识)
师:同学们,我国古代数学家固然伟大。但是,老师觉得你们更了不起!他们年纪很大了才发现的,而咱们小小年纪不也找到三角形面积的计算方法了吗?来,把热烈的掌声送给咱们自己!(响起掌声)好,接下来我们是不是更有信心继续展示自我?(是)
【设计意图】:通过数学知识的介绍,渗透爱国主义思想教育,同时增强学生利用知识解决实际问题的信心。
三、回顾过程,总结方法
1、两个完全相等的三角形拼成一个平行四边形,三角形面积是这个平行四边形面积的一半,即:三角形面积=底×高÷2。
2、我们是把三角形转化成平行四边形来计算面积的,即利用旧知解决新问题。
四、学以致用,解决问题。
师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)
1、计算生活中的三角形的面积
(1)计算红领巾的面积
师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件? 生:需要知道三角形的底和高。
(课件出示例2)
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
师:请同学们算一算。
(学生练习后讲评订正)
(2)计算三角形标志牌的面积
三角形课件【篇11】
一、教学内容
上海教育出版社《实用数学》第七册26页“三角形的认识”
二、教学目标
(1)认知目标:加深对图形的认识,认识三角形,了解三角形的特点。
(2)能力目标:培养动手能力,制作三角形。
(3)情感目标:培养学生独立思考,团结互助的良好习惯。
三、教学重难点
1、掌握三角形的特征。
2、正确识别和制作三角形。
四、教具准备
多媒体、剪刀、小棒、白纸、彩笔
五、教学过程
(一)创景导入,明确目标。
1、呈现生活画面(出示几幅优美的含有三角形的图片。)
师:请同学们仔细观察这几幅图,你发现了什么?生活离不开图形,正是许许多多的图形才构造了生活的美。我们看到了生活中许多的图形都是三角形,这节课,我们一起来认识三角形。
2、板书:
三角形
(二)新知探究。
1、出示生活中常见实物的图片。
①盘子
②衣架
③蛋糕
④房子
⑤钥匙扣
⑥篮球架
2、三角形的定义
由三条线段围成的图形叫三角形
(三)课堂练习
1、出示例题,复习三角形。
2、辨别三角形
通过与圆形、长方形、正方形之间的比较,更深的掌握三角形的特性。
①个别提问,辨别三角形
②师分析指导
(四)制作三角形
1、摆小棒
①出示图片
②观看教学视频
③师分发小棒
④学生独立完成,师个别指导
2、剪一剪
①观看教学视频
②分发剪刀和白纸
③学生独立完成,师个别指导
3、拼一拼
①用刚剪好的几个三角形,拼成一棵小树。
②出示示例图片,分步骤完成
③师个别指导
(五)小游戏
在音乐声中,每位学生给自己亲手制作的小树涂上自己喜欢的颜色。
三角形课件【篇12】
一、说教材
本节课内容是人教版义务教育课程标准实验教科书《数学》第八册第82页例3。这一内容是在学生初步了解三角形的定义的基础上,进一步研究三角形的组成特征。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否围成三角形的标准,熟练灵活地应用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。
新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。引悟教育的目标,强调在教师的引导作用下,由“获得知识结论快乐”转变为“探究发现知识快乐”。依据新课标的精神、引悟教育的目标、学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:
(一)教学目标
实践操作、观察比较,初步感知三角形边的关系。
猜想验证、自主探索、合作交流发现三角形任意两边之和大于第三边。
3、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
4、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
(二)教学重点
探究发现三角形任意两条边的和大于第三边。
(三)教学难点
理解性质中的“任意两边”。
二、说教法
新课程改革要求教师要由传统意义上的知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在自主探索中,学习新知、经历探索、获得知识。
三、说学法
有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,为此我十分注重学生学习方法的指导,在本节课中,我指导学生学习的方法为:动手操作法、观察发现法、自主探究法、合作交流法。让他们在剪一剪、围一围、比一比、想一想、议一议等活动中提高能力,获得知识。
四、说教学程序
为了突出重点,突破难点,达到已定的教学目标。我主要安排了以下的几个教学环节。
(一)置境引入,使学生对三角形三边关系的探索成为一种需要。
教育情境的设计,是引悟教育的基础性工作,这种带有准备性的基础工作,直接关系到学生的学,同时也直接影响到学生的悟,以及悟的成果。基于这样的认识,在本节课开始,我结合学生已有知识与生活实际,创设了这样的数学情境:(课件出示小明上学的路线)小明去学校一共有几条路可走,走哪条路最近,为什么?这样的问题情境贴近学生的生活,学生凭着自己的生活经验,知道走哪条路更近,但却苦于表达不出其中蕴含的道理,就使得对于三角形三边关系的探索内化成学生的一种需要。(适时板书课题:三角形三边的关系)
(二)联结感悟,经历、体验三角形三边关系的形成、发展过程。
借鉴杜威“做中学”的思想,我在设计本课时,充分发挥学生主体精神,留有足够的时间和空间,让他们在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中得以发展。
这个环节我安排了二个层次的操作活动:
活动一、动手操作,大胆猜想
为每位学生提供小棒,让学生用剪刀随意剪成三段,试着围三角形。在围的过程中,学生会出现能围成和不能围成两种情况。我抓住这一契机巧妙设疑:为什么都是三段小棒有的能围成一个三角形,有的不能够围成一个三角形呢?这里面隐藏着什么秘密?带着疑问开始活动二。
三角形课件【篇13】
教学目标:
1、透过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作潜力、动手实践潜力,发展学生的空间观念。并运用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、猜谜语:(课件)
形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
(打一图形名称)三角形(板书)
2、猜三角形(课件)
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你明白这是什么三角形吗?
师:提问第3个图形时问:被遮住的两个角是什么角?
会是两个直角吗?为什么?
(引导学生开始对“三角形的内角和是多少”进行思索。)
3、引出课题。
师:看来三角形里角必须藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和
师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。
(多让几个学生说一说)
2、猜一猜。
师:这个三角形的内角和是多少度?
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?能够用什么方法验证呢?
3操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生带给充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,透过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种状况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到折的方法,请同学们看一看他是怎样折的(课件演示)。
(鼓励学生用心开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理潜力。)
(4)数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
5、巩固知识。
(1)师:你对三角形内角和是多少度还有疑问吗?此刻我们能够肯定的说:三角形的内角和是?度。
(2)解决课前问题,为什么画不出1个内含2个直角的三角形?
1个三角形中有没有2个钝角?
(3)师:我们对三角形的认识已经十分清晰,
出示2个三角形,生分别说出内角和。
把两个小三角形拼在一齐,问:大三角形的内角和是?度。
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数
2、书上88页10题。
教师:刚才,我们利用了三角形的什么?
3、教师:如果一个都不明白,或只明白1个角,你能明白三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、决定。
5、求4边形、5边形内角和。
下课的时间就要到了,我们来一个挑战题。你们敢理解挑战吗?
如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维潜力。)
四、总结。
师:这节课你有什么收获?
五、板书设计:
三角形的内角和是180°
∠1+∠2+∠3=180°
度量
剪拼
折拼
三角形课件【篇14】
学习目标:
1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
2.知道三角形两个角的度数,能求出第三个角的度数。 3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。
4.能应用三角形内角和的性质解决一些简单的问题。
教具、学具准备:
课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中 ;一副三角板。
教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。
(打一几何图形) 师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)
说数学知识神气不神奇?
今天我们还要继续研究三角形的新知识。
师:什么是三角形的内角? 三角形有几个内角? 生:就是三角形内的三个角。每个三角形都有三个内角。 师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。
师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)
师:同学们,请你们给评评理:是这样吗? 生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。
生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。
生4:我同意第二个同学的意见,两个三角形的内角和一样大。 师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。 (板书课题:
师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(学生们能够很快求出每块三角尺的3个角的和都是180°) 师:其他三角形的内角和也是180°吗? 生A:其他三角形的内角和也是180° 生B:其他三角形的内角和不是180° 生C:不一定
2、小组合作探究:
师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。
样?
方法一:
生A:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)
师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。
方法二:
生B:我们小组是用折的方法,同样得到三角形的内角和是180度。
师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)
师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)
小结:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。
3、小结:
师:刚才同学们用量、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。
(出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)
四、自主练习,解决问题:
师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、第一关:下面每组中哪三个角能围成一个三角形? (1)70。
60。
30。
90。
(2)42。
54。
58。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
师:小组的同学讨论一下,看谁能找到最佳方法。 学生汇报,在图中画上虚线,教师课件演示。
帕斯卡法是国着名的数学家、物理学家、哲学家、科学家 ,他12岁发现“任何三角形的三个内角和是1800!
且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。
帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!
三角形课件【篇15】
教学目标:
1.通过指一指、摸一摸、比一比等活动,使学生理解面积的意义。
2.在解决问题的过程中,使学生体验建立面积单位的必要性,初步理解面积单位的建立规则。
3.认识常用的面积单位:平方厘米、平方分米和平方米。在活动中获得关于它们实际大小的空间观念,形成正确的表象。
4.培养学生观察、操作、概括能力,使学生体验到数学来源于生活并服务于生活。
教学重难、点:
教学重点:使学生理解面积的意义,掌握常用的面积单位,建立面积单位的表象。
教学难点:
1.使学生建立面积的概念,建立面积单位的表象。
2.在操作中体会引进统一面积单位的必要性。
教具、学具:
教具:多媒体课件;米尺、平方厘米、平方分米、平方米的教具。
学具:两生一份面积相近但形状不同的长方形,大小不同的正方形、长方形、圆形、正三角形纸片若干,平方厘米、平方分米的学具。
教学程序:
(一)创设情景,初步感知。
(1) 出示米尺和学生尺。比一比,有什么不同?
从而提炼出比的结果:长短不同,大小不同。
你们所比的长短指尺子的什么? (长度)大小又指的什么?(尺子的面)
(2) 小结:今天我们一起研究有关物体表面的知识。(板书:物体表面)
(二)充分感知,引导建构。
(1)通过物体的表面感知面积。
1.指一指:我们身边有很多物体,比如黑板,幕布、书本、课桌等等,它们的表面在哪?
2.摸一摸:摸一摸这些物体的表面,有什么感觉?
3.比一比:这些物体的表面,哪个大一些?哪个小一些呢?
指出:我们把物体表面的大小叫做它们的面积。(板书:物体表面的大小叫做它们的面积。)