幼儿教师教育网,为您提供优质的幼儿相关资讯

数学函数教案

发布时间:2023-06-25 数学函数教案

[荐]数学函数教案2500字。

教案课件是教师上课时非常重要的一个辅助工具,因此需要认真编写。只有编写好教案课件,才能全面掌握课堂中可能出现的各种情况。本页面提供了《数学函数教案》相关内容,为了不遗漏重要信息,建议您收藏本页!

数学函数教案 篇1

1.2解三角形应用举例第二课时

一、教学目标

1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题

2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。

3、进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力

二、教学重点、难点

重点:结合实际测量工具,解决生活中的测量高度问题

难点:能观察较复杂的图形,从中找到解决问题的关键条件

三、教学过程

Ⅰ.课题导入

提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题

Ⅱ.讲授新课

[范例讲解]

例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。

解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD=a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得

AC=AB=AE+h=AC+h=+h

例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m)

师:根据已知条件,大家能设计出解题方案吗?

若在ABD中求CD,则关键需要求出哪条边呢?

生:需求出BD边。

师:那如何求BD边呢?

生:可首先求出AB边,再根据BAD=求得。

解:在ABC中,BCA=90+,ABC=90-,

BAC=-,BAD=.根据正弦定理,=

所以AB==在RtABD中,得BD=ABsinBAD=

将测量数据代入上式,得BD==≈177(m)

CD=BD-BC≈177-27.3=150(m)

答:山的高度约为150米.

思考:有没有别的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪个三角形中研究比较适合呢?(在BCD中)

思考2:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?(BC边)

解:在ABC中,A=15,C=25-15=10,根据正弦定理,

=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度约为1047米

Ⅲ.课堂练习:课本第17页练习第1、2、3题

Ⅳ.课时小结

利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。

Ⅴ.课后作业

作业:《习案》作业五

高一数学教案:《函数》教学设计

高一数学教案:《函数》教学设计

教学目标

1.理解函数的概念,了解函数的三种表示法,会求函数的定义域.

(1)了解函数是特殊的映射,是非空数集A到非空数集B的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体.

(2)能正确认识和使用函数的三种表示法:解析法,列表法,和图象法.了解每种方法的优点.

(3)能正确使用“区间”及相关符号,能正确求解各类函数的定义域.

2.通过函数概念的学习,使学生在符号表示,运算等方面的能力有所提高.

学过什么函数?

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

学生举出如等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.

提问1.是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)

教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.

二、新课

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质.

(板书)2.2函数

一、函数的概念

数学函数教案 篇2

教学目标

知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。

能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。

德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。

教学重点:函数单调性的有关概念的理解

教学难点:利用函数单调性的概念判断或证明函数单调性

教具:多媒体课件、实物投影仪

教学过程:

一、创设情境,导入课题

[引例1]如图为20xx年黄石市元旦24小时内的气温变化图.观察这张气温变化图:

问题1:气温随时间的增大如何变化?

问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?

[引例2]观察二次函数

的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和y值之间的变化规律。

结论:

(1)y轴左侧:逐渐下降;y轴右侧:逐渐上升;

(2)左侧y随x的增大而减小;右侧y随x的增大而增大。

上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。

二、给出定义,剖析概念

①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值

②单调性与单调区间

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。

注意:

(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。当x1 f(x2)y随x增大而减小。几何解释:递增函数图象从左到右逐渐上升;递减函数图象从左到右逐渐下降。

(2)函数单调性是针对某一个区间而言的,是一个局部性质。

判断1:有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。

判断2:定义在R上的函数f (x)满足f (2)> f(1),则函数f (x)在R上是增函数。

函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。

训练:画出下列函数图像,并写出单调区间:

三、范例讲解,运用概念

具有任意性

例1:如图,是定义在闭区间[-5,5]上的函数出函数的单调区间,以及在每一单调区间上,函数的图象,根据图象说是增函数还减

注意:

(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。

(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。

例2:判断函数f (x) =3x+2在R上是增函数还是减函数?并证明你的结论。

分析证明中体现函数单调性的定义。

利用定义证明函数单调性的步骤。

数学函数教案 篇3

一、教材分析

(一)内容说明

函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。

三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。

本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。

著名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。

本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。

因此,本节课在教材中的知识作用和思想地位是相当重要的。

(二)课时安排

4.8节教材安排为4课时,我计划用5课时

(三)目标和重、难点

1.教学目标

教学目标的确定,考虑了以下几点:

(1)高一学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;

(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。

(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。

由此,我确定了以下三个层面的教学目标:

(1)知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法;

(2)能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;

(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。

2.重、难点

由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。

难点是:函数周期定义、正弦函数的单调区间和对称性的理解。

为什么这样确定呢?

因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。

如何克服难点呢?

其一,抓住周期函数定义中的关键字眼,举反例说明;

其二,利用函数的周期性规律,抓住“横向距离”和“k∈Z"的含义,充分结合图象来理解单调性和对称性

二、教法分析

(一)教法说明教法的确定基于如下考虑:

(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。

(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。

(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。

所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。

(二)教学手段说明:

为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:

(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。

(2)为便于课堂操作和知识条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;

(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。

三、学法和能力培养

我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。

本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。

教师要做到:

授之以渔,与之合作而渔,使学生享受渔之乐趣。因此

1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。

2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。

四、教学程序

指导思想是:两条线索、三大特点、四个环节

(一)导入

引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。

采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。

(二)新知探索主要环节,分为两个部分

教学过程如下:

第一部分————师生共同研究得出正弦函数的性质

1.定义域、值域2.周期性

3.单调性(重难点内容)

为了突出重点、克服难点,采用以下手段和方法:

(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;

(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。

(3)单调区间的探索过程是:

先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。

xx教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍

为什么要这样强调呢?

因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。

4.对称性

设计意图:

(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。

(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。

5.最值点和零值点

有了对称性的理解,容易得出此性质。

第二部分————学习任务转移给学生

设计意图:

(1)通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价;

(2)通过学生自主探索,给予学生解决问题的自主权,促进生生交流,利于教师作反馈评价;

(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。

(三)巩固练习

补充和选作题体现了课堂要求的差异性。

(四)结课

五、板书说明既要体现原则性又要考虑灵活性

1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)

2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)

六、效果及评价说明

(一)知识诊断

(二)评价说明

1.针对本班学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。

2.根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。

3.本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。

通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果。

数学函数教案 篇4

各位专家领导:

早上好!

今天我将要为大家讲的课题是幂函数。

一、说教材

1、教材的地位和作用:

《幂函数》选自高一数学新教材必修1第2章第3节。幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。

2、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,制定如下教学目标:

(1)基础知识目标:

①理解幂函数的概念,会画幂函数的图象。

②结合这几个幂函数的图象,理解幂函图象的变化情况和性质。

③了解分段函数及其表示。

(2)能力训练目标:

①通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

②使学生进一步体会数形结合的思想。

(3)情感态度与价值观

1、通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣。

2、利用计算机,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。

3、教学重点与难点

重点:常见幂函数的概念、图象和性质。

难点:幂函数的单调性及比较两个幂值的大小。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

二、说教法

教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。

1、引导发现比较法

因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。

2、借助信息技术辅助教学

由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入镜头,将学生引到这节课的学习中来。再利用《几何画板》画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。

3、练习巩固讨论学习法

这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。

三、说学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

老师先通过多媒体演示教科书中的5个问题,引导学生观察上述例子中函数模型,归纳出几个函数表达式的共同特征:解析式的右边都是指数式,且底数都是变量。这样就引出本节课要讲的幂函数。采用小组讨论的方法,数形结合,培养学生互助、协作的精神,使学生“学”有新“思”,“思”有所“得”,“练”有所“获”,学生会逐步感受到数学的美,产生一种成功感,从而提高学数学的兴趣。

最后我来具体谈一谈这一堂课的教学过程:

四、说教学程序

由多媒体展示引入:本节课要讲的幂函数。

把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

数学函数教案 篇5

我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析

1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析

基于对教材的理解和分析,我制定了以下的教学目标

1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力

3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析

1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

数学函数教案 篇6

我们网站有很多,你到我们网站去下载吧充分条件与必要条件说课xx-11-0190分44KB-0页充分条件与必要条件耗点:20点版本:未知下载:10次文件类型:上传:春子直线方程说课稿xx-03-080分10KB-0页大家好!我叫陈媛媛,是新疆师范大学数学与应用数学专业的应届毕业生,很高兴今天在这里说课。

我要说课的内容是是人教版高中数学必修2第七章《直线和圆的方程》中第二节《直线的方程》。

我将从四个方面来阐述我对这..耗点:免点版本:未知下载:15次文件类型:上传:吉拉德美杜莎中心投影与平行投影及空间几何体的三视图教案[原创]xx-05-210分95KB-0页中心投影与平行投影及空间几何体的三视图。

中心投影与平行投影及空间几何体的三视图。

人教版A版《必修2》第一章第二节第一课时。

山西省平遥中学胡巍基。

一.教材分析。

1.教材的地位和作用。

本节课是课标教材人教版A版《必修2..耗点:20点版本:新标准下载:7次文件类型:上传:huziming导数的概念说课xx-11-010分44KB-0页导数的概念耗点:20点版本:未知下载:7次文件类型:上传:春子等比数列前n项和说课xx-11-010分47KB-0页等比数列前n项和耗点:20点版本:未知下载:7次文件类型:上传:春子第三届全国高中青年数学教师优秀课评选数学归纳法说课xx-11-010分36KB-0页第三届全国高中青年数学教师优秀课评选数学归纳法耗点:20点版本:未知下载:6次文件类型:上传:春子点到直线的距离说课xx-11-010分65KB-0页点到直线的距离耗点:20点版本:未知下载:3次文件类型:上传:春子独立重复实验与二项分布说课xx-11-010分36KB-0页独立重复实验与二项分布耗点:20点版本:未知下载:0次文件类型:上传:春子反函数说课xx-11-010分36KB-0页反函数耗点:20点版本:未知下载:4次文件类型:上传:春子函数y=Asin(ψx+φ)的图象说课xx-11-010分44KB-0页函数y=Asin(ψx+φ)的图象耗点:20点版本:未知下载:5次文件类型:上传:春子二倍角说课课件xx-11-010分63KB-0页二倍角课件耗点:20点版本:未知下载:17次文件类型:上传:春子函数y=Asin(ωx+φ)的图象说课xx-11-010分47KB-0页函数y=Asin(ωx+φ)的图象耗点:20点版本:未知下载:2次文件类型:上传:春子函数的单调性说课xx-11-010分65KB-0页函数的单调性耗点:20点版本:未知下载:11次文件类型:上传:春子函数的最大值与最小值说课xx-11-010分702KB-0页函数的最大值与最小值耗点:20点版本:未知下载:3次文件类型:上传:春子互为反函数的函数图象间的关系说课xx-11-010分65KB-0页互为反函数的函数图象间的关系耗点:20点版本:未知下载:1次文件类型:上传:春子回归分析的初步应用说课xx-11-010分30KB-0页回归分析的初步应用耗点:20点版本:未知下载:6次文件类型:上传:春子简单的线性规划说课xx-11-010分36KB-0页简单的线性规划耗点:20点版本:未知下载:2次文件类型:上传:春子离散型随机变量的期望说课xx-11-010分43KB-0页离散型随机变量的期望耗点:20点版本:未知下载:1次文件类型:上传:春子抛物线及标准方程说课xx-11-010分34KB-0页抛物线及标准方程耗点:20点版本:未知下载:7次文件类型:上传:春子平面动点的轨迹说课xx-11-010分381KB-0页平面动点的轨迹说课耗点:20点版本:未知下载:0次文件类型:上传:春子

数学函数教案 篇7

各位评委老师,你们好!

我是来自密山市兴凯湖乡中学的一名数学教师,姓名姚宝昌。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。

新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。

一、 教材分析:

1、教材内容所处的地位及作用

本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

在《数学课程标准》中,对于本节内容提出了明确的要求,另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。

2、教学目标:

⑴、知识与能力:

①、能通过函数图象获取信息,发展形象思维。

②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

⑵、过程与方法:

①、在亲身的经历与实践探索过程中体会数学问题解决的办法。

②、初步体会方程与函数的关系,建立良好的知识联系。

⑶、情感态度与价值观:

①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。

②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

3、教学重点、难点及其确立的依据:

由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:

1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。

二、学情状况分析:

1、学生现状:

针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:

⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。

⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。

⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。

⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。

2、知识情况:

本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。

3、预期效果:

学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合” 、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。

另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到最佳效果。

数学函数教案 篇8

一.学习目标

1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

二.知识导学

(一)情景导学

1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是 。

2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?

设长方形的长为x 米,则宽为 米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为 .

3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?

在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y(元)与x(m)之间的函数关系式是 。

(二)归纳提高。

上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?

一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。

一般地,二次函数 中自变量x的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?

(三)典例分析

例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值.

(1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2

(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c

例2.当k为何值时,函数 为二次函数?

例3.写出下列各函数关系,并判断它们是什么类型的函数.

⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;

⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;

⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;

⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.

三.巩固拓展

1.已知函数 是二次函数,求m的值.

2. 已知二次函数 ,当x=3时,y= -5,当x= -5时,求y的值.

3.一个长方形的长是宽的1.6倍,写出这个长方形的面积S与宽x之间函数关系式。

4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半径r之间的函数关系式

5.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.

6. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5 m.

⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;

⑵求当上部半圆半径为2 m时的截面面积.(π取3.14,结果精确到0.1 m2)

课堂练习:

1.判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。

(1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .

2.写出多项式的对角线的条数d与边数n之间的函数关系式。

3.某产品年产量为30台,计划今后每年比上一年的产量增长x%,试写出两年后的产量y(台)与x的函数关系式。

4.圆柱的高h(cm)是常量,写出圆柱的体积v(cm3)与底面周长C(cm)之间的函数关系式。

课外作业:

A级:

1.下列函数:(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,属于二次函数的

是 (填序号).

2.函数y=(a-b)x2+ax+b是二次函数的条件为 .

3.下列函数关系中,满足二次函数关系的是( )

A.圆的周长与圆的半径之间的关系; B.在弹性限度内,弹簧的长度与所挂物体质量的关系;

C.圆柱的高一定时,圆柱的体积与底面半径的关系;

D.距离一定时,汽车行驶的速度与时间之间的关系.

4.某超市1月份的营业额为200万元,2、3月份营业额的月平均增长率为x,求第一季度营业额y(万元)与x的函数关系式.

B级:

5、一块直角三角尺的形状与尺寸如图,若圆孔的半径为 ,三角尺的厚度为16,求这块三角尺的体积V与n的函数关系式.

6.某地区原有20个养殖场,平均每个养殖场养奶牛20xx头。后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。如果养殖场减少x个,求该地区奶牛总数y(头)与x(个)之间的函数关系式。

C级:

7.圆的半径为2cm,假设半径增加xcm 时,圆的面积增加到y(cm2).

(1)写出y与x之间的函数关系式;

(2)当圆的半径分别增加1cm、 时,圆的面积分别增加多少?

(3)当圆的面积为5πcm2时,其半径增加了多少?

8.已知y+2x2=kx(x-3)(k≠2).

(1)证明y是x的二次函数;

(2)当k=-2时,写出y与x的函数关系式。

数学函数教案 篇9

教材:已知三角函数值求角(反正弦,反余弦函数)

目的:要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出 范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。

过程:

一、简单理解反正弦,反余弦函数的意义。

1在R上无反函数。

2在 上, x与y是一一对应的,且区间 比较简单

在 上, 的反函数称作反正弦函数,

记作 ,(奇函数)。

同理,由

在 上, 的反函数称作反余弦函数,

记作

二、已知三角函数求角

首先应弄清:已知角求三角函数值是单值的。

已知三角函数值求角是多值的。

例一、1、已知 ,求x

解: 在 上正弦函数是单调递增的,且符合条件的角只有一个

(即 )

2、已知

解: , 是第一或第二象限角。

即( )。

3、已知

解: x是第三或第四象限角。

(即 或 )

这里用到 是奇函数。

例二、1、已知 ,求

解:在 上余弦函数 是单调递减的,

且符合条件的角只有一个

2、已知 ,且 ,求x的值。

解: , x是第二或第三象限角。

3、已知 ,求x的值。

解:由上题: 。

介绍:∵

上题

例三、(见课本P74-P75)略。

三、小结:求角的多值性

法则:1、先决定角的象限。

2、如果函数值是正值,则先求出对应的锐角x;

如果函数值是负值,则先求出与其绝对值对应的锐角x,

3、由诱导公式,求出符合条件的其它象限的角。

四、作业:

P76-77 练习 3

习题4.11 1,2,3,4中有关部分。

数学函数教案 篇10

教学目标

1、能列出实际问题中的二次函数关系式;

2、理解二次函数概念;

3、能判断所给的函数关系式是否二次函数关系式;

4、掌握二次函数解析式的几种常见形式.

从实际问题中感悟变量间的二次函数关系,揭示二次函数概念.学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义.

情感态度

使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。

教学重点

理解二次函数的意义,能列出实际问题中二次函数解析式

教学难点

能列出实际问题中二次函数解析式

教学过程设计

一、情境引入

播放实际生活中的有关抛物线的图片,概括性的介绍本章.

二、探究新知

㈠、用函数关系式表示下列问题中变量之间的关系:

1.正方体的棱长是x,表面积是y,写出y关于x的函数关系式;

2.n边形的对角线条数d与边数n有什么关系?

3.某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都必上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的`值而确定,y与x之间的关系应怎样表示?

㈡观察所列函数关系式,看看有何共同特点?

㈢类比一次函数和反比例函数概念揭示二次函数概念:

一般地,形如

yJS21.com更多精选幼儿园教案阅读

数学一次函数教案


每个老师为了上好课需要写教案课件,只要我们老师在写的时候认真负责就可以了。 教案课件是教学的纲领,要写到位才能有效提高教学,好的教案课件怎么写?是否想更深入地了解“数学一次函数教案”下面的资料或能帮到你,希望这篇文章能够为您提供实用的方法和建议!

数学一次函数教案 篇1

一、主题:一次函数基础知识概述

一次函数是初中数学中的一种重要的概念,也是高中数学的基础。一次函数的定义是y=kx+b,其中k和b都是常数,x和y分别代表函数中的自变量和函数值。本教案将对一次函数的基础知识进行概述,包括一次函数的定义、一次函数的图像和性质以及一次函数的应用。

二、相关知识点介绍

1. 一次函数的定义

一次函数是指函数的表达式为y=kx+b的函数,其中k和b是常数,x为自变量,y为函数值。其中k称为一次函数的斜率,b称为一次函数的截距。

2. 一次函数的图像和性质

一次函数的图像是一条直线,斜率k决定了直线的斜率方向和倾斜程度,截距b决定了直线与y轴的交点。一次函数的性质包括:斜率为正数,则函数单调递增;斜率为负数,则函数单调递减;斜率为0,则函数为常函数;截距为0,则函数经过原点。

3. 一次函数的应用

一次函数在实际问题中有广泛的应用。例如,通过分析销售数据,可以得到销售额和销售量之间的一次函数关系式,以此来预测未来的销售额和销售量;通过分析工资和工龄之间的一次函数关系式,可以了解员工工资的增长趋势和未来的工资水平。

三、教学方法

1. 概念讲解法:通过对一次函数的定义、图像和性质等核心概念的讲解,使学生对一次函数的基本概念有一个初步了解。

2. 例题演练法:通过多种类型的例题演练,让学生进一步掌握一次函数的基础知识和应用技巧。

3. 课堂练习法:在讲解完基础知识和例题演练后,通过一些小测验或课堂练习等形式,帮助学生巩固所学知识。

四、实施教学过程

1. 通过让学生观察实际物体的图像,引导学生认识到图像中的直线是一种很常见的几何图形,并引出一次函数。

2. 对一次函数的定义和核心概念进行讲解,并通过实例和图像进行演示。

3. 对一次函数的图像进行讲解,并说明图像的基本性质。

4. 引导学生通过图像和方程相互转化的方式,进一步掌握一次函数的性质和基本技巧。

5. 通过多种类型的例题演练和课堂练习,帮助学生深入掌握一次函数的知识点和应用技巧。

6. 布置作业,让学生巩固所学知识,并在下节课上进行讲解和订正。

五、教学反思

一次函数是数学学科中的基础概念,不仅在初中阶段会接触,也是高中数学中的重要知识点。通过本教案的实施,使学生对一次函数的定义和基础知识有了较深入的了解,并且能够较好地掌握相关的应用技巧。通过让学生学习一次函数的基础知识,不仅可以提高学生的数学素养和应用能力,还可以培养学生的数学兴趣和创新精神,为学生的未来发展打下良好的数学基础。

数学一次函数教案 篇2

数学一次函数教案

主题:一次函数的基本概念和应用范围

篇一:一次函数的定义、图像和性质

一、教学目标

1. 了解一次函数的基本定义及其表示形式。

2. 掌握一次函数的图像特征和性质。

3. 能够利用一次函数解决实际问题。

二、教学重点

1. 一次函数的定义及其表示形式。

2. 一次函数的图像特征和性质。

三、教学难点

1. 一次函数的图像特征和性质的应用。

2. 实际问题的建模等。

四、教学过程

1. 导入新知

让学生观察一些实际问题的图像,引导学生思考这些问题与一次函数的关系。

2. 新知呈现

简要介绍一次函数的定义及其表示形式,并通过图像展示一次函数的特征,包括直线、斜率和截距等。

3. 案例分析

举例说明如何根据题目给出的条件,建立一次函数方程,并计算问题的解。

4. 个案解读

让学生结合实际问题,选择合适的一次函数模型,并解答相关问题。

5. 练习巩固

提供一些实际问题,让学生通过建立一次函数模型,解答问题。

(例题1:某商店每天卖出的商品数量与商品价格的关系是一次函数关系,当商品价格为20元时,每天卖出30件商品;当商品价格为30元时,每天卖出20件商品。问当商品价格为40元时,每天能卖出多少件商品?

解题思路:设商品价格为x元,每天卖出数量为y件,则根据题意得到两个点(20, 30) 和(30, 20)。根据两点式建立一次函数方程,求解x=40时的y值。)

六、拓展延伸

让学生进一步观察一次函数的性质,如斜率为正,则函数递增;斜率为负,则函数递减等。

七、归纳总结

总结一次函数的基本概念和性质。

八、评价反思

以小组或个人形式,让学生互相评价,并反思自己的学习过程。

篇二:一次函数的应用

一、教学目标

1. 掌握一次函数在实际问题中的应用方法。

2. 培养学生应用一次函数解决问题的能力。

二、教学重点

1. 一次函数在实际问题中的应用方法。

2. 学生能够熟练应用一次函数解决实际问题。

三、教学难点

1. 如何根据实际问题建立一次函数方程。

2. 如何利用一次函数解决实际问题。

四、教学过程

1. 导入新知

通过一个实际问题引出本节课的主题,并与学生讨论问题的解决方法。

2. 新知呈现

简要介绍一次函数在实际问题中的应用方法,并通过实际问题的解决过程进行演示。

3. 案例分析

举例说明如何应用一次函数解决实际问题,并引导学生进行思考和讨论。

4. 拓展延伸

提供一些复杂的实际问题,让学生自行分析和解决,并与同学进行交流和讨论。

5. 练习巩固

提供一些实际问题,要求学生独立解答,并进行答案的订正和解题思路的讨论。

六、归纳总结

总结一次函数在实际问题中的应用方法,并让学生归纳并总结自己解题过程中的经验。

七、评价反思

以小组或个人形式,让学生互相评价,并反思自己的解题过程和方法。

以上为参考范文,你可以根据自己实际情况进行修改和完善。

数学一次函数教案 篇3

课题    一次函数的应用

教学内容:

知识与技能:巩固所学的一次函数的定义、图象和性质。能够用一次函数的知识解决实际问题。

过程与方法:掌握用待定系数法求函数解析式的一般方法。

情感态度与价值观:继续渗透数形结合的数学思想。

教学重点和难点:

重点:用待定系数法求一次函数的解析式是本节课的重点。

难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。

方法:探索式

教学过程

一、复习提问

1.什么是一次函数?确定一个一次函数需要几个因素?是哪几个?

y=kx+b(k≠0)叫做关于x的一次函数,其中k和b为常数。这样在一次函数中,只要确定了k和b的值,那么这个一次函数也就随之确定了。可以说k和b是确定一次函数的两个因素。

提这个问题是为使用待定系数法确定k和b的值做准备。

2.已知一次函数y=2x+1,x取何值时,函数值y=3?

令y=3,代入解析式,得3=2x+1,解得x=1.

3.从“形”的角度说“直线y=3x+4经过点(-1,1)”,把它改为从“数”的角度来叙述。

提这个问题的意义在于使同学们搞清“点在图象上”与“坐标满足解析式”是从“形”与“数”两个不同角度叙述的同一内容,是“数”与“形”的相互转化,是数形结合思想的体现。

二、例题讲解

例1已知ab两地相距90千米。某人骑自行车由a地去b地,他平均时速为15千米。

(1)求骑车人与终点b之间的距离y(千米)与出发时间x(小时)之间的函数关系;

(2)画出函数图象:

分析:在这个问题中有两个已知量。一个是两地之间的距离90千米,一个是骑车人的速度。而骑车人与终点的距离y及出发时间x则都是未知量。我们能否找到这两个已知量与两个未知量之间的等量关系呢?找到后还要把它写成函数的形式,即把y写在等号的左边,其他的量则写到等号的右边。

解:y与x之间的函数关系式为y=90-15x.

分析:写到这里是否就写完了呢?还没有。我们知道一次函数的自变量取值范围是全体实数,而这个问题是实际问题,时间、距离都不会取负值,因此,有一个x的取值范围问题,请同学们想,x应在什么范围内取值?

得出x的取值范围是 0≤x≤6

然后取点画函数的图象。

取x=0,得y=90,

取x=6,得y=0.

画点a(0,90),b(6,0),然后连线段ab即为所求。

说明:由于函数图象是函数关系的反映,因此所画函数图象要与自变量取值范围相一致。本例中自变量x的取值范围是0≤x≤6,因此它的图象只是直线y=90-15x上的一条线段。

例2为了保护学生视力,课桌椅的高度都是按一定的关系配套设计的。研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数。下表列出两套符合条件的课桌椅的高度:

第一套

第二套

椅子的高度x(cm)

40

37

桌子的高度y(cm)

75

70.2

(1)  写出y与x之间的函数关系式。

(2)  现有一把高42cm 的椅子和一张高为78.2cm 的课桌,它们是否配套?通过计算说明。

例3某地长途汽车客运公司规定旅客可以随身携带一定质量的行李,若超过规定,则需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数,其图象如图所示。

(1)写出y与x之间的函数解析式。

(2)旅客最多可以携带多少免费行李。

分析:(1)根据一次函数的图象可以求出两个交点的坐标,进而可以列方程组,求出k、b的值,得出函数解析式。         (2)根据函数图象与x轴的交点求出旅客可以携带免费行李质量。

例4如图温度计上表示了摄氏温度与华氏温度之间的对应关系。

(1)       能否用函数解析式表示两者之间的关系?

(2)       若今天的气温是摄氏20度,那么华氏是多少度?

三、小结

这节课我们讲了三个例题,重点是用待定系数法求一次函数的解析式,画一次函数的图象以及数形结合的思想。

待定系数法的主要步骤是:

1.把某些未知的系数用字母表示;

2.根据已知条件列出含有待定字母的方程或方程组。一般有几个待定字母应列几个方程;

3.解方程或方程组求出待定字母的值,使问题得解。

函数的解析式与它的图象是对应的,解析式的特点会影响到图象的位置,这种“数”与“形”的对应关系应该在函数的学习中逐渐加深理解。

四、布置作业

1.画出下列一次函数的图象:

2.已知一个一次函数,当x=-4时,y=9,当x=6时,y=3.求x=1时y的值。

3.已知一次函数的图象经过(3,2)和(-3,0)两点,求这个一次函数解析式并画出在-1≤x≤3内的函数图象。

4.某工人生产一种零件,完成定额,每天收入28元,若超额生产一个零件则增加收入1.5元

(1)       写出该工人一天收入y(元)和超额生产零件x(个)之间的函数关系式

(2)       某日该工人超额生产了12个零件,这天他的实际收入是多少?

5. 全国每年都有大量的土地被沙漠吞没,改造沙漠保护土地资源已经成为一项十分重要和急迫的任务。某地区现在有土地面积100万km2,沙漠面积200万km2,土地沙漠化的变化情况如下图所示。

(i)如果不采取任何措施,那么到第5年底?该地区的沙漠面积将新增加多少万km2?

(ii)如果该地区沙漠面积继续按此形式发展那么从现在开始几年底后,该地区将丧失土地资源?

(iii)如果从现在开始采取植树造林措施,每年改造沙漠4万km2那么几年底该地区的沙漠面积能减少到176万km2?

数学一次函数教案 篇4

一次函数教学过程设计

1. 准备工作

在教学开始前,教师应该对本课的教学内容进行详细的研究和准备,制定出科学合理的教学计划和教学步骤,以充分发挥教学效果。

2. 导入新知识

首先,教师应该利用学生先前学习的知识和现实生活中的例子,从简单到复杂地引导他们理解什么是一次函数,以及一次函数的特点和性质。例如,可以利用柿子树生长的例子来引导学生理解一次函数,利用图表和数学式子帮助学生理解一次函数 y = kx + b 的含义。

3. 理论讲授

接下来,教师应该详细讲解一次函数的定义、特点、性质和相关概念,为学生打下牢固的理论基础。教师可以使用多媒体课件、幻灯片、黑板等教具,给学生呈现多种多样的学习资源。

4. 课堂练习

在理论讲解之后,教师可以通过课堂练习来帮助学生熟悉一次函数的相关概念和运用方法。课堂练习的形式可以是个人练习、小组练习或者全班练习。

5. 拓展延伸

在课堂练习结束后,教师可以通过一些实际应用情境,以及更复杂的一次函数的应用案例来拓展学生的思维和知识,帮助他们更加深入地理解一次函数的概念和运用。

6. 总结反思

随着本课程的结束,教师应该适时地对本节课的教学内容进行总结。教师可以邀请学生分享他们在本课程中的学习心得和经验,或者给出一些总结性的问题来帮助学生更好地理解本课程内容。

7. 作业布置

最后,教师应该适时地布置与本课程相关的作业,以巩固学生对一次函数的掌握和运用能力。可以有多种形式的作业,例如奥数训练、实际连续性训练和动手设计等方式。

一次函数授课思路

1. 引入,以引导学生认识一次函数的基本概念。

利用学生已有的知识,以买柿子、车行路程等例子引导学生认识一次函数的基本概念,包括什么是一次函数,一次函数的定义,一次函数的图像等。

2. 讲解一次函数的解析式以及相应的性质。

讲解一次函数 y=kx+b 的含义和推导方式,重点讲解斜率 k 及截距 b 的意义及公式。

3. 制作一次函数教学素材,让学生调整解析式的参数。

通过制作一份一次函数教学素材,让学生自行调整函数的解析式中的参数,来理解不同参数对于函数图像的影响以及斜率和截距的作用。

4. 针对常见问题进行讲解。

对于学生在学习过程中常见的问题,例如“斜率 k 是什么?截距 b 又是什么?”,教师应当对其进行详细讲解,以确保学生对相关概念的掌握。

5. 轻松愉快,采用趣味互动的方式,确保学生掌握一次函数的图像和解析式作用。

采用小游戏形式或展示各种不同图像的形式来稳固巩固学生对一次函数的图像和解析式的掌握,确保他们从进一步了解一次函数的角度准确掌握相关知识。

6. 知识的拓展,扩展应用场景。

通过实际情境和特殊问题等方式,大力拓展一次函数的应用场景。例如,可以通过测量树木高度、车行荷载、股票测算等例子,开发学生学习乐趣,引导他们思考一次函数的实际应用。

7. 总结,并进行知识的自我总结。

针对一次函数的相关概念和知识点,对学生进行清晰的概括,以加深他们的理解和记忆。同时,鼓励学生自己互相交流并将所掌握的知识向他人展示,以提高整个班级的学习水平。

8. 推荐学生复习和强化训练,巩固所学知识。

鼓励学生在学习完相关知识后进行复习和强化训练,在这一过程中充分巩固所学知识,并全面提高自身做题和解决实际问题的能力。

数学一次函数教案 篇5

大家好!

今天我说课的题目是《一次函数的图像》,所选用的教材为华师大版义务教育阶段初中数学实验教材第四册。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。

一、教材分析

1、教材的地位和作用

本节教材是初中数学8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。第18章,既是学生函数的入门,也是进一步学习的基础。

作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

2、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解

难点确定为:k、b的取值与一次函数图像位置的关系.

二、学情分析

从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。

三、教学目标分析

新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时也是学生学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。

1、知识与技能

理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握k与b的取值对直线位置的影响.

2、过程与方法

经历一次函数的作图过程,探索某些一次函数图象的异同点;

3、情感态度与价值观

体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.

四、教学方法分析

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

五、教学过程分析

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(一)创设情境

前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象.

(1)y=-1/2x;(2)y=-1/2x+2;(3)y=3x;(4)y=3x+2.

教学说明:

第一步、对于函数(1)应结合以前函数图像的作法详细讲解。特别注意学生在列表取值,平面直角坐标系的正方向、单位长度,描点的正确性等学生作图的易错点

第二步、学生自主完成函数(2)的图像。

第三步、同学们观察并互相讨论,并回答:你所画出的图象是什么形状?

一次函数y=kx+b(k≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).又因为两点可以确定一条直线,所以今后画一次函数图象时只要取两点,过两点画一条直线就可以了.

第四步、学生用两点法作出函数(3)(4)的图像。

观察上面四个函数的图象,发现它们都是直线.请同学举例对他们的发现作出验证.

设计意图:教学应从学生已有的知识体系出发,作函数图像是本节课深入研究一次函数y=kx+b(k≠0)的图象的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(二)探究归纳

再观察上面四个函数的图象,也就是k、b的取值与一次函数图像位置的关系:

(1)y=-1/2x+2是由直线y=-1/2x向上移动2个单位得到的;而直线y=3x+2是由直线y=3x分别向上移动2个单位得到的.

(2)y=-1/2x+2与y=3x+2的交点在同一点,是因为两条直线的b相同;即直线与y轴的交点纵坐标取决于b.

由此得出结论,两个一次函数,当k一样,b不一样时有共同点:直线平行,都是由直线y=kx(k≠0)向上或向下移动得到;

不同点:它们与y轴的交点不同.

而当两个一次函数,b一样,k不一样时,有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行.

补充说明:由于上述函数只有b>0的情况,不能体现将正比例函数向下平移,因此我在教学中让学生自主完成了b<0时的图像以利于学生理解图像向下平移的情况。

设计意图:现代数学教学理论认为:教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳使学生有一个完整的知识形成过程。

(三)实践应用

1、完成课本例1

注意引导让学生讨论、交流,及时反馈知识在实际中的应用。

2、完成课后练习.

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让更多的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(四)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,应从学习的知识、方法、体验几个方面进行归纳,我设计了这么三个问题:

①通过本节课的学习,你学会了哪些知识;

②通过本节课的学习,你最大的体验是什么;

③通过本节课的学习,你掌握了哪些学习数学的方法?

(五)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态

六、教学评价

本课教学注意挖掘教材,体现学生的主体地位;同时以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学习水平,使传授知识与培养能力融为一体。

数学一次函数教案 篇6

数学一次函数教案

教学目标:

1. 理解一次函数的定义和性质,能够正确用数学语言表达一次函数的定义和性质。

2. 掌握一次函数的图象特征,能够正确画出一次函数的图象。

3. 能够利用一次函数解决实际问题,能够正确应用一次函数解决实际问题。

教学重难点:

1. 一次函数的图象特征。

2. 一次函数在实际问题中的应用。

教学准备:

1. 教师:黑板、粉笔、PPT。

2. 学生:教科书、练习册。

教学过程:

一、导入(5分钟)

1. 教师打开PPT,用一张灵活的图像导入一次函数的概念,引发学生兴趣。

二、概念解释(15分钟)

1. 教师通过PPT展示一次函数的定义和性质,解释一次函数是指函数的最高次数为1的多项式函数,函数的表达式是y=ax+b(a≠0)。

2. 学生跟随教师一起默写一次函数的定义和性质,教师纠正错误并对比正确答案。

三、图象特征(15分钟)

1. 教师通过PPT展示一次函数的图象特征,包括函数的斜率、截距、单调性和图象在坐标系中的位置。

2. 学生跟随教师一起练习画出一次函数的图象,教师提供几个例子供学生模仿练习。

四、实际应用(20分钟)

1. 教师通过PPT展示一些实际问题,引导学生用一次函数解决这些实际问题。

2. 学生分组进行讨论,解决实际问题,并用一次函数的图象解释答案。

3. 学生通过小组讨论将解题过程和结果展示给全班,教师进行点评和讲解。

五、练习巩固(20分钟)

1. 学生进行一次函数的练习题,教师提供足够的练习时间和指导。

2. 学生在教师的指导下相互批改作业,订正错误。

六、总结归纳(10分钟)

1. 教师向学生总结一次函数的定义、性质、图象特征和实际应用。

2. 学生通过小组合作的方式总结一次函数的重点。

七、拓展延伸(10分钟)

1. 教师通过PPT展示一些与一次函数相关的知识,如函数的概念、函数的性质等。

2. 学生跟随教师一起做一次函数的拓展练习,提高对一次函数的理解和应用能力。

教学反思:

通过本节课的教学,学生对一次函数的定义、性质、图象特征和实际应用有了初步的理解和掌握。但是,学生在画一次函数的图象时还存在一定的困难,需要通过更多的练习来提高。另外,学生在实际问题的解决中需提高分析问题和运用一次函数的能力。因此,在后续的教学中,需要加强练习和实践,提供更多的实际问题,培养学生的解决问题的能力。

数学一次函数教案 篇7

教学目标 :

1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点 :根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法

教学过程 :

1、复习旧课

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

2、引入新课

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。教师将学生的正确的例子写在黑板上)

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。)不难看出函数都是用自变量的一次式表示的,可以写成

( )

的形式。

一般地,如果

( 是常数, )(括号内用红字强调)

那么y叫做x的。

特别地,当b=0时, 就成为

( 是常数, )

3、例题讲解

例1、某油管因地震破裂,导致每分钟漏出原油30公升

(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式

(2)破裂3.5小時后,共漏出原油多少公升

分析:y与x成正比例

解:(1)

(2) (升)

例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)

(1)       列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;

(2)       多长时间以后,小丸子的银行存款才能买随身听?

分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱

解:(1)

(2)1680=500+90x解得x=13.…

所以还需要14个月,小丸子才能买随身听

例3、已知函数 是正比例函数,求 的 值

分析:本题考察的是正比例函数的概念

解:

说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上

4、小结

由学生对本节课知识进行总结,教师板书即可。

5、布置作业

书面作业 :1、书后习题 2、自己写出一个实际中的的例子并进行讨论

探究活动

某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息。小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和。(剩余欠款年利率为0.4%)

(1)若第x( 年小明家交付房款y元,求y与x的函数关系式;

(2)求第三、第十年的应付房款值。

参考答案:

(1); (2) 5340元  、5200元。

数学一次函数教案 篇8

八年级数学一次函数教案(教学目标)

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

八年级数学一次函数教案(重难点)

教学重点:

正比例函数的概念及两者之间的关系。

2、 会根据已知信息写出一次函数的表达式。

教学难点: 一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

八年级数学一次函数教案(课件教学过程)

一、创设问题情境,引入新课

1、 简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习

1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

正比例函数的概念学习讨论:刚才写出的.两个关系式y=y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、 例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

三、随堂练习

b的值。若不是一次函数,请说明理由。

A、y= +x B、y=-y=y=6-

2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人y乙,解答下列问题:(

让学生归纳本节课学习内容:

正比例函数概念以及它们之间的关系。

2、会根据已知信息写出一次函数的关系式。

数学一次函数教案 篇9

【数学一次函数教案】

主题:求解一次函数的相关方法与应用

一、教学目标

1. 理解一次函数的定义和特征;

2. 熟练掌握一次函数的图像、表达式和性质;

3. 掌握一次函数的求解方法,解决与实际问题的应用;

4. 培养学生分析问题、解决问题的能力。

二、教学重点

1. 一次函数的性质与表达式;

2. 一次函数的图像及其相关参数;

3. 一次函数的求解方法。

三、教学内容

1. 一次函数的定义和性质:

了解一次函数的定义,并指出一次函数的图像是一条直线;

了解一次函数的表达式形式,即y = kx + b;

了解一次函数的斜率和截距的概念,理解斜率对应直线的倾斜程度。

2. 一次函数的图像和特点:

通过在平面直角坐标系中画出一次函数的图像,探究函数的斜率和截距对图像的影响;

探究当斜率k为正数和负数时,直线的走势和倾斜方向的不同;

理解截距b的正负对图像的平移和位置的影响。

3. 一次函数的求解方法:

理解如何求解一次函数的零点,即函数与x轴的交点;

学会通过斜率和截距求解直线的方程;

了解如何求解一次函数的交点,即两函数的解(非一次函数)。

4. 一次函数在实际问题中的应用:

探究一次函数在实际问题中的应用案例;

学会用一次函数解决实际问题,如关于速度、距离、成本等方面的问题;

发展学生解决实际问题的思维能力。

四、教学方法

1. 示范法:通过画图和计算的方式,引导学生理解一次函数的定义和性质;

2. 指导法:通过具体问题的引导,帮助学生理解一次函数的应用方法;

3. 探究法:通过实例和问题的解析,引导学生主动思考、探索与发现。

五、教学步骤

1. 导入:通过一些实际问题,引出一次函数的概念和应用。

2. 发现:通过画图和计算,让学生发现一次函数图像的特点和性质。

3. 解释:对一次函数的斜率和截距进行解释,并引导学生理解。

4. 拓展:通过一些实际问题,拓展学生对一次函数的应用和解决方法。

5. 实践:通过练习题和实例,检验学生对一次函数的理解和应用能力。

6. 总结:对一次函数的定义、性质和应用进行总结和归纳。

7. 反思:学生对本节课知识的掌握情况,提出问题和解答疑惑。

六、教学评估

1. 练习题:布置一些练习题,测试学生对一次函数的掌握情况。

2. 实际问题:让学生解答一些实际问题,考察其对一次函数应用的能力。

七、教学拓展

1. 深化一次函数的性质和应用,引入函数的变化率和几何意义;

2. 探究一次函数与其他函数的关系,如一次函数与二次函数的交点问题;

3. 引入一次方程的概念和求解方法。

八、教学资源

1. 平面直角坐标纸;

2. 教学课件;

3. 一次函数的实际应用案例。

九、教学反馈

1. 学生的课后习题完成情况;

2. 学生的实际问题解答情况;

3. 学生的课堂互动和问题反馈情况。

通过本节课的学习,学生将能够掌握一次函数的定义、性质和求解方法,并能够应用一次函数解决实际问题。同时,通过多种教学方法的运用,帮助学生培养分析问题和解决问题的能力,提高数学思维和运算能力。

小学分数教案2500字模板


一名优秀的人民教师应该保证教学的科学性和合理性。准备好一份教案往往是上好课的前提。教案是教师上课的痕迹,也许写出优秀的教案并没有我们想象中那么难。相信你应该喜欢幼儿教师教育网小编整理的小学分数教案,还请你收藏本页以便后续阅读。

小学分数教案(篇1)

设计说明

本节课的教学以“数学源于生活,寓于生活,用于生活”为指导,在《数学课程标准》理念的指导下,灵活运用教材实施教学。

1.课堂关注的是数学与生活的密切联系。

在本节课的教学中,各个环节都紧密联系学生的生活实际,使学生认识到百分数在生产、生活中具有广泛的作用。此外,本节课还安排了学生在实际生活中收集百分数的活动,有利于培养学生的实践能力。如此贴近学生生活的课堂,他们自然积极投入,数学课堂正因为重新回到生活中而显得有活力了。

2.课堂关注的是学生已有的知识与经验。

对于六年级的学生来说,他们对生活中的百分数并不陌生,知道生活中经常有“%”的存在。因此本节课知识的学习是建立在学生完整掌握分数的意义及比的概念的基础之上的,并对百分数已经有了一个初步的认识。教师一定要关注学生已有的知识与经验,因此我打破了原有教材的编排,创造性地使用教材,设计新颖有趣的问题情境,让学生去感知百分数的产生过程,体会学习百分数的必要性,唤醒学生的生活经验,激起学生学习百分数的强烈欲望。

课前准备

教师准备PPT课件

学生准备课前收集的生活中有关百分数的信息

教学过程

⊙创设情境,揭示课题

1.教师谈话引入。

师:我们的学校正在开展阳光体育活动,你能告诉老师你喜欢哪些运动吗?

生:跳绳、篮球、排球、足球……

师:喜欢足球的有多少人?有这么多同学喜欢足球啊!其实老师也特别喜欢足球,我这里有一段足球明星们的精彩集锦,咱们一起欣赏一下。

师:(播放含有点球的视频)刚才的比赛精彩吗?为什么会有点球?如果你是教练,你打算派你的哪些队员去罚点球呢?

2.揭示课题。

师:现在就从足球比赛进入我们本节课的学习。

板书课题:百分数的认识。

设计意图:《数学课程标准》指出:数学源于生活,寓于生活,用于生活。在实际的生活情境中体验和理解数学。在本环节中,从学生最喜欢的运动入手,激发学生解决问题的兴趣,让学生产生探究百分数的欲望。

⊙探究新知,建构模型

(一)理解百分数的读写法。

1.课件出示情境图及表格,学生读要求。

队员

罚球数/个

进球数/个

淘气

20

18

奇思

10

8

不马虎

25

21

2.现在请各位同学仔细考虑,看一看怎么比较才能把最合适的队员选出来。请大家先独立思考,说出自己的分析过程,再把你的想法和同桌交流。

(1)引导学生思考:你认为应该选谁去罚点球?说出你的根据。

(2)学生汇报:要看进球的个数占罚球个数的几分之几。

①淘气进球的个数占罚球个数的;

②奇思进球的个数占罚球个数的;

③不马虎进球的个数占罚球个数的。

(3)引导学生比较。

师:这三个分数谁大呢?看出来了吗?有什么办法能够很快地看出他们谁罚球最准?(通分)

师:请大家将分数化成分母是100的分数进行比较。

(4)学生独立把三个分数都通分成分母是100的分数,然后汇报。

淘气:==;

奇思:==;

不马虎:==。

(5)教师小结:不难看出,当我们把这三个分数的分母都化成100的时候很容易比较。现在谁的罚球水平高一些?能看出来吗?(淘气)

小学分数教案(篇2)

教学内容:

人教版小学数学五年级下册《分数的意义》

教学目标:

1、在具体的情境中了解分数的产生,会用分数表示生活中的事物。

2、通过动手操作、观察、比较、探究等学习活动,归纳、整理并理解分数的意义,理解单位“1”,明确分数单位。

3、通过一系列的数学活动学生获得成功、愉悦的情感体验,并感受到生活中处处有分数,培养学习数学的兴趣。

教学重点:

学生理解分数的意义和分数单位,弄懂单位“1”。

教学难点:

理解单位“1”的含义

教学过程:

一、导入:回顾旧知,引入新课(2分钟)

出示:1/3 2/5 7/10

师:老师黑板出示了三个分数,记得在三年时我们初步认识了分数。现在让我们一起把这三个分数读出来。(生齐读)

师:同学们,除了会读,还记得哪些分数的知识?

(生汇报)

师:同学们对分数已经有了初步的了解,但是关于分数的知识还有很多,这节课我们就来进一步学习有关分数的知识。(教师板书课题:分数的意义)

二、交流预习,明确任务(3分钟)

师:老师知道我们班同学都爱学数学,因为数学里埋藏着好多奥秘,数学是一个藏金的宝藏。不知道你们在昨天的预习中挖出了什么宝贝?先让我们来交流一下预习情况。或说出你收获了哪些知识,或提出需要进一步探究的问题。

(学生汇报,教师适当提炼板书)

师:大家真的用心预习了,找出了本课的知识点。下面就让我们来深入地学习。

三、新授:自主学习、探究新知(20分钟)

1.联系实际,了解分数的产生、发展

师:我们已经知道分数是由于人们生产、生活的实际需要产生的,如测量、分东西、计算等。你能举例子说一说在我们的周围什么时候需要分数吗?

(学生观察,交流)

师:同学们看到了,生活中处处有分数。然而,我们今天使用的分数它却走过一段及其漫长的旅程。让我们具体了解一下,课件出示。

(一)初步概括分数的意义

请同学们拿出已经准备的长方形纸、正方形纸、圆形纸、线段图。动手折一折,涂一涂,表示它的1/4。

引导学生初步概括分数的意义(分数是把一个物体平均分成若干份,表示这样的一份或几份的数)。

(二)、更进一步理解分数的意义。

1、理解单位“1”

我以组词游戏的形式引出单位“1”。

课件出示一个苹果(1个苹果)

再出示两个苹果(1双、1对)

4个苹果呢?(1组、1盘、1斤)

24个苹果呢?(1箱)

小结:通过刚才的小游戏我们发现,自然数“1”不仅可以表示1个物体,还可以表示多个物体。我们把这些多个物体也看作了一个整体。这个整体我们通常把它叫做单位“1”。

2、感悟分数的意义

课件演示把这一箱苹果打开,再把这24个苹果看作是一个整体,把它平均分成4份,取其中的一份可以用1/4表示。

通过我们观察折一折、涂一涂的活动和分苹果活动,请同学们认真观察以上的表示过程,说一说有什么相同的地方,有什么不同的地方。

(1)相同点:都表示1/4。

(2)不同点:有的用长方形纸表示、有的用正方形纸表示、有的用圆形纸表示、有的用线段表示、有的用24个苹果表示。

指着黑板与学生沟通:请同学们静下心来想一想:分数是什么呢?从而概括出(分数是把一个物体、一些物体平均分成若干份,表示这样的一份或几份的数。)

3、学习分数单位

课件出示教科书46页做一做的练习题

通过练习让同学们,认识当我们把单位“1”平均分成若干份,表示其中的一份的数叫分数单位。

四、巩固反馈,拓展提高

练习十一的第1、2、3、4题。

五、课堂小结

本节课你学习了哪些知识,你有哪些收获?

资源文件列表:

小学分数教案(篇3)

一、说教材

(一)说教材内容

我今天说课的内容是:人教版实验教材数学五年级下册第四单元《真分数和假分数》,本节课包含两道例题,分别给出一组表示分数的图形,学生观察、比较每个图形所表示的分数,它的分子和分母的大小,想一想:这些分数比1大,还是比1小?为什么?在这基础上,概括出真分数和假分数的意义和特征。这是一节概念课,本节课是在分数的意义和分数与除法关系的基础上进行教学的。通过学习真分数、假分数,可以使学生比较全面地理解分数概念,也有利于培养学生关于分数的数感。

(二)说教学目标

1.知识与技能目标

认识真分数和假分数,理解真分数和假分数的意义,掌握真分数和假分数的特征,能辨别真分数和假分数。

2.过程与方法目标

经过分类、举例、合作、探究等学习活动或方式,培养学生的观察、比较、归纳、概括等能力。

3.情感态度与价值观目标

发展学生数形结合的数学思想,体验数学与现实生活的密切联系,培养学生利用数学知识感悟生活的能力,进一步培养学生对数学的兴趣。

(三)说教学重难点

二、说学情

1.说学生的知识经验。

学生在三年级已有了初步认识分数的经验基础,但那时主要是从部分与整体的关系角度来学习的,认识的分数都是真分数,而现在,引入了假分数,这就需要学生打破原有的认知结构。

2.说学生的技能态度。

因真分数在学生心中根深蒂固,而假分数表示什么?在单位“1”不够取的时候怎样理解?在生活中假分数又有怎样的现实意义,学生并不明白。因此,建构对假分数意义的理解是个关键,同时也是难点。教学中引导学生“经历”“感受”和“体验”概念的建立,结论的探索过程显得尤为重要。

3.说学生的特点风格。

五年级的学生在数学知识的学习上都存在对直观形象的知识点较为容易理解和掌握,但对于枯燥无味的概念性的知识点,学生学习起来:首先是学生学习起来没有兴趣,其次是对于枯燥无味的概念性的知识点学生学习起来也无从下手。

三、说教法

新一轮的数学课程改革,强调培养学生的自主学习能力,注重学生的自主发展,让学生在学习中学会学习,在思考中学会思考,在交流中得到提高,变“学跟着教走”为“教为学服务”。我尝试“先学后教,以学定教”的教学探索。课前让学生先学:通过读、思、悟、做、疑,即研读教材,认真思考,感悟新知,尝试实践应用,深入分析质疑,学生带着问题进课堂;课堂通过交流汇报收获,讨论解决自学中问题,而后全班汇报,解决问题,拓展知识。实践证明,把课堂学和教的主动权给学生,课堂是开展师生互教互学的过程,学生兴趣很高,教学质量也得到显著提高。

四、说学法

本课教学采用“自主、探究、交流”的学习方式。在教学中为学生提供充分的探索与交流的时间,让学生在观察、分类、比较、交流等活动中,加深学生对知识的理解,提升思维水平,提高抽象、概括等能力,而教师是学习的组织者、引导者与合作者。

五、说教学过程

(一)说整堂课的设计思路及程序

本节课的设计就是从学生已有的经验和知识背景出发,提供给学生自主探索的机会,让他们在经历知识形成的过程中,真正理解和掌握了数学的知识、思想和方法,同时获得广泛的数学活动经验,促进了学生的发展。

在整个的教学过程的设计中,教师充分体现了以学生为本的教学理念,在学生获取新知识的过程中,大胆放手,引导学生自主探索,突出知识的形成过程,使学生对新知识沿着理解、掌握、熟练地过程不断前进,从而获得最佳的教学效果。尤其在“怎样用画图来表示?”这个环节中,使学生在对比、辨析、不断地矛盾冲突和解决的过程中,加深对假分数意义的理解,从而突破了本节课的难点。还有在给分数分类这个环节中,通过让学生自主分类、说标准,充分发挥学生的自主性。本节课自始自终都使学生在充分的信息的相互交织中、不同思路的相互促进中、充分感受与体验知识的发生和发展过程,促进学生的全面发展。

(二)说主要教学程序与环节的理论依据

第一部分:创境激疑(4-6分钟)

1.听成语,说分数,老师说成语,学生说出相应的分数,师生共同评价。

2.复习“分数的意义”。

3.复习“分数单位”。

4.导入新课:同学们,这些都是我们在上节课学习的内容,今天这节课我们将继续学习有关分数的知识“真分数和假分数”。看到这个课题,同学们可能有些疑惑,生活中的商品有真有假,怎么分数也有真有假呢?你们想让我们一起来揭开这个谜,好吗?

【设计思路:通过分数游戏,充分调动学生的积极性,并为学习新知识做好铺垫。通过复习上节课的知识,让学生进一步熟知分数的意义,我学习新知识打好基础。】

第二部分:互动解疑(13-15分钟)

1.认识真分数。

(1)出示例1信息窗,让学生分别涂色表示出下面各分数,

并说一说把什么作为

并说一说把什么作为单位“1”。思考:这些分数的分数单位

分别是多少?它们各有几个相应的分数单位?

(2)比较信息窗中2个分数的分子和分母的大小(分子都比分母小)。

(3)联系情境图想一想:这些分数比1大,还是比1小?为什么?

(4)指出:像1/4、3/4、2/5这样的分数都叫做真分数。你能再举几个真分数吗?

提问:什么样的分数叫做真分数?真分数有什么特点?

板书:分子比分母小的分数叫做真分数。真分数小于1。

2.认识假分数。

(1)出示例2信息窗,指导学生根据分数的意义用分数表示出下图各分数。下面这几个你还能解决吗?(提示:把谁当作单位“1”,分数单位是多少?有几个这样的分数单位?)生尝试回答!

(2)联系图例想一想:这些分数有些什么特征?比1大,还是比1小?为什么?(5/5=1,10/5和11/5都大于1)

(3)像5/5、10/5、11/5等都是假分数。谁能说说什么样的分数叫做假分数?假分数有什么特征?

板书:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于1或者等于1。

【设计思路:练习的设计由易到难,使不同层次的学生能够得到不同的锻炼,既巩固了新知,又深化了新知,使数学教学变得更有活力、更有价值,从而达到学以致用的目的。】

第三部分:启思导疑(3-4分钟)

我会创造真分数和假分数

师:大家明白什么是真分数和假分数了吗?下面我们进行“创造真假分数”比赛,老师任选两组同学,看哪组同学说的又快又好。

师:大家说的都非常好!相信你们也能写出三个不同的真分数和三个不同的假分数!先写出来,再和同桌读一读。开始吧!

谁愿意把你写的分数读给大家听?谁还想给大家说说?

生:1/23/46/55/58/7(答案灵活)

师:谁能给大家举几个等于1的假分数?你来说!(强调:分子分母

相等的分数是特殊的假分数。)

师:大家不但会区分真分数和假分数,还会自己创造真分数和假分数,真厉害!

【设计思路:在学生会区分真分数和假分数的基础上,让学生通过自己创造真分数和假分数,进一步加深印理解。】

第四部分:实践运用(10-12分钟)

1.“瞧我的”用分数表示阴影部分,并判断是真分数还是假分数?

3.判断。

(1)假分数都比1大。()

(2)分母比分子大的分数是真分数。()

(4)假分数的分子不小于分母。()

4.按要求做题。

(1)说出四个分母是7的真分数。

(2)说出三个分数值是1的假分数。

第五部分:总结评价(2-3分钟)

1、通过这节课的学习,谁来给大家交流一下你的收获?

2、用一个分数来评价一下你自己在这节课中的表现

【设计思路:梳理新知,对照目标,反馈评价,提高教学效益,培养学生归纳小结的良好习惯。】

(三)说教与学的双边活动安排

教学是教和学的双边活动,因此要上好一堂课就必需使教与学紧密结合起来。在这个过程中,只有教师充分发挥主导作用才能使学生的学带有积极性,也只有这样学生对知识掌握才能更灵活、更牢固。因此开课伊始,我让学生通成语游戏,听成语,说分数:一分为二、百里挑一、十拿九稳、十全十美、百发百中。老师说成语,学生说出相应的分数,师生共同评价。通过成语游戏、进行导入,激发了学生的学习兴趣。而后教师放手让学生自主说出学过的分数,并选择自己喜欢的分数进行自主探究画图涂色表示分数的意义,并让学生自己说一说画图涂色的过程,这个过程其实就是在潜移默化的复习分数的意义。

其次,重点引导学生探究用分数表示涂色部分、分数在5/5表示10/5、12/5上,并让学生自己说一说涂色的过程,在说这个分数5/5或10/5时,出现了不同的答案,这就是这节课的教学重点和教学的突破点,引导学生在说这个分数的时候就是在教学假分数的意义,让学生会说这个分数的意义,那么这节课的教学任务也就完成了,在通过比较分数的分子和分母的大小和引导观察图形的涂色部分,以及学生根据分数的意义理解假分数与真分数的内在联系,对这些分数进行比较,并在交流汇报中不断完善自己的想法,从而形成表象,进而以归纳的方式抽象出真分数和假分数的本质属性,理解概念,牢固地掌握概念,正确地运用概念。

最后,学生通过自主探索与交流汇报,提升了思维水平,提高抽象、概括等能力,而在整个教学过程中教师只是个学习的组织者、引导者与合作者。从学生练习反馈来说,学生对真分数和假分数意义掌握不错,能正确区分真分数和假分数,从而达到这节课的目标。

(四)说突出重点与突破难点的策略

重难点突破设想主要有以下两点:1.放手让学生自主探究,突出知识的形成过程。自主探究是重要的学习方式之一。本设计从学生已有的知识经验出发,给学生提供自主探究的机会,让他们在经历知识形成的过程中,真正理解和掌握真分数和假分数的特征,同时获得丰富的数学活动经验。 2.渗透数形结合思想,帮助学生构建概念。数学思想蕴涵在数学知识形成、发展和应用的过程中,学生在积极参与教学活动的过程中,通过独立思考绘图、交流汇报,逐步感悟数学思想。本设计为学生提供了直观素材,用分画图的形式数表示出各分数的意义,比较各分数中分子和分母的大小,突出了教学的直观性,体现了数形结合的思想。这样的设计有利于帮助学生理解概念、辨析概念、构建概念。已达到突破重难点的教学。

(五)说教学媒体、教具的选择与使用

教学课件一套,教学投影仪,教学用A4纸条,课件的选择让学生更直观的学习。

六、说板书设计

设计理由:本次板书设计主要分为二个部分:课题及真分数和假分数的意义、什么叫做真分数和假分数,真分数及假分数的特征,大于1或小于1的情况、这样设计是为了让真分数和假分数的特征比较直观的呈现和展示在黑板上,便于学生理解和记忆。

板书设计:

像1/4、3/4、2/5这样的分数都叫做真分数真分数小于1

真分数和

假分数

像5/5、10/5、11/5这样的分数都是假分数假分数大于或等于1

小学分数教案(篇4)

一、说教材

1、教材分析

义务教育课程标准实验教科书(北师大版)这套教材,分数这部分知识是分两次进行教学的。第一次是三年级的分数的初步认识,第二次是五年级的系统学习分数知识。《小学数学课程标准》中对第六册的要求是:能结合具体情境初步理解分数的意义,能认、读、写简单的分数。这一课是分数教学的起始课。它是学生已经掌握整数平均分的基础上进行教学的,也是今后进一步学习分数的大小比较、分数的加减计算等知识的基础,在整个小学数学教学体系中占有重要地位。对三年级的小学生来说,从认识整数发展到认识分数,是一次飞跃。儿童生活里没有这样的经验,而且表达方式也不相同,读数的方法也不相同。尤其是分数既表示一个量,又表示整体与部分的关系,小学生较难理解。

2、教学目标分析

根据以上分析及《课标》要求,拟订这节课的教学目标为:

(1)结合具体情境和直观操作,初步理解分数的意义,体会学习分数的必要性;并会正确地读写分数,知道分数的各部分名称。

(2)会用折纸、涂色等方式,表示简单的分数。

(3)通过动手操作,培养学生的观察能力,动手操作能力,及口头表达能力。

教学重点:认识分数各部分的名称,初步掌握简单分数的写法和读法,体会学习分数的必要性。

教学难点:理解分数的意义。

二、说教法、学法

教法:动手实践、自主探索、合作交流是学生学习数学的重要学习方式。在本节课的教学中,教法与学法的设计着眼让学生在具体的操作活动中进行独立思考,鼓励学生提出问题,发表自己的见解,并与同伴进行交流。教师只给予适当的帮助和指导,并引导学生开展讨论,创设主动参与、积极探究的氛围,让学生会学、爱学。

学法:课刚开始,教师就设疑:一半怎么写,引导学生主动积极地探究新知。认识了二分之一后,让学生动手操作,以各种方式认识、表示自己想认识的分数,并与同伴交流,让学生在动手、动脑、动口中获得新的知识。

三、说教学流程

(一)整体设计思路

1、本节课是在学生掌握一些整数知识的基础上初步认识分数的含义。从整数到分数是数的概念的一次扩展。无论在意义上,还是在读写方法上,和整数都有很大的差异。虽然,学生在学习分数之前,“二分之一”、“三分之一”等已经出现在他们的口头语言中,只是还不曾想过要用什么符号来表示而已。首先从生活中引入分数,让学生明白数学来源于生活,数学就在我们身边。知道产生分数学习分数的必要性。例如:表示半个西瓜时,让学生尝试着想办法表示它。这样促使学生主动、全面地参与教学活动,促进学生主体性的生成和发展,知道产生分数学习分数的必要性。接着引入“一半可以用1/2来表示”。在多种表示方式的对比中,体会用1/2表示一半的优越性,体会学习分数的必要性。

2、生要建立概念的过程是很慢的,为了让学生能较好地理解简单的分数的意义。先让学生认识分数1/2,又让学生在“折一折”“涂一涂”的实践操作中,使学生体会1/2所表示的具体意义。

3、为使学生对分数有进一步的认识和理解。在认识1/2的基础上,再认识“几分之几”,通过折一折、画一画、涂一涂等操作办法来表示自己所喜欢的分数,通过独立思考,尝试读写,使学生能真正体会到:把一个物体平均分成几份,其中的一份就是几分之一、几份就是几分之几。从而,激发学生的学习兴趣,使学生在自主的`数学活动中真正理解分数的意义。

4、在练习、反思与评价、课外延伸中,主要是要让学生进一步清楚地认识到分数是在“平均分”的前提下研究的一种数,是把一个物体平均分成若干份,表示其中的一份或几份的数叫做分数;同时也揭示学生对本节课学习的内心世界。

(二)教学预设方案

1、故事导入,激发情趣

通过小猴子分西瓜的故事导入,先4个分成2份,每人几个?(可能不是平均分,不公平,引出平均分),再2个西瓜平均分成2份到1个西瓜平均分成2份,怎么表示这"半个"?

当每个学生都跃跃欲试时,就让学生用自己喜欢的方法来表示一半,并作集体交流。交流是要让学生说清表示的意思。

2、学习1/2

(1)板书课题,直观演示,强调平均分

师:你们用自己喜欢的方式表示了“一半”,说明你们很有办法。现在我们就来帮他们分一分(将一个桃子分成一大一小)

(这里故意用错误的动作引起学生的质疑,为后面学习分数的意义起到了很好的铺垫作用。)师:他们每人分到的半个桃子,在数学里用分数二分之一表示。

板书:把一个桃子平均分分成两份,每份是它的1/2。

(2)认、读、写分数及其意义、各部分名称

指导学生认、读、写分数及其意义。

(3)提高认识

师:同学们,如果把这个桃子平均分成了3份,其中的1份是桃子几分之几呢?孙悟空把这个桃子平均分成了4份,每份是桃子的几分之几呢?馋嘴的八戒一下子就吃了3份,你能用分数来表示吗?

(4)强化平均分(出示题目)

师:同学们,你能判断这些图中哪些阴影部分能用1/2表示的?

从学生的现实学习状况入手,用多种手段加强巩固学生对“平均分”的理解,初步体验分数的意义

(5)认清1/2的含义

用手中的材料(纸、线、图形、水果等)表示出二分之一,并作交流,师有选择地贴(画)到黑板上,并用涂色等方法表示出二分之一。

3、认识几分之几

(1)让学生自己动手折一折、画一画、涂一涂等办法来表示自己喜欢的分数并试着把分数写出来。

(2)展示学生的作品。

(3)让学生说一说自己写出的分数所表示的意思。

(4)让学生说说自己是怎样写分数、读分数的?

(5)师引导学生小结分数的意义。使学生能真正体会到:把一个物体平均分成几份,其中的一份就是几分之一、几份就是几分之几。

(策略建议:在1、2出现的“折一折”中可以让学生用自己喜欢的东西来折,如纸、手帕、线等。不但丰富了学生探究材料的来源,而且让学生初步感受到学习分数的必要性。)

4、深化练习,巩固新知

练习是学生掌握知识、形成技能、发展智力的重要手段。为了让不同层次的学生都学有所得,体验到成功的喜悦,我在练习设计中采用了课本的“练一练”,是由浅入深的基本练习,旨在巩固新知,掌握重点内容。

(课本55页“练一练”)

(1)选择一个正确的分数表示下面各图中的涂色部分,并读一读。

(2)看分数,涂颜色。

(3)判断对错,对的给笑脸,错的给哭脸。

(4)谁能最快说出一个分数表示涂色部分?

(在短时间内完成大量而又有趣的练习题,提高学生的学习兴趣外,更有效在巩固了新知)

另外,为了培养思维的广度和灵活度,进行了一道拓展练习

师:同学们真棒,特别是××同学的速度非常快,而且很准确。这里有50个智慧果,我准备奖给你总数的1/50,你可以得到几个智慧果?

师:你真了不起!其实我们在座的每一位同学今天的表现都很出色,所以30位同学每人都能获得一个智慧果,那么我要拿走总数的几分之几呢?(学生争论)

5、课堂小结

师:这节课你学会了什么?你能结合实际举例说明生活中的“几分之一”、“几分之几”。(通过小结,提高学生的语言表达能力和概括能力,并体验到成功的乐趣。)

小学分数教案(篇5)

一、教学内容:

小学数学第七册《分数的初步认识》第一课时。

二、教学目标:

直观认识几分之一,初步形成关于几分之一的表象,会读写几分之一。

三、教学重点:

认识几分之一。

四、教学难点:

通过一系列的数学学习活动,培养学生的创新意识、操作能力、观察能力。

五、德育目标:

培养学生主动参与、互相合作的学习态度和自主探索的学习习惯。

六、教学过程:

1、遇困求知、导出分数

(1)把4块饼平均分给2个人,平均每个人分得几块饼?

(2)把2块饼平均分给2个人,平均每个人分得几块饼?

(3)把1块饼平均分给2个人,平均每个人分得几块饼?

设计意图:这一阶段的教学,复习“平均分”,从每份是整数过渡到每份不是整数,自然引出分数。(1)(2)激活了学生原有的认知结构。(3)题对学生发出了挑战,旨在激发学生的求知欲。

2、自主创造,探究分数

(1)这半块饼怎样表示?请大家想一个办法。

设计意图:(学生自由创造)(指名学生汇报所想符号,并说出意思)

这个问题的设计意在让学生结合日常生活实际和学生的知识基础来创造,培养学生的创新意识。

(2)原来学的数不能表示这“半个”,需要创造一种新的数-分数。(出示课题)(3)你想知道分数的哪些情况?

小学分数教案(篇6)

(一)教学百分数的意义

1、引导学生自学教科书上第104页的例题。思考:(出示)

(1)例题中为了比较什么,通常用百分数进行比较的?

(2)用百分数比较有什么好处?

(3)什么叫百分数?让学生自学课本后,同座同学议论思考题。

2、集体反馈,揭示意义。(出示表格)

(1)例题中为了比较什么,要用百分数进行比较?(三好学生所占比率的大小)

(2)在这里,比率这两个字怎样理解?(三好学生人数占学生人数的百分之几)

(3)六年级三好学生人数所占的比率是多少呢?是怎么得到的?五年级呢?学生回答的同时,板书成下表:年级三好学生人数学生人数 六年级17100 五年级30200 =

(4)用百分数表示三好学生所占比率的大小,有什么好处?(学生回答后板书:分母相同,便于比较。)哪个年级三好学生所占的比率大?

(5)用百分数进行比较,写成分母是100的分数后,能约分的要不要约分?(揭示:百分数是分母是100的分数。)

(6)表格中,两个百分数的上面一格应填写什么?(学生回答后板书:三好学生人数占学生人数的百分之几。)

(7)什么叫百分数?(表示一个数是另一个数的百分之几的数,叫做百分数。)例题中应把什么人数看成一个数,什么人数看成另一个数?谁能说一说表格中的和表示的意义?

(8)百分数的概念中提到了几个数?(两个数)百分数表示两个数之间的一种什么关系?(倍数关系)

3、举例辨析,揭示百分数与分数之间的联系和区别。出示:

⑴中国十五预期将保持的"经济增速。

⑵七月我国工业生产加快同比增 。

⑶根据人事部提供的数字,中国回国留学人员目前以年均的速度增长。

⑷一根光缆长千米。师生讨论:

(1)这四句话中哪些是百分数?为什么?

(2)千米为什么不是百分数?

(3)师:这四个数都是分数,而前三个才是百分数。谁能说出百分数和分数之间的联系和区别?学生回答后出示下表: 分数百分数 意义表示两个数量之间的倍数关系,也可以表示某个具体数量只表示两个数量之间的倍数关系从而得出百分数是一种特殊的分数,它只表示两个数量之间的倍数关系,百分数后面通常不带单位名称。百分数又叫百分率或百分比。

(二)教学百分数的写法和读法

1、为了区别于分数和便于书写,百分数通常不写成分数形式,而是采用百分号%来表示。教师示范百分号的写法后,让学生进行书写练习。

2、教师示范书写百分数,引导学生写黑板上和上例中的百分数。

3、教学读法。指出百分数只读作百分之几,而不读成一百分之几,齐读百分数。

(三)揭示百分数的特征百分数是特殊的分数,它特殊在哪里呢?引导学生说出百分数的特征:

1、分母相同,便于比较;

2、只表示倍数关系;

3、采用百分号%表示。

小学分数教案(篇7)

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:

明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:

对单位“1”的理解。

教具和学具:

卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

2、能根据成语说出下面的分数吗?

一分为二( )七上八下( )百里挑一( )十拿九稳( )

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,(课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

2、67的分数单位是( ),有( )个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29 。

(2)一节课的时间是23小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14 ( )

(2)把5米长的绳子平均分成7段,每段占全长的57 ( )

(3)14个19是914 ( )

(4)自然数1和单位“1”相同。( )

五、小结。

今天这节课我们学习了?你有哪些收获?

小学数学分数的意义教学设计5

教学内容:

义务教育五年制小学数学第八册分数的意义。

义务教育六年制小学数学第十册分数的意义。

教学目标:

1.使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。

2.使学生理解分数的意义和单位“1”的含义及分子、分母的含义。

3.培养学生形象思维,抽象概括能力和初步的逻辑思维能力。

4.使学生受到初步的辨证唯物主义观念的启蒙教育。

教学重点与难点:

让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。

教具准备:

电脑软件一套。

学具准备:

每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。

教学过程:

课前组织教学

今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)

一、分数的产生

在日常生活中,人们在进行测量和计算的时候,有时不能得到整数得结果,例如,用一个计量单位“米”测量黑板的长度(屏幕显示)量了3米后,剩下的一段不够1米了,还能用整数表示吗?又如,老师只有一个苹果要平均分给两个小朋友,每个小朋友分得多少个/还能用整数表示吗?这就需要用新的数,谁知道用什么数来表示?

板书:分数

对于分数同学们并不陌生,在三年级的时候我们已经初步认识过谁能说几个分数(指名说老师板书),谁还记得分数各部分的名称是什么?

到底什么样的数叫分数呢?分子、分母各表示什么意思呢?这节课我们就来进一步学习分数的意义,板书:的意义

二、分数的意义

1。把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的。小组研究汇报。

2.根据刚才分的过程,把这些物体归两类,为什么这样分?

根据学生的回答板书:一个物体、一个整体(解释整体的含义)。

说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”

上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的)

3.请同学们看屏幕,仔细观察回答问题

(1)把一块饼平均分成两份,每份是它的()。

(2)把一张正方形的纸平均分成4份每份是它的(),其余的3份是它的()。

(3)把一条线段平均分成5份,每份是它的()其余的是它的()。

(4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。

4.请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。

5.电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。

6.根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。

7.根据分数的意义指名说出刚才写的这些分数表示的意义。

8.教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。

9.做一做电脑显示。

三、课堂练习:

1.让同学们闯三关,电脑显示三关题。

2.三关闯过了,别忘了还要帮小猴分东西呢,苹果、熊猫已分过,还有西瓜和蛋糕,看小狗分西瓜(电脑显示)学生回答。提问:如果小狗把西瓜平均分成8块,小猴吃了3块,吃了西瓜的几分之几?小兔吃了2块,吃了几分之几?还剩下西瓜的几分之几?

分蛋糕,蛋糕上有四朵小花、12支蜡烛,平均分成4份,每份都能用来表示,但是这个所表示的数量一样多吗?为什么?

四、课堂小结:

这节课你学会了什么?

五、板书设计:

分数的意义

一个物体

一个计量单位单位“1” 2/3 4/15 5/11

一个整体

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

数学一次函数教案14篇


老师在上课前需要有教案课件,只要课前把教案课件写好就可以。制作好的教案是实现优质教学的有力保障。幼儿教师教育网编辑为你收集整理了“数学一次函数教案”,我们在这里提供的指导意见仅供参考具体情况还需要您自己决定!

数学一次函数教案 篇1

数学一次函数教案

【导语】:一次函数是初中数学的重要内容之一,它是后续高中数学和大学数学的基础。因此,掌握一次函数的知识对学生来说至关重要。本教案旨在通过合理安排教学内容和方式,帮助学生全面理解一次函数的概念、性质和应用,提高他们的数学学习能力和解决实际问题的能力。

【教学目标】:

1. 掌握一次函数的定义和性质;

2. 熟练运用一次函数的相关公式和运算方式;

3. 提高通过建立和解决一次函数模型解决实际问题的能力。

【教学内容】:

1. 一次函数的定义和性质;

2. 一次函数的图像和性质;

3. 一次函数的斜率和截距;

4. 一次函数的解析式和其它表示形式;

5. 一次函数的运算和应用。

【教学步骤】:

一、导入新知识(10分钟):

1. 调查:请学生回答一次函数的定义是什么?它有哪些性质?

2. 引导学生思考:一次函数的图像如何确定?与它的性质有什么关系?

二、讲解一次函数的定义和性质(15分钟):

1. 通过数学定义引入一次函数的概念;

2. 介绍一次函数的性质:自变量和因变量呈线性关系,函数图像为一条直线。

三、探究一次函数的图像和性质(20分钟):

1. 使用计算机或幻灯片演示一次函数的图像和性质;

2. 探究一次函数的图像与斜率、截距的关系;

3. 设计一些练习题,让学生通过计算和绘图验证一次函数的性质。

四、讲解一次函数的斜率和截距(15分钟):

1. 引入一次函数的斜率的概念:斜率表示函数图像的倾斜程度;

2. 介绍一次函数的截距的概念:截距表示函数图像与坐标轴的交点。

五、解析式和其他表示形式(10分钟):

1. 通过实例讲解一次函数的解析式的写法和意义;

2. 介绍一次函数的斜截式和一般式的表达形式。

六、一次函数的运算和应用(20分钟):

1. 通过例题演示一次函数的加减、乘除运算;

2. 引导学生思考一次函数的应用场景,并举例说明。

七、巩固练习和展示(10分钟):

1. 分组合作,设计一些练习题,让学生自主解答;

2. 请学生代表向全班展示解题过程和思路。

【教学评估】:

1. 通过学生的讨论和展示情况,评估他们对一次函数的定义和性质的掌握程度;

2. 观察学生在解答练习题和实际问题时的能力,评估他们对一次函数的应用能力。

数学一次函数教案 篇2

【一次函数教案】

相关主题范文

一、教学设计背景

在高中数学中,一次函数是一个重要且常见的概念。它是数学习中的基础,也是后续学习其他函数类型的基础。因此,教师需要设计一次函数教案,引导学生加深对一次函数的理解与运用。本教案的设计面向高中一年级学生,通过引入真实生活中的问题,让学生明确一次函数在实际中的作用和应用。

二、教学目标

1. 知识目标:

学生能够理解一次函数的基本概念和性质,能够正确区分一次函数的常见表示形式。

学生能够运用一次函数解决实际问题,并理解其中的数学思维和方法。

2. 能力目标:

学生能够分析和解决一次函数相关问题,培养学生的数学思维和问题解决能力。

3. 情感目标:

学生能够通过实际问题的解决,理解数学在现实生活中的应用和重要性,增强对数学的兴趣和学习动机。

三、教学过程

1. 导入(10分钟)

(教师展示一张图表展示温度随时间的变化,引发学生思考)

T: 同学们,这是一张图表,表格中列出了一天中的时间和相应的温度值。你们能看出这两者之间有一种关系吗?

S: 温度是随着时间变化的。

T: 很好。这种关系是否可以用函数来表示呢?

S: 可以。

2. 知识讲解与引入(15分钟)

T: 那么,我们来学习一次函数。一次函数是什么呢?

S1: 一次函数是指函数的最高次数是1的函数。

T: 除了最高次数是1这个特点,还有哪些表示方式呢?

S2: 一次函数可以用线性函数的形式表示,也可以用一元一次方程的形式表示。

T: 很好。接下来,我们学习一次函数的性质。谁能说出一次函数的性质呢?

3. 性质讲解(10分钟)

T: 一次函数有两个重要的性质,分别是线性关系和比例关系。我们先来看什么是线性关系。

(教师用具体例子解释线性关系)

T: 那么,比例关系是什么呢?

(教师用具体例子解释比例关系)

4. 实例讲解(15分钟)

T: 现在我们来看几个实际问题,并运用一次函数解决。

(教师出示一组问题,学生分组讨论并解答,随后进行讲解)

5. 练习与巩固(15分钟)

T: 现在你们可以尝试自己解决一下这几个问题。

(学生个别或分组完成练习题目)

T: 时间到,哪些同学有解答的?

6. 拓展与应用(15分钟)

T: 那么一次函数在生活中还有哪些应用呢?请同学们思考一下。

(学生自主思考和列举一次函数在生活中的应用,并进行展示)

7. 总结与展望(10分钟)

T: 同学们,今天我们学习了一次函数的基本概念和性质,掌握了一些运用一次函数解决实际问题的方法。希望你们能够巩固这些知识,并在以后的学习中更好地运用和拓展。下节课我们将深入学习二次函数,希望大家继续努力。

四、教学评价

通过教学中的讨论、练习和解题展示,教师能够了解学生对一次函数的理解和运用情况,并针对学生的问题进行适当的指导和反馈。在学生的展示环节,可以看出学生的拓展思维和应用能力是否得到提升。

数学一次函数教案 篇3

一次函数教学过程设计

1. 准备工作

在教学开始前,教师应该对本课的教学内容进行详细的研究和准备,制定出科学合理的教学计划和教学步骤,以充分发挥教学效果。

2. 导入新知识

首先,教师应该利用学生先前学习的知识和现实生活中的例子,从简单到复杂地引导他们理解什么是一次函数,以及一次函数的特点和性质。例如,可以利用柿子树生长的例子来引导学生理解一次函数,利用图表和数学式子帮助学生理解一次函数 y = kx + b 的含义。

3. 理论讲授

接下来,教师应该详细讲解一次函数的定义、特点、性质和相关概念,为学生打下牢固的理论基础。教师可以使用多媒体课件、幻灯片、黑板等教具,给学生呈现多种多样的学习资源。

4. 课堂练习

在理论讲解之后,教师可以通过课堂练习来帮助学生熟悉一次函数的相关概念和运用方法。课堂练习的形式可以是个人练习、小组练习或者全班练习。

5. 拓展延伸

在课堂练习结束后,教师可以通过一些实际应用情境,以及更复杂的一次函数的应用案例来拓展学生的思维和知识,帮助他们更加深入地理解一次函数的概念和运用。

6. 总结反思

随着本课程的结束,教师应该适时地对本节课的教学内容进行总结。教师可以邀请学生分享他们在本课程中的学习心得和经验,或者给出一些总结性的问题来帮助学生更好地理解本课程内容。

7. 作业布置

最后,教师应该适时地布置与本课程相关的作业,以巩固学生对一次函数的掌握和运用能力。可以有多种形式的作业,例如奥数训练、实际连续性训练和动手设计等方式。

一次函数授课思路

1. 引入,以引导学生认识一次函数的基本概念。

利用学生已有的知识,以买柿子、车行路程等例子引导学生认识一次函数的基本概念,包括什么是一次函数,一次函数的定义,一次函数的图像等。

2. 讲解一次函数的解析式以及相应的性质。

讲解一次函数 y=kx+b 的含义和推导方式,重点讲解斜率 k 及截距 b 的意义及公式。

3. 制作一次函数教学素材,让学生调整解析式的参数。

通过制作一份一次函数教学素材,让学生自行调整函数的解析式中的参数,来理解不同参数对于函数图像的影响以及斜率和截距的作用。

4. 针对常见问题进行讲解。

对于学生在学习过程中常见的问题,例如“斜率 k 是什么?截距 b 又是什么?”,教师应当对其进行详细讲解,以确保学生对相关概念的掌握。

5. 轻松愉快,采用趣味互动的方式,确保学生掌握一次函数的图像和解析式作用。

采用小游戏形式或展示各种不同图像的形式来稳固巩固学生对一次函数的图像和解析式的掌握,确保他们从进一步了解一次函数的角度准确掌握相关知识。

6. 知识的拓展,扩展应用场景。

通过实际情境和特殊问题等方式,大力拓展一次函数的应用场景。例如,可以通过测量树木高度、车行荷载、股票测算等例子,开发学生学习乐趣,引导他们思考一次函数的实际应用。

7. 总结,并进行知识的自我总结。

针对一次函数的相关概念和知识点,对学生进行清晰的概括,以加深他们的理解和记忆。同时,鼓励学生自己互相交流并将所掌握的知识向他人展示,以提高整个班级的学习水平。

8. 推荐学生复习和强化训练,巩固所学知识。

鼓励学生在学习完相关知识后进行复习和强化训练,在这一过程中充分巩固所学知识,并全面提高自身做题和解决实际问题的能力。

数学一次函数教案 篇4

各位评委老师,你们好!

我是来自密山市兴凯湖乡中学的一名数学教师,姓名姚宝昌。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。

新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。

一、 教材分析:

1、教材内容所处的地位及作用

本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

在《数学课程标准》中,对于本节内容提出了明确的要求,另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。

2、教学目标:

⑴、知识与能力:

①、能通过函数图象获取信息,发展形象思维。

②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

⑵、过程与方法:

①、在亲身的经历与实践探索过程中体会数学问题解决的办法。

②、初步体会方程与函数的关系,建立良好的知识联系。

⑶、情感态度与价值观:

①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。

②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

3、教学重点、难点及其确立的依据:

由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:

1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。

二、学情状况分析:

1、学生现状:

针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:

⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。

⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。

⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。

⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。

2、知识情况:

本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。

3、预期效果:

学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合” 、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。

另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到最佳效果。

数学一次函数教案 篇5

标题: 探索数学一次函数的教学方法——基于实践和应用

引言:

数学是一门抽象而又实用的学科,而数学中的一次函数是数学中最基本且广泛应用的函数之一。了解和掌握一次函数的概念、性质和应用,对学生的数学素养和日常生活中的问题解决能力具有重要意义。本教案旨在通过以实践和应用为导向的教学方式,帮助学生更深入地理解和掌握一次函数,并在实际问题中应用得当。

一、教学目标:

1. 理解一次函数的概念、定义和基本性质;

2. 能够正确地利用一次函数建立模型,解决实际问题;

3. 能够利用一次函数的性质进行函数的应用拓展。

二、教学准备:

1. 教师准备PPT,提供一次函数的定义、性质和应用案例;

2. 准备足够数量的练习题或实际问题;

3. 准备计算机和互联网,以便学生参与教学活动。

三、教学过程:

步骤一:引入概念

1.通过PPT展示一次函数的定义和基本形式:y=ax+b,解释其中a和b的含义。

2.通过实际案例展示一次函数在现实生活中的应用,如汽车的行驶距离与时间的关系等。

步骤二:探索一次函数的性质

1.学生分组进行小组讨论,并总结一次函数的性质,包括函数的单调性、零点、图像和解的唯一性等。

2.请学生利用互联网资源,查找一次函数性质的相关实例,并与小组分享。

步骤三:应用案例分析

1.教师提供一些实际问题,涉及一次函数的应用,如购物满减、公式推导、简单经济模型等。

2.学生个别或小组探讨和解决这些问题,并从不同的角度解释答案的意义。

3.学生展示解题过程和结果,并相互评价。

步骤四:拓展应用

1.教师引导学生对一次函数的应用进行拓展,如勾股定理、简单抛物线模型等。

2.学生独立或小组进行相关拓展应用的研究,并展示自己的发现和结论。

3.学生评价他人的拓展应用,并相互交流心得和体会。

四、教学拓展:

1.教师鼓励学生自主学习,利用互联网资源和相关教材,深入了解一次函数的不同应用领域。

2.鼓励学生进行课外参观和实践活动,如调查房价与面积的关系等。

五、教学评价:

1. 根据学生在解决实际问题中的应用能力进行评价;

2. 通过小组和个别展示、讨论和评价,评估学生对于一次函数概念和性质的理解和掌握情况;

3. 结合课堂练习和作业,评价学生对于一次函数应用拓展的能力。

结语:

通过实践和应用为导向的教学方式,学生能更深入地理解一次函数的概念、性质和应用,同时也提高了学生的数学素养和实际问题解决能力。教师还应鼓励学生在自主学习和课外实践中,进一步拓展和应用一次函数理论,培养学生的创新思维和问题解决能力。

数学一次函数教案 篇6

数学一次函数教案

导语:

一次函数是初中数学中重要的内容之一,它是函数的基础部分,对于学生的数学学习和逻辑思维能力的培养有着重要的作用。本教案将介绍一次函数的基本概念、性质和例题解析,以帮助学生掌握这一知识点。

一、教学目标

1. 了解一次函数的概念和性质;

2. 能够用解析式表示一次函数;

3. 能够根据一次函数的图像求解相关问题;

4. 能够应用一次函数解决实际问题。

二、教学内容

1. 一次函数的定义和图像;

2. 一次函数的性质和解析式表示;

3. 一次函数的例题分析和解答;

4. 一次函数在实际问题中的应用。

三、教学步骤和方法

步骤一:引入一次函数的概念和性质(时间:15分钟)

1. 提问:你知道什么是函数吗?函数有哪些特点?

2. 引导学生回顾函数的定义和性质,然后引入一次函数的概念和性质。

3. 通过示例和讲解的方式,解释一次函数的定义和性质。

步骤二:学习一次函数的解析式表示(时间:20分钟)

1. 讲解一次函数的解析式表示的方法和步骤,包括如何确定函数的系数和常数项。

2. 通过具体的例题,引导学生理解和掌握一次函数的解析式表示的方法和技巧。

3. 给学生一些练习题,巩固和运用解析式表示一次函数的能力。

步骤三:探究一次函数的图像和性质(时间:30分钟)

1. 分析和讨论一次函数的图像特点,如斜率、截距等。

2. 在黑板上画出一次函数的图像,并引导学生观察和分析其性质。

3. 给学生一些练习题,让他们根据一次函数的图像解答相关问题。

步骤四:应用一次函数解决实际问题(时间:30分钟)

1. 提供一些与实际生活相关的问题,让学生运用一次函数解决。

2. 引导学生思考如何建立模型、如何解析问题,然后运用一次函数解答问题。

3. 通过讨论和分析实际问题的解决思路和方法,培养学生的问题解决能力和创新思维。

四、教学反思

通过本节课的教学,学生应该对一次函数有了基本的认识和理解。通过概念的引入、性质的讲解、图像的观察和实际问题的应用等多种形式的教学,能够更好地激发学生学习的兴趣和动力。同时,巩固和运用的练习题也是评估和检查学生掌握程度的重要一环。在教学实践中,教师还应注意激发学生的思维和动手操作的能力,使其在学习中能够主动参与和探究,提高学生的问题解决能力和创新思维。

数学一次函数教案 篇7

数学一次函数教案

1. 教学目标

a. 知识与技能目标:掌握一次函数的概念和性质,并能够应用一次函数进行实际问题求解。

b. 过程与方法目标:培养学生观察和发现问题的能力,提高学生分析和解决问题的能力。

c. 情感态度与价值观目标:鼓励学生发展数学思维,培养学生对数学的兴趣和对数学的自信心。

2. 教学重点

a. 一次函数的概念和性质。

b. 如何应用一次函数进行实际问题的求解。

3. 教学难点

a. 将实际问题转化为一次函数的模型,并解答问题。

b. 培养学生观察和发现问题的能力。

4. 教学过程

第一节 一次函数的概念和性质

a. 导入新知识

教师通过一个简单的实际问题引导学生思考,如“小明每天骑自行车上学,他发现自行车速度与骑行时间成正比。”教师以教育性发问的方式提问学生,“你们知道什么是成正比吗?成正比的关系可以用什么函数来表示呢?”引导学生思考,激发他们对于一次函数的探究兴趣和求知欲。

b. 提出问题

教师提出问题:“小明骑自行车到学校的总路程是否与骑行总时间成正比?如果是,你们能用一次函数来表示这种关系吗?”引导学生思考,让他们从生活中的实际问题中发现一次函数的特征。

c. 引入新知识

教师出示一次函数的定义和性质,并进行讲解。“一次函数是指函数的定义域为实数集,值域为实数集,且函数的表达式为 f(x) = ax + b (a ≠ 0) 的函数。”教师重点讲解一次函数的图像、斜率和函数值的关系。

d. 案例分析

教师通过实例,让学生进一步理解一次函数的概念和性质。如:“小明骑自行车平均速度为25km/h,他骑行2小时,请问他骑行的总路程是多少?”教师引导学生解答问题,并将其转化为一次函数的模型。

第二节 应用一次函数解决实际问题

a. 实际问题引入

教师提供一个关于商品销售的实际问题引入,如:“某商家的销售经理发现,每天销售额与广告投入成正比。”教师引导学生思考,如何通过一次函数来描述销售额和广告投入的关系,并解决相关问题。

b. 解决问题

教师指导学生分析实际问题,将问题转化为一次函数的模型,并解答问题。如:“某商家的每日广告投入为3000元,销售经理预测,如果每天的广告投入增加500元,销售额将增加多少?”引导学生构建一次函数的模型,并求解问题。

c. 拓展应用

教师引导学生进一步思考更复杂的实际问题,如:“如果某商家每天销售额为3000元,销售经理希望提高销售额,他该如何调整广告投入?”教师帮助学生分析问题,并引导他们构建一次函数的模型,进一步解决问题。

5. 教学方法

a. 提问法:通过提问来引导学生思考,激发学生的兴趣和求知欲。

b. 案例分析法:通过实际例子来让学生深入理解一次函数的概念和性质。

c. 问题导向法:以实际问题为导向,让学生探索一次函数的应用。

6. 教学评价

a. 教师观察学生在课堂上的表现,并及时给予针对性的指导和帮助。

b. 针对学生在课后的作业和习题做出评价,帮助他们发现问题并加以改进。

c. 组织小组讨论和学生展示,让学生互相评价和指导,促进合作学习和互动交流。

7. 教学扩展

a. 组织学生开展实际调研,以探索更多的一次函数应用实例,并进行展示和讨论。

b. 引导学生进行一次函数应用的创新设计,鼓励他们发挥自己的想象力和创造力,拓展一次函数的应用领域。

c. 鼓励学生参与数学竞赛和数学建模活动,提高他们解决实际问题和应用数学的能力。

通过这个教案,学生能够掌握一次函数的概念和性质,并能够应用一次函数进行实际问题的求解。通过教学的过程,培养学生观察和发现问题的能力,提高他们分析和解决问题的能力,同时也鼓励他们发展数学思维,培养对数学的兴趣和自信心。同时,教师也可以通过观察学生在课堂上的表现、作业和习题的评价、小组讨论和学生展示等方式对教学效果进行评价,从而进一步指导学生的学习和发展。

数学一次函数教案 篇8

数学一次函数教案

一、教学内容分析

1. 教学目标:

通过本次课学习,学生应能够:

a) 理解一次函数的定义及其特点;

b) 能够识别一次函数的图象、判断一次函数的图象在坐标平面中的位置;

c) 能够根据一次函数的图象,确定一次函数的函数表达式;

d) 能够用一次函数的函数表达式给出函数值,并通过图象表示出来;

e) 能够用一次函数的函数表达式求自变量与因变量之间的关系式;

f) 能够应用一次函数解决实际问题。

2. 教学重点:

a) 一次函数的定义及其特点;

b) 识别一次函数的图象及其所在位置;

c) 根据一次函数的图象,确定一次函数的函数表达式。

3. 教学难点:

a) 用一次函数的函数表达式判断图象;

b) 用一次函数的函数表达式解决实际问题。

二、教学准备

1. 教具准备:

a) 教学课件、教学视频等多媒体教具;

b) 黑板、彩色粉笔;

c) 学生练习册。

2. 学具准备:

a) 一次函数的图象实例或图表;

b) 实际生活中的一次函数例题。

三、教学过程设计

1. 导入新课:

a) 向学生展示一次函数的图象实例或图表,通过引导学生观察,了解一次函数的特点和图象在坐标平面中的位置。

b) 引发学生对一次函数的兴趣,在实际生活中,通过列举例子,让学生感受一次函数的存在。

2. 新课讲解:

a) 讲解一次函数的定义及其特点,并通过实例进行说明。

b) 讲解一次函数的图象及其判断方法,并通过图象讲解一次函数在坐标平面中的位置。

c) 讲解一次函数的函数表达式的确定方法,并通过实例进行详细讲解。

3. 训练与巩固:

a) 让学生通过实例自主练习,判断一次函数的图象及其所在位置。

b) 让学生通过实例练习,根据一次函数的图象确定函数表达式。

4. 拓展与应用:

a) 引导学生通过一次函数的函数表达式给出函数值,并通过图象表示出来。

b) 引导学生应用一次函数解决实际问题,让学生感受一次函数在实际生活中的应用场景。

5. 总结与归纳:

a) 对一次函数的定义、特点、图象及其位置、函数表达式的确定方法进行总结与归纳。

b) 引导学生反思本节课的学习内容,对所学知识进行巩固和复习。

6. 作业布置:

a) 布置相关练习题,巩固所学知识;

b) 布置一次函数在实际生活中的应用题,培养学生的应用能力。

四、教学反思

本次教学通过生动的实例和图象,引发了学生对一次函数的兴趣,增加了学习的积极性。通过细致的讲解和适度的引导,学生理解了一次函数的定义及其特点,能够熟练判断一次函数的图象和确定函数表达式。在拓展与应用环节,学生提出了许多问题,教师灵活应对,解答了学生的疑惑,并引导学生将所学知识应用到实际问题中。通过本节课的教学,学生的数学能力得到了提高,学习兴趣得到了培养。

数学一次函数教案 篇9

一次函数是初中数学的重要内容之一,学生必须掌握它的定义、性质和应用。本教案将以如下主题进行讲述:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用。

一、一次函数的定义

一次函数又称为线性函数,是形如y=ax+b的函数,其中a和b为实数且a≠0。其中,a被称为斜率,它表示了函数图像的倾斜程度;b被称为截距,表示了函数与y轴相交的位置。

二、一次函数的图像

1. 当a>0时,函数图像是一个单调递增的直线,斜率越大,图像的倾斜程度越大。

2. 当a3. 当a=0时,函数图像是一条水平直线,表示函数的值不随x的变化而变化。

三、一次函数的性质

1. 零点:一次函数的零点是使得函数值等于0的x值。对于一次函数y=ax+b,它的零点为x=-b/a。

2. 增减性:当a>0时,函数是递增的;当a3. 最值:当a>0时,函数无最小值,有最大值;当a

四、一次函数的应用

1. 速度与时间的关系:一次函数可以表示速度与时间的关系,其中a表示速度的增长或减少速度,b表示起始的位置。通过求解函数的零点,可以得到相交点的时间。

2. 成本与产量的关系:一次函数可以表示成本与产量的关系,其中a表示单位产量的成本,b表示固定成本。通过求解函数的最小值,可以得到最优产量。

3. 直线描绘:一次函数可以用来描述和描绘直线,通过给出两个点的坐标,可以确定一条直线的方程。

4. 运动轨迹:一次函数可以用来描述物体的运动轨迹,通过给出物体的起始位置和速度,可以得到物体的位置随时间变化的函数。

通过以上的教学内容,学生可以对一次函数有更深刻的理解,从而能够灵活地应用一次函数解决实际问题。同时,通过大量的练习和应用,学生可以提高自己的数学思维能力和解决问题的能力。

数学一次函数教案 篇10

一次函数教学设计

一、教学内容

本次教学以高中数学一次函数为主要内容,包括一次函数的定义、性质及应用,以及如何画出一次函数的图像等。

二、教学目的

通过本次教学,学生能够:

1. 理解一次函数的定义和性质

2. 能够运用一次函数解决实际问题

3. 能够画出一次函数的图像

三、教学过程

1. 引入:教师在黑板上画出一个简单的直线图像,让学生通过直观来了解一次函数。

2. 授课:解释一次函数的定义及其性质,如y=kx+b(k、b为常数),其中k为斜率,b为截距。

3. 练习:让学生完成几个简单的一次函数计算练习以及应用题目,加深学生对于一次函数的理解和掌握。

4. 拓展:让学生了解一些常见的一次函数应用,如直线运动、比例关系、工资计算等。

5. 总结:教师对于本次课程的重点进行概括,并让同学们自由提问和讨论。

四、教学方法

1. 演示法

通过示范、图示等方式直观地表达一次函数的概念。

2. 讨论法

通过学生之间的讨论,了解不同的解题方法和思路,引导学生形成正确的解题思维。

3. 实践法

在课堂上加入一些实际问题的练习,帮助学生进行实际操作,提高学生对于一次函数的应用能力。

五、教学资源

本次教学需要准备的教学资源:

1. PPT课件

2. 一些练习题和应用题的解答

3. 计算器

六、教学评价

学生在课堂上的提问和练习情况,以及上课后的课后作业情况等,作为教学评价的考核指标。

七、小结

在本次教学中,以实际问题为切入点,又借助于演示、讨论和实践等多种教学方法,帮助学生全面、系统地掌握了一次函数的知识。

数学一次函数教案 篇11

数学一次函数教案

主题:一次函数的基本概念和应用范围

篇一:一次函数的定义、图像和性质

一、教学目标

1. 了解一次函数的基本定义及其表示形式。

2. 掌握一次函数的图像特征和性质。

3. 能够利用一次函数解决实际问题。

二、教学重点

1. 一次函数的定义及其表示形式。

2. 一次函数的图像特征和性质。

三、教学难点

1. 一次函数的图像特征和性质的应用。

2. 实际问题的建模等。

四、教学过程

1. 导入新知

让学生观察一些实际问题的图像,引导学生思考这些问题与一次函数的关系。

2. 新知呈现

简要介绍一次函数的定义及其表示形式,并通过图像展示一次函数的特征,包括直线、斜率和截距等。

3. 案例分析

举例说明如何根据题目给出的条件,建立一次函数方程,并计算问题的解。

4. 个案解读

让学生结合实际问题,选择合适的一次函数模型,并解答相关问题。

5. 练习巩固

提供一些实际问题,让学生通过建立一次函数模型,解答问题。

(例题1:某商店每天卖出的商品数量与商品价格的关系是一次函数关系,当商品价格为20元时,每天卖出30件商品;当商品价格为30元时,每天卖出20件商品。问当商品价格为40元时,每天能卖出多少件商品?

解题思路:设商品价格为x元,每天卖出数量为y件,则根据题意得到两个点(20, 30) 和(30, 20)。根据两点式建立一次函数方程,求解x=40时的y值。)

六、拓展延伸

让学生进一步观察一次函数的性质,如斜率为正,则函数递增;斜率为负,则函数递减等。

七、归纳总结

总结一次函数的基本概念和性质。

八、评价反思

以小组或个人形式,让学生互相评价,并反思自己的学习过程。

篇二:一次函数的应用

一、教学目标

1. 掌握一次函数在实际问题中的应用方法。

2. 培养学生应用一次函数解决问题的能力。

二、教学重点

1. 一次函数在实际问题中的应用方法。

2. 学生能够熟练应用一次函数解决实际问题。

三、教学难点

1. 如何根据实际问题建立一次函数方程。

2. 如何利用一次函数解决实际问题。

四、教学过程

1. 导入新知

通过一个实际问题引出本节课的主题,并与学生讨论问题的解决方法。

2. 新知呈现

简要介绍一次函数在实际问题中的应用方法,并通过实际问题的解决过程进行演示。

3. 案例分析

举例说明如何应用一次函数解决实际问题,并引导学生进行思考和讨论。

4. 拓展延伸

提供一些复杂的实际问题,让学生自行分析和解决,并与同学进行交流和讨论。

5. 练习巩固

提供一些实际问题,要求学生独立解答,并进行答案的订正和解题思路的讨论。

六、归纳总结

总结一次函数在实际问题中的应用方法,并让学生归纳并总结自己解题过程中的经验。

七、评价反思

以小组或个人形式,让学生互相评价,并反思自己的解题过程和方法。

以上为参考范文,你可以根据自己实际情况进行修改和完善。

数学一次函数教案 篇12

数学一次函数教案

一、教学目标:

1. 理解一次函数的基本概念,能够分辨一次函数的图象。

2. 掌握一次函数的性质,能够准确地表示一次函数的解析式。

3. 学会利用一次函数模型解决实际问题。

4. 培养学生的数学思维和创新意识,提高学生的数学素养。

二、教学重点:

1. 了解一次函数的基本概念和性质。

2. 掌握一次函数的图象和解析式的表示方法。

三、教学难点:

1. 掌握一次函数图象和解析式之间的转化方法。

2. 学会将实际问题转化为一次函数模型进行求解。

四、教学过程:

1. 热身导入(5分钟)

教师出示一道与一次函数相关的实际问题:小明在一家商场买了一件T恤衫,原价120元,现在打8折出售,问小明应付多少钱。鼓励学生思考,快速解答。

2. 概念讲解(15分钟)

教师以板书形式呈现一次函数的定义:如果一个函数的解析式为y = ax + b (其中a和b是常数,并且a ≠ 0),那么它就是一次函数。然后,教师对一次函数的基本概念进行讲解,包括自变量、因变量、解析式和函数图象等。

3. 性质探究(20分钟)

教师通过问题引导学生自主发现一次函数的性质。例如:一次函数的图象必定是一条直线,当自变量为0时,函数值为常数b,当自变量每增加1时,函数值增加a。

4. 图象绘制(20分钟)

教师给出一些一次函数的解析式,如y = 2x + 1,y = -3x + 4,引导学生绘制对应的函数图象,并让学生探讨函数图象与函数解析式的联系和特点。

5. 实际问题解决(20分钟)

教师提供一些与生活实际问题相关的一次函数模型,如某电影院票价与购票人数的关系,某商场日销售额与顾客数量的关系等,鼓励学生运用一次函数模型解决这些实际问题。

6. 拓展应用(10分钟)

教师出示一些挑战性的扩展问题,例如:如何通过两点确定一次函数的解析式?如何通过一次函数图象推断函数的解析式?需要学生灵活运用一次函数的概念和性质,进行推理和解决问题。

7. 小结归纳(5分钟)

教师对本节课的重点内容进行归纳总结,回顾本节课所学的一次函数的基本概念和性质,以及如何利用一次函数模型解决实际问题。

五、课后作业:

1. 完成课堂练习册上与一次函数相关的习题。

2. 思考并总结自己在学习一次函数过程中的收获和困惑。

六、教学反思:

本节课通过引导学生自主思考,培养了学生的数学思维和探究能力。通过实际问题的引入,培养了学生将数学知识应用到实际问题解决的能力。但是在实际问题解决环节,有些学生仍存在困惑,需要更多的实践和指导。下节课将加强实践环节的引导和讲解,帮助学生更好地掌握一次函数的应用。

数学一次函数教案 篇13

一、教学目标:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

二、教学重点

利用二次函数的图象求一元二次方程的近似根。

教学难点:

理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

三、教学方法:

启发引导合作交流

四:教具、学具:

课件

五、教学媒体:

计算机、实物投影。

六、教学过程:

[活动1]检查预习引出课题

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2]创设情境探究新知

问题

1.课本p16问题.

2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

(结合预习题1,完成课本p16观察中的题目。)

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

二次函数y=ax2+bx+c的

图象和x轴交点

两个交点

一个交点

没有交点

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;

2.学生在思考问题时能否注重数形结合思想的应用;

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3]例题学习巩固提高

问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4]练习反馈巩固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根两个相异的实数根两个相等的实数根没有实数根根的判别式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac

问题:(1)p97.习题1、2(1)。

师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

[活动5]自主小结,深化提高:

1.通过这节课的学习,你获得了哪些数学知识和方法?

2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

设计意图:

1.题促使学生反思在知识和技能方面的收获;

2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

[活动6]分层作业,发展个性:

1.(必做题)阅读教材并完成p97习题21。2:3、4.

2.(备选题)p97习题21。2:5、6

设计意图:分层作业,使不同层次的学生都能有所收获。

七、教学反思:

1.注重知识的发生过程与思想方法的应用

《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方

法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

2.关注学生学习的过程

在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

3.强化行为反思

“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

4.优化作业设计

作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

数学一次函数教案 篇14

数学一次函数教案

教学目标:

1. 理解一次函数的定义和性质,能够正确用数学语言表达一次函数的定义和性质。

2. 掌握一次函数的图象特征,能够正确画出一次函数的图象。

3. 能够利用一次函数解决实际问题,能够正确应用一次函数解决实际问题。

教学重难点:

1. 一次函数的图象特征。

2. 一次函数在实际问题中的应用。

教学准备:

1. 教师:黑板、粉笔、PPT。

2. 学生:教科书、练习册。

教学过程:

一、导入(5分钟)

1. 教师打开PPT,用一张灵活的图像导入一次函数的概念,引发学生兴趣。

二、概念解释(15分钟)

1. 教师通过PPT展示一次函数的定义和性质,解释一次函数是指函数的最高次数为1的多项式函数,函数的表达式是y=ax+b(a≠0)。

2. 学生跟随教师一起默写一次函数的定义和性质,教师纠正错误并对比正确答案。

三、图象特征(15分钟)

1. 教师通过PPT展示一次函数的图象特征,包括函数的斜率、截距、单调性和图象在坐标系中的位置。

2. 学生跟随教师一起练习画出一次函数的图象,教师提供几个例子供学生模仿练习。

四、实际应用(20分钟)

1. 教师通过PPT展示一些实际问题,引导学生用一次函数解决这些实际问题。

2. 学生分组进行讨论,解决实际问题,并用一次函数的图象解释答案。

3. 学生通过小组讨论将解题过程和结果展示给全班,教师进行点评和讲解。

五、练习巩固(20分钟)

1. 学生进行一次函数的练习题,教师提供足够的练习时间和指导。

2. 学生在教师的指导下相互批改作业,订正错误。

六、总结归纳(10分钟)

1. 教师向学生总结一次函数的定义、性质、图象特征和实际应用。

2. 学生通过小组合作的方式总结一次函数的重点。

七、拓展延伸(10分钟)

1. 教师通过PPT展示一些与一次函数相关的知识,如函数的概念、函数的性质等。

2. 学生跟随教师一起做一次函数的拓展练习,提高对一次函数的理解和应用能力。

教学反思:

通过本节课的教学,学生对一次函数的定义、性质、图象特征和实际应用有了初步的理解和掌握。但是,学生在画一次函数的图象时还存在一定的困难,需要通过更多的练习来提高。另外,学生在实际问题的解决中需提高分析问题和运用一次函数的能力。因此,在后续的教学中,需要加强练习和实践,提供更多的实际问题,培养学生的解决问题的能力。

高一数学函数教案9篇


如果您想读一篇好文章幼儿教师教育网编辑建议您看看“高一数学函数教案”,我们非常感谢您的关注希望您能收藏我们的网站。老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。教案是教师在教学过程中具体操作的依据。

高一数学函数教案【篇1】

初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0 (a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

高一数学函数教案【篇2】

教学目标:

进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

教学重点:

用指数函数模型解决实际问题。

教学难点:

指数函数模型的建构。

教学过程:

一、情境创设

1.某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为万元,后年的产值为万元.若设x年后实现产值翻两番,则得方程。

二、数学建构

指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

三、数学应用

例1某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

例2某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数=f(t)的解析式。

例3某位公民按定期三年,年利率为2.70%的方式把5000元存入银行.问三年后这位公民所得利息是多少元?

例4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

(1)写出本利和随存期x变化的函数关系式;

(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算.这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式.比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.这就是复利计算方式。

例52000~2002年,我国国内生产总值年平均增长7.8%左右.按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到2010年我国年国内生产总值约为2000年的多少倍(结果取整数)。

高一数学函数教案【篇3】

高一数学函数课件

一、内容和内容解析

函数是数学中最重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。托马斯称:函数是现代数学思想之花。

《集合与函数概念》一章在高中数学中起着承上启下的作用。本课学习的函数概念及其反映出来的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础。函数的思想方法贯穿了高中数学课程的始终。

本小节是继学习集合语言之后,运用集合与对应语言,在初中学习的基础上,进一步刻画函数概念,目的是让学生认识到它们优越性,从根本上揭示函数的本质。因此本课的教学重点是:学会用集合与对应语言刻画函数概念,进一步认识函数是描述客观世界中变量间依赖关系的数学模型。

二、目标和目标解析

1.正确理解函数的概念,会用集合与对应语言刻画函数。通过实例分析,体会对应关系在刻画函数概念中的作用;强化数学的应用与建模意识;培养学生的学习兴趣。

2.理解函数三要素,会求简单函数的定义域。通过例题教学与练习,培养归纳概括能力。

3.理解符号y=f(x)的含义,明确f(x)与f(a)的区别与联系。体会函数思想,代换思想,提高思维品质。

三、教学问题诊断分析

本堂课作为一堂公开课,我曾在多个班级试教。主要问题有:

首先,由三个实例归纳共性会遇到困难。原因是由具体实例到抽象的数学语言,要求学生具备较强的归纳概括能力;而对高一学生抽象思维能力相对较弱。

其次,学生不容易认识到函数概念的整体性。原因是把函数单一地理解成函数中的对应关系,甚至认为函数就是函数值。

第三,函数符号y=f(x)比较抽象,学生难以理解。

因此本课的教学难点是:1、从主观知识抽象成为客观概念。2、函数符号y=f(x)的理解。

四、学习行为分析

在初中学生已学习了变量观点下的函数定义,具体研究了几类最简单的函数,对函数并不陌生;学生已经会把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围,学生能列举出函数的实例,已具备初步的数学建模能力。                                                        我们目前所教的学生经历了初中新课程改革,他们普遍思维活跃,表达能力强,有较强的独立解决问题的能力。在平时的学习过程中,他们更喜欢教师创造疑问,然后自己想办法解决问题,通过教师的启发点拨,学生以自己的努力找到解决问题的方法。学生作为教学主体随时对所学知识产生有意注意,努力思索解决疑问的方式,使自己的能力通过教师的点拨得到发挥。

针对学生这一学习方式,我们在教学过程中从学生已有的知识经验出发,让学生明白新问题产生的背景,引导学生对三个实例进行分析,然后归纳共性,抽象出用集合与对应语言刻画的函数概念。其间采用了多媒体动画演示、教师引导、学生探究、讨论、交流一系列活动,让学生感到“概念的.得出是水到渠成的,自然的而不是强加于人的”。

对函数概念的整体性的理解,通过设计“想一想”、“练一练”、“试一试”等问题情景激发学生积极参与,在问题解决的过程中巩固函数概念。而对函数符号y=f(x),则让学生分析实例和动手操作,来认识和理解符号的内涵;并进一步渗透函数思想、代换思想。如三个实例用统一的符号表示、例4中计算当自变量是数字、字母不同情况时的函数值。让学生在做数学中领会含义,学会解题方法,提高解决问题的能力。

五、教学支持条件分析

《标准》提倡运用信息技术呈现以往教学难以呈现的课程内容,数学的理解需要直观的观察、视觉的感知,特别是几何图形的性质,复杂的计算过程,函数的动态变化过程、几何直观背景等,若能利用信息技术来直观呈现使其可视化将会有助于学生的理解。本节课将充分利用信息技术支持课堂教学。

1、   多媒体动画演示炮弹发射。在形象生动的情景中感受高度h随时间t的变化而变化的运动规律。

2、   用几何画板画出h=130t-5t2的图象。在图象上任取一点P(t,h),然后拖动点P的位置,观察点P的横坐标t与纵坐标h的变化规律。

3、   制作幻灯片展示问题情景。

高一数学函数教案【篇4】

教学目标:

1.理解的概念,了解三要素.

2.通过对抽象符号的认识与使用,使学生在符号表示方面的能力得以提高.

3.通过定义由变量观点向映射观点得过渡,使学生能从发展与联系的角度看待数学学习.

教学重点难点:重点是在映射的基础上理解的概念;

难点是对抽象符号的认识与使用.

教学用具:投影仪

教学方法:自学研究与启发讨论式.

教学过程:

一、复习与引入

今天我们研究的内容是的概念.并不象前面学习的集合,映射一样我们一无所知,而是比较熟悉,所以我先找同学说说对的认识,如是什么?学过什么?

(要求学生尽量用自己的话描述初中的定义,并试举出各类学过的例子)

学生举出如 等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.

提问1. 是吗?

(由学生讨论,发表各自的意见,有的认为它不是,理由是没有两个变量,也有的认为是,理由是可以可做 .)

教师由此指出我们争论的焦点,其实就是定义的不完善的地方,这也正是我们今天研究定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.

二、新课

现在请同学们打开书翻到第50 页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的的定义是什么?能否用最简单的语言来概括一下.

学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质.

(板书)2.2

一、的概念

1.定义:如果A,B都是非空的数集,那么A到B的映射 就叫做A到B的,记作 .其中原象集合A称为定义域,象集C 称为值域.

问题3:映射与有何关系?(一定是映射吗?映射一定是吗?)

引导学生发现,是特殊的映射,特殊在集合A,B必是非空的数集.

2.本质:是非空数集到非空数集的映射.(板书)

然后让学生试回答刚才关于 是不是的问题,要求从映射的角度解释.

此时学生可以清楚的看到 满足映射观点下的定义,故是一个,这样解释就很自然.

教师继续把问题引向深入,提出在映射的观点下如何解释 是个?

从映射角度看可以是 其中定义域是 ,值域是 .

从刚才的分析可以看出,映射观点下的定义更具一般性,更能揭示的`本质.这也是我们后面要对进行理论研究的一种需要.所以我们着重从映射角度再来认识.

3.的三要素及其作用(板书)

是映射,自然是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个时,应从这三方面去了解认识它.

例1 以下关系式表示吗?为什么?

(1) ; (2) .

解:(1)由 有意义得 ,解得 .由于定义域是空集,故它不能表示.

(2) 由 有意义得 ,解得 .定义域为 ,值域为 .

由以上两题可以看出三要素的作用

(1)判断一个关系是否存在.(板书)

例2 下列各中,哪一个与 是同一个.

(1) ; (2) (3) ; (4) .

解:先认清 ,它是 (定义域)到 (值域)的映射,其中

再看(1)定义域为 且 ,是不同的; (2)定义域为 ,是不同的;

(4) ,法则是不同的;

而(3)定义域是 ,值域是 ,法则是乘2减1,与 完全相同.

求解后要求学生明确判断两个是否相同应看定义域和对应法则完全一致,这时三要素的又一作用.

(2)判断两个是否相同.(板书)

下面我们研究一下如何表示,以前我们学习时虽然会表示,但没有相系统研究的表示法,其实表示法有很多,不过首先应从记号 说起.

4.对符号 的理解(板书)

首先让学生知道 与 的含义是一样的,它们都表示 是 的,其中 是自变量, 是值,连接的纽带是法则 ,所以这个符号本身也说明是三要素构成的整体.下面我们举例说明.

例3 已知 试求 (板书)

分析:首先让学生认清 的含义,要求学生能从变量观点和映射观点解释,再进行计算.

含义1:当自变量 取3时,对应的值即 ;

含义2:定义域中原象3的象 ,根据求象的方法知 .而 应表示原象 的象,即 .

计算之后,要求学生了解 与 的区别, 是常量,而 是变量, 只是 中一个特殊值.

最后指出在刚才的题目中 是用一个具体的解析式表示的,而以后研究的 不一定能用一个解析式表示,此时我们需要用其他的方法表示,具体的方法下节课再进一步研究.

三、小结

1. 的定义

2. 对三要素的认识

3. 对符号的认识

四、作业:略

五、板书设计

2.2 例1. 例3.

一. 的概念

1. 定义

2. 本质 例2. 小结:

3. 三要素的认识及作用

4. 对符号的理解

探究活动

在数学及实际生活中有着广泛的应用,在我们身边就存在着很多与有关的问题如在我们身边就有不少分段的实例,下面就是一个生活中的分段.

夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量相关.某人到一个水果店去买西瓜,价格表上写的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一个西瓜,称重后店主说5元1角,1角就不要了,给5元吧,可这位聪明的顾客马上说,你不仅没少要,反而多收了我钱,当顾客讲出理由,店主只好承认了错误,照实收了钱.

同学们,你知道顾客是怎样店主坑人了呢?其实这样的数学问题在我们身边有很多,只要你注意观察,积累,并学以至用,就能成为一个聪明人,因为数学可以使人聪明起来.

答案:

若西瓜重9斤以下则最多应付4.5元,若西瓜重9斤以上,则最少也要5.4元,不可能出现5.1元这样的价钱,所以店主坑人了.

高一数学函数教案【篇5】

1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

2、函数定义域的解题思路:

⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。

⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。

⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。

⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶ 不要求集合B中的每一个元素在集合A中都有原象。

⑴ 在定义域的不同部分上有不同的解析式表达式。

⑵ 各部分自变量和函数值的取值范围不同。

⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。

高一数学函数教案【篇6】

一、方程的根与函数的零点

1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标)

2、函数零点的意义:方程f(x)=0 有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点

3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程 f(x)=0 的根。

4、函数零点的求法:求函数y=f(x)的零点:

(1) (代数法)求方程f(x)=0 的实数根;

(2) (几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.

5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0).

1)△0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点.

二、二分法

1、概念:对于在区间[a,b]上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的'区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

2、用二分法求方程近似解的步骤:

⑴确定区间[a,b],验证f(a)f(b)0,给定精确度ε;

⑵求区间(a,b)的中点c;

⑶计算f(c),

①若f(c)=0,则c就是函数的零点;

②若f(a)f(c)0,则令b=c(此时零点x0∈(a,c))

③若f(c)f(b)0,则令a=c(此时零点x0∈(c,b))

(4)判断是否达到精确度ε:即若|a-b|ε,则得到零点近似值为a(或b);否则重复⑵~⑷

三、函数的应用:

(1)评价模型: 给定模型利用学过的知识解模型验证是否符合实际情况。

(2)几个增长函数模型:一次函数:y=ax+b(a0)

指数函数:y=ax(a1) 指数型函数: y=kax(k1)

幂函数: y=xn( nN*) 对数函数:y=logax(a1)

二次函数:y=ax2+bx+c(a0)

增长快慢:V(ax)V(xn)V(logax)

解不等式 (1) log2x x2 (2) log2x 2x

(3)分段函数的应用:注意端点不能重复取,求函数值先判断自变量所在的区间。

(4)二次函数模型: y=ax2+bx+c(a≠0) 先求函数的定义域,在求函数的对称轴,看它在不在定义域内,在的话代进求出最值,不在的话,将定义域内离对称轴最近的点代进求最值。

(5)数学建模:

高一数学函数教案【篇7】

(一)通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象概括能力.

(二)理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

(三)在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的.

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax■,(a≠0),故可在此基础上,引入奇、偶函数的概念,便于学生理解.在引入概念时始终结合具体函数的图像,增强直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于有定义域奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念——非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想的效果.

1.观察如下两图(图略),思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的?

可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

2.观察函数f(x)=x和f(x)=的.图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

由上面的分析讨论引导学生建立奇函数、偶函数的定义.

1.奇、偶函数的定义.

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.

2.提出问题,组织学生讨论.

(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?

(2)奇、偶函数的图像有什么特征?

(3)奇、偶函数的定义域有什么特征?

[例题]

1.判断下列函数的奇偶性.

注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x),∴f(x)=x(1-x).

(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)内是增函数,还是减函数,并证明你的结论.

解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)内是增函数,证明如下:

∴f(x)在(0,+∞)上是增函数.

思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

[练习]

1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

1.有既是奇函数,又是偶函数的函数吗?若有,有多少个?

2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:

(1)F(x)=f(x)·g(x)的奇偶性.

(2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高一数学函数教案【篇8】

1.2解三角形应用举例第四课时

一、教学目标

1、能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形的面积公式的简单推导和应用

2、本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。

3、让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

二、教学重点、难点

重点:推导三角形的面积公式并解决简单的相关题目

难点:利用正弦定理、余弦定理来求证简单的证明题

三、教学过程

Ⅰ.课题导入

[创设情境]

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?

生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA

师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?

生:同理可得,S=bcsinA,S=acsinB

Ⅱ.讲授新课

[范例讲解]

例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)

(1)已知a=14cm,c=24cm,B=150;

(2)已知B=60,C=45,b=4cm;

(3)已知三边的长分别为a=3cm,b=4cm,c=6cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

解:略

例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm)?

思考:你能把这一实际问题化归为一道数学题目吗?

本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。

解:设a=68m,b=88m,c=127m,根据余弦定理的推论,

cosB==≈0.7532

sinB=0.6578应用S=acsinB

S≈681270.6578≈2840.38(m)

答:这个区域的面积是2840.38m。

变式练习1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面积S

提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。

答案:a=6,S=9;a=12,S=18

例3、在ABC中,求证:

(1)

(2)++=2(bccosA+cacosB+abcosC)

分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,用正弦定理来证明

证明:(1)根据正弦定理,可设

===k显然k0,所以

左边===右边

(2)根据余弦定理的推论,

右边=2(bc+ca+ab)

=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左边

变式练习2:判断满足sinC=条件的三角形形状

提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”(解略)直角三角形

Ⅲ.课堂练习课本第18页练习第1、2、3题

Ⅳ.课时小结

利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。

Ⅴ.课后作业

《习案》作业七

高一数学函数教案【篇9】

设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1

ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1

ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。

ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。

复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。

函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。

对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;

对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。

ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

ⅱ确定f(x) 和f(-x)的关系:

若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;

若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。

⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。

⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a0时的最大值或a

若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);

若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

相关推荐

  • 高一数学函数教案 俗话说,做什么事都要有计划和准备。作为幼儿园的老师,我们都希望小朋友们能在课堂上学到知识,为了给孩子提供更高效的学习效率,教案是个不错的选择,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。所以你在写幼儿园教案时要注意些什么呢?经过收集,小编整理了高一数学函数教案,希望你更多关注本网站更新。...
    2023-08-17 阅读全文
  • 小学分数教案2500字模板 一名优秀的人民教师应该保证教学的科学性和合理性。准备好一份教案往往是上好课的前提。教案是教师上课的痕迹,也许写出优秀的教案并没有我们想象中那么难。相信你应该喜欢幼儿教师教育网小编整理的小学分数教案,还请你收藏本页以便后续阅读。...
    2022-12-28 阅读全文
  • 数学一次函数教案14篇 老师在上课前需要有教案课件,只要课前把教案课件写好就可以。制作好的教案是实现优质教学的有力保障。幼儿教师教育网编辑为你收集整理了“数学一次函数教案”,我们在这里提供的指导意见仅供参考具体情况还需要您自己决定!...
    2023-09-11 阅读全文
  • 最新小学数学小数乘法教案2500字通用 三尺讲台,一支粉笔,几十年光阴,教师要准备好教案,这是每个教师都必须要具备的素质。教案会让老师和学生更愉快的完成课程,如何写出优秀的教案呢?你不妨看看最新小学数学小数乘法教案,欢迎阅读,希望大家能够喜欢!...
    2022-12-14 阅读全文
  • 高一数学函数教案9篇 如果您想读一篇好文章幼儿教师教育网编辑建议您看看“高一数学函数教案”,我们非常感谢您的关注希望您能收藏我们的网站。老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。教案是教师在教学过程中具体操作的依据。...
    2024-05-02 阅读全文

俗话说,做什么事都要有计划和准备。作为幼儿园的老师,我们都希望小朋友们能在课堂上学到知识,为了给孩子提供更高效的学习效率,教案是个不错的选择,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。所以你在写幼儿园教案时要注意些什么呢?经过收集,小编整理了高一数学函数教案,希望你更多关注本网站更新。...

2023-08-17 阅读全文

一名优秀的人民教师应该保证教学的科学性和合理性。准备好一份教案往往是上好课的前提。教案是教师上课的痕迹,也许写出优秀的教案并没有我们想象中那么难。相信你应该喜欢幼儿教师教育网小编整理的小学分数教案,还请你收藏本页以便后续阅读。...

2022-12-28 阅读全文

老师在上课前需要有教案课件,只要课前把教案课件写好就可以。制作好的教案是实现优质教学的有力保障。幼儿教师教育网编辑为你收集整理了“数学一次函数教案”,我们在这里提供的指导意见仅供参考具体情况还需要您自己决定!...

2023-09-11 阅读全文

三尺讲台,一支粉笔,几十年光阴,教师要准备好教案,这是每个教师都必须要具备的素质。教案会让老师和学生更愉快的完成课程,如何写出优秀的教案呢?你不妨看看最新小学数学小数乘法教案,欢迎阅读,希望大家能够喜欢!...

2022-12-14 阅读全文

如果您想读一篇好文章幼儿教师教育网编辑建议您看看“高一数学函数教案”,我们非常感谢您的关注希望您能收藏我们的网站。老师都需要为每堂课准备教案课件,每位老师都需要认真准备自己的教案课件。教案是教师在教学过程中具体操作的依据。...

2024-05-02 阅读全文
Baidu
map