幼儿教师教育网,为您提供优质的幼儿相关资讯

高中数学课件教案

发布时间:2023-07-19 高中数学课件教案

高中数学课件教案7篇。

今天本篇文章是关于高中数学课件教案的整理。教案课件是老师教学工作的必要环节和上好课的先决条件。相信老师都非常熟悉撰写教案课件的方法和技巧。教案是课堂教学中起到桥梁作用的重要工具。大家务必收藏本页,以便随时回顾学习。

高中数学课件教案(篇1)

一、教学目标:

知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。

二、教学重点、难点:

重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。

三、教学过程:

教学环节

教学内容和形式

设计意图

复习

提问:

(1)圆的定义是什么?圆的标准方程的形式怎样?

(2)如何推导圆的标准方程呢?

激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。

讲授新课

一、授新

1.椭圆的定义:(略)

活动过程:

操作-----交流-----归纳-----多媒体演示-----联系生活

形成概念:

操作:

固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?

在动手过程中,培养学生观察、辨析、归纳问题的能力。

在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。

教学环节

深化概念:

注:1、平面内。

2、若,则点P的轨迹为椭圆。

若,则点P的轨迹为线段。

若,则点P的轨迹不存在。

联系生活:

情境1.生活中,你见过哪些类似椭圆的图形或物体?

情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)

情境3.观看天体运行的轨道图片。

教学内容和形式:

准确理解椭圆的定义。

渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。

设计意图:

2.椭圆的标准方程:

例:已知点、为椭圆的两个焦点,P为椭圆上的任意一点,且,其中,求椭圆的方程

活动过程:点拨-----板演-----点评

一般步骤:

(1)建系设点

(2)写出点的集合

(3)写出代数方程

(4)化简方程:

请一位基础较好,书写规范的同学板演。

(5)证明:讨论推导的等价性

掌握椭圆标准方程及推导方法。

培养学生战胜困难的意志品质并感受数学的简洁美、对称美。

养成学生扎实严谨的科学态度。

应用

举例

教学环节

二、应用

例1.(1)椭圆的焦点坐标为:

(2)椭圆的焦距为4,则m的值为:

活动过程:思考-----解答-----点评

例2.已知椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离的和等于10,求椭圆的标准方程

活动过程:思考-----解答-----点评

变式已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。

求椭圆的标准方程

活动过程:思考-----解答-----点评

认清椭圆两种标准方程形式上的特征。

课堂小结:

提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?

活动过程:教师提问-----学生小结-----师生补充完善。

让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。

作业布置:

作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、

探索:平面内到两个定点的距离差、积、商为定值的点的轨迹是否存在?若存在轨迹是什么?

分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。

四、板书设计

8.1椭圆及其标准方程

一、复习引入二、新课讲解三、习题研讨

1.椭圆的定义

2.椭圆的标准方程

总体说明:本节课的设计力图贯彻"以人的发展为本"的教育理念,体现"教师为主导,学生为主体"的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学生的思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的综合素质。

高中数学课件教案(篇2)

函数的单调性

今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。

一、说教材

1、教材的地位和作用

本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。

2、学情分析

本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。

教学目标分析

基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

1.知识与技能(1)理解函数的单调性和单调函数的意义;

(2)会判断和证明简单函数的单调性。

2.过程与方法

(1)培养从概念出发,进一步研究性质的意识及能力;

(2)体会数形结合、分类讨论的数学思想。

3.情感态度与价值观

由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。

三、教学重难点分析

通过以上对教材和学生的分析以及教学目标,我将本节课的重难点

重点:

函数单调性的概念,判断和证明简单函数的单调性。

难点:

1.函数单调性概念的认知

(1)自然语言到符号语言的转化;

(2)常量到变量的转化。

2.应用定义证明单调性的代数推理论证。

四、教法与学法分析

1、教法分析

基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

2、学法分析

新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。

五、教学过程

为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。

(一)知识导入

温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。

(二)讲授新课

1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?

通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的`去说,老师逐步修正、完善学生的说法,最后给出正确答案。

2.观察函数y=x2随自变量x变化的情况,设置启发式问题:

(1)在y轴的右侧部分图象具有什么特点?

(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1(3)如何用数学符号语言来描述这个规律?教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。(4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?类似地分析图象在y轴的左侧部分。通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1仿照单调增函数定义,由学生说出单调减函数的定义。教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。(我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)(三)巩固练习1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x练习2:练习2:判断下列说法是否正确①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。1③已知函数y=,因为f(-1)1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。(四)归纳总结我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。(五)布置作业必做题:习题2-3A组第2,4,5题。选做题:习题2-3B组第2题。新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。

高中数学课件教案(篇3)

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握xxx。

(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4)学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据xx在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

(2)过程与方法

引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度与价值观

在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

(二)重点难点

本节课的教学重点是xxxxx,教学难点是xxxxx。

三、教法、学法分析

(一)教法

基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

(二)学法

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

四、教学过程分析

(一)教学过程设计

教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

(1)创设情境,提出问题。

新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。

(2)引导探究,建构概念。

数学概念的形成来自解决实际问题和数学自身发展的需要。但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程。

(3)自我尝试,初步应用。

有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。

(4)当堂训练,巩固深化。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(5)小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。

高中数学课件教案(篇4)

教学目标:

1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2、会求一些简单函数的反函数。

3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

一、创设情境,引入新课

1、复习提问

①函数的概念

②y=f(x)中各变量的意义

2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3、板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1、问题组一:

(1)这两组函数的图像有什么关系?这两组函数有什么关系?

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2、问题组二:

(1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(3)函数()的定义域与函数()的值域有什么关系?

3、渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1、(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到"用x表示自变量,y表示函数"的习惯,将中的x与y对调写成。

2、引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3、两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

四、应用解题,总结步骤

1、(投影例题)

【例1】求下列函数的反函数

(1)y=3x—1(2)y=x1

【例2】求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2、总结求函数反函数的步骤:

1、由y=f(x)反解出x=f(y)。

2、把x=f(y)中x与y互换得。

3、写出反函数的定义域。

【例3】(1)有没有反函数?

(2)的反函数是________。

(3)(x

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1、已知函数y=f(x)存在反函数,求它的反函数y=f(x)

(1)y=—2x3(xR)(2)y=—(xR,且x)

(3)y=(xR,且x)

2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

六、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

七、作业

习题2.4第1题,第2题

进一步巩固所学的知识。

教学设计说明

"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

高中数学课件教案(篇5)

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

四、教学目标

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

五、教学重点和难点

1.教学重点

理解并掌握诱导公式.

2.教学难点

正确运用诱导公式,求三角函数值,化简三角函数式.

六、教法学法以及预期效果分析

高中数学优秀教案高中数学教学设计与教学反思

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

1.教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

2.学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

3.预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.

七、教学流程设计

(一)创设情景

1.复习锐角300,450,600的三角函数值;

2.复习任意角的三角函数定义;

3.问题:由 ,你能否知道sin2100的值吗?引如新课.

设计意图

高中数学优秀教案 高中数学教学设计与教学反思

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

(二)新知探究

1. 让学生发现300角的终边与2100角的终边之间有什么关系;

2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

3.Sin2100与sin300之间有什么关系.

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.

(三)问题一般化

探究一

1.探究发现任意角 的终边与 的终边关于原点对称;

2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;

3.探究发现任意角 与 的三角函数值的关系.

设计意图

首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

(四)练习

利用诱导公式(二),口答下列三角函数值.

(1). ;(2). ;(3). .

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

(五)问题变形

由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 学生自主探究

高中数学课件教案(篇6)

一、教材分析

本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。

根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和进取性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的资料,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。

二、教法

根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,进取探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点

三、学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。

四、教学过程

第一:创设情景,大概用2分钟

第二:实践探究,构成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不明白AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生经过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的资料,讨论能够解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2.在△ABC中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,教师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生进取性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一节资料,余弦定理。布置作业,预习下一节资料。

高中数学课件教案(篇7)

各位评委老师好:今天我说课的题目是

是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。

一、 教材分析

是在学习了基础上进一步研究 并为后面学习 做准备,在整个

高中数学中起着承上启下的作用,因此本节内容十分重要。

根据新课标要求和学生实际水平我制定以下教学目标

1、 知识能力目标:使学生理解掌握

2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力

3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于

观察勇于思考的学习习惯和严谨 的科学态度

根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是

二、教法学法

根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。

三、 教学过程

四、 教学程序及设想

1、由……引入:

把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:……

2、由实例得出本课新的知识点是:……

3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

4、能力训练。

课后练习……

使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

五、教学评价

学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应

当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。

yjs21.cOm更多幼儿园教案编辑推荐

高一数学课件教案汇总11篇


居安思危,思则有备,有备无患。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了提升学生的学习效率,准备教案是一个很好的选择,有了教案上课才能够为同学讲更多的,更全面的知识。关于好的幼儿园教案要怎么样去写呢?下面是小编精心为你整理的“高一数学课件教案汇总11篇”,仅供参考,欢迎阅读。

高一数学课件教案 篇1

重点难点教学:

1.正确理解映射的概念;

2.函数相等的两个条件;

3.求函数的定义域和值域。

一.教学过程:

1.使学生熟练掌握函数的概念和映射的定义;

2.使学生能够根据已知条件求出函数的定义域和值域;

3.使学生掌握函数的三种表示方法。

二.教学内容:

1.函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:

(),yf_A

其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_A?叫值域(range)。显然,值域是集合B的子集。

注意:

①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素定义域、对应关系和值域。

3、映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4.区间及写法:

设a、b是两个实数,且a

(1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];

(2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);

5.函数的三种表示方法:

①解析法

②列表法

③图像法

高一数学课件教案 篇2

一、教材分析

1、教材的地位与作用

模拟方法是北师大版必修3第三章概率第3节,也是必修3最后一节,本节内容是在学习了古典概型的基础上,用模拟方法估计一些用古典概型解决不了的实际问题的概率,使学生初步体会几何概型的意义;而模拟试验是培养学生动手能力、小组合作能力、和试验分析能力的好素材。

2、教学重点与难点

教学重点:借助模拟方法来估计某些事件发生的概率;

几何概型的概念及应用

体会随机模拟中的统计思想:用样本估计总体。

教学难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;

应用随机数解决各种实际问题。

二、教学目标:

1、知识目标:使学生了解模拟方法估计概率的实际应用,初步体会几何概型的意义;并能够运用模拟方法估计概率。

2、能力目标:培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。

3、情感目标:鼓励学生动手试验,探索、发现规律并解决实际问题,激发学生学习的兴趣。

三、过程分析

1、创设良好的学习情境,激发学生学习的欲望

从学生的生活经验和已有知识背景出发,提出用学过知识不能解决的问题:房间的纱窗破了一个小洞,随机向纱窗投一粒小石子,估计小石子从小洞穿过的概率。能用古典概型解决吗?为什么?从而引起认知矛盾,激发学生学习、探究的兴趣。

2、以实验和问题引导学习活动,使学生经历“数学化”、“再创造”的过程

通过两个实验:(1)取一个矩形,在面积为四分之一的部分画上阴影,随机地向矩形中撒一把豆子(我们数100粒),统计落在阴影内的豆子数与落在矩形内的总豆子数,观察它们有怎样的比例关系?(2)反过来,取一个已知长和宽的矩形,随机地向矩形中撒一把豆子,统计落在阴影内的豆子数与落在矩形内的总豆子数,你能根据豆子数得到什么结论?

让学生分组合作,利用课前准备的材料进行试验、讨论、分析,使学生主动进入探究状态,充分调动学生学习积极性,使他们感受到探讨数学问题的乐趣,培养学生与他人合作交流的能力以及团队精神。根据各小组试验结果,提出问题,引导学生进行猜想,得出结论:

使学生了解结论产生的背景,轻易地理解了这个结论,并培养学生数据分析能力、抽象概括能力。让他们感觉到数学定理、结论其实离他们很近,增强学生学习的动力和信心。

3、类比迁移,注重数学与实际联系,发展学生应用意识和能力

(1)求不规则图形面积

如图,曲线y=-x2+1与x轴,y轴围成区域A,

如何求阴影部分面积?

通过把不规则图形放在规则的、

易求面积的图形中,利用模拟方法

求不规则图形面积,在解决问题时

学生提出了借助不同图形,教师要

引导学生用最佳图形。让学生把不熟

悉的问题转化为熟悉的问题情

境,引导学生利用已有知识解决新

的问题,培养学识知识应用、类比迁移的能力。

本例通过介绍用计算机产生随机数来模拟,使学生了解现代信息技术的应用,了解另一种模拟方法。

(2)估计圆周率π的值

让学生设计模拟试验,估计圆周率π的值,培养学生应用数学的意识,使学习过程成为学生的再创造过程。达到本课的目标,使学生了解模拟方法估计概率的实际应用,能够运用模拟方法估计概率。通过设计和操作模拟试验,对得出数据进行统计、分析,解决本课难点。让学生体验数学的发现和创造过程,发展他们的创新意识。同时通过对介绍古代数学家祖冲之,对学生进行爱国主义教育,培养学生爱国情操。

(3)几何概型概率计算方法

①通过问题:如果正方形面积不变,但形状改变,所得比例发生变化吗?

引出几何概型的概念、特点和计算公式

把试验的结论上升到理论,使学生的认识有一个从试验到理论的升华,使学生掌握基本概念,并运用理论解决问题,使学生的认识有一个质的飞跃,

②例:如图,在墙上挂着一块边长为16cm的正方形木板,

上面画了小、中、大三个同心圆,半径分别为2cm、4cm、

6cm,某人站在3m处向此板投镖,设投镖击中线上或没有

投中木板时都不算,可重投。

问:(1)投中大圆内的概率是多少?

(2)投中小圆和中圆形成的圆环的概率是多少?

配套习题是知识的直接运用,有助于学生巩固新学的知识,使学生掌握基本知识和技能。

③通过介绍本章开篇中“蒲丰投针”问题,利用计算机动态显示投针试验,使学生对此试验有初步了解,开阔学生视野,体现数学的文化价值,留给学生课后探究的空间。

4、通过实际问题:小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐。(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪一种可能性更大?(2)晚报在晚餐开始之前被送到的概率是多少?

引导学生利用转盘设计试验,并分组进行试验,鼓励学生自主探索与合作交流,培养学生创新意识,并使学生了解模拟形式的多样化,并通过模拟进一步熟悉试验的操作,提高动手能力和小组协调能力。通过问题拓展,介绍用理论解决的方法,激起学生再探究的欲望,留给学生课后思考的空间。

4、课堂小结

由学生总结本节课所学习的主要内容,让学生对所学内容有全面、系统的认识。

四、教法、学法分析

本节课是在采用信息技术和数学知识整合的基础上从生活实际中提炼数学素材,使学生在熟悉的背景下、在认知冲突中展开学习,通过试验活动的开展,使学生在试验、探究活动中获取原始数据,进而通过数与形的类比,在老师的引导、启发下感悟出模拟的数学结论,通过结论的运用提升为数学模型并加以应用,它实现了学生在学习过程中对知识的探究、发现的创作经历,调动了学生学习的积极性和主动性,同学们在亲身经历知识结论的探究中获得了对数学价值的新认识。

五、评价分析

本课是使学生通过试验掌握用模拟方法估计概率,主要是用分组合作试验、探究方法研究数学知识,因此评价时更注重探究和解决问题的全过程,鼓励学生的探索精神,引导学生对问题的正确分析与思考,关注学生提出问题、参与解决问题的全过程,关注学生的创新精神和实践能力。

高一数学课件教案 篇3

今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。

一、说教材

1、本节在教材中的地位和作用:

本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

2. 教学目标确定:

(1)能力训练要求

①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

(2)德育渗透目标

①培养学生善于通过观察分析实物形状到归纳其性质的能力。

②提高学生对事物的感性认识到理性认识的能力。

③培养学生“理论源于实践,用于实践”的观点。

3. 教学重点、难点确定:

重 点:1.棱锥的截面性质定理 2.正棱锥的性质。

难 点:培养学生善于比较,从比较中发现事物与事物的区别。

二、说教学方法和手段

1、教法:

“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

2、教学手段:

根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

三、说学法:

这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

四、 学程序:

[复习引入新课]

1.棱柱的性质:(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面是平行四边形

2.几个重要的四棱柱:平行六面体、直平行六面体、长方体、正方体

思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?

[讲授新课]

1、棱锥的基本概念

(1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念

(2).棱锥的表示方法、分类

2、棱锥的性质

(1). 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。

证明:(略)

引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥

的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

(2).正棱锥的定义及基本性质:

正棱锥的定义:①底面是正多边形

②顶点在底面的射影是底面的中心

①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;

②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;

棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

引申: ①正棱锥的侧棱与底面所成的角都相等;

②正棱锥的侧面与底面所成的二面角相等;

(3)正棱锥的各元素间的关系

下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。

引申:

①观察图中三棱锥S-OBM的侧面三角形状有何特点?

(可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)

②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。

(课后思考题)

[例题分析]

例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )

A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥

(答案:D)

例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。

解析及图略

例3.已知正四棱锥的棱长和底面边长均为a,求:

(1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦

解析及图略

【课堂练习】

1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。

解析及图略

2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。

解析及图略

【课堂小结】

一:棱锥的基本概念及表示、分类

二:棱锥的性质

1. 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

2.正棱锥的定义及基本性质

正棱锥的定义:①底面是正多边形

②顶点在底面的射影是底面的中心

(1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高

相等,它们叫做正棱锥的斜高;

(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

引申: ①正棱锥的侧棱与底面所成的角都相等;

②正棱锥的侧面与底面所成的二面角相等;

③正棱锥中各元素间的关系

【课后作业】

1:课本P52 习题9.8 : 2、 4

2:课时训练:训练一

高一数学课件教案 篇4

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情教法分析:

对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导:

在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ......

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ......

通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情站境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” )。

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一个数列公差0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

高一数学课件教案 篇5

一、本节课内容的数学本质

本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。

所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。

二、本节课内容的地位、作用

“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。

三、学生情况分析

学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。

四、教学目标定位

根据教材内容和学生的实际情况,本节课的教学目标设定如下:

通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。

借助计算器用二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做知识准备.

通过探究、展示、交流,养成良好的学习品质,增强合作意识。

通过具体问题体会逼近过程,感受精确与近似的相对统一。

五、教学诊断分析

“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。 但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。

六、教学方法和特点

本节课采用的是问题驱动、启发探究的教学方法。

通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。

本节课特点主要有以下几方面:

1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。

2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。

以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。

3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。

本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。

4、恰当地利用现代信息技术,帮助学生揭示数学本质。

本节课中利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性。整个课件都以PowerPoint为制作平台,演示Excel

程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。

七、预期效果分析

以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。

另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。

高一数学课件教案 篇6

一、教学背景

1、教材分析

《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

2、学情分析

刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

基于以上分析,我制定如下教学目标及重、难点:

3、教学目标

知识与技能:

初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

过程与方法:

经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

情感态度与价值观:

培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

4、教学重、难点

重点:理解对数函数的概念,掌握对数函数的图象及性质。

难点:由图象探究函数性质,应用性质解决具体问题。

二、教学方法及手段

1、教法

根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

2、学法

(1)类比学习:通过指数函数类比学习对数函数。

(2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

3、教学手段

采用多媒体辅助教学。

三、教学教程

1、情境引入

通过银行的复利计算问题,逐步引出对数函数。

设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

2、新知探索

通过上述模型,让学生给对数函数下定义。

学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

例比较下列各组数中两个值的大小:

(1)log23.4和log28.5;

(2) log0.33.4和log0.38.5;

(3) loga3.4和loga8.5(a>0,且a≠1);

(4) log23.4和log3.42;

(5) log3.42和log0.38.5。

3、巩固练习

(1)比较大小:

lg6________lg8;ln1.3________

(2)比较正数m,n的大小:

若,则m_____n;若,则m_____n.

4、总结提炼

(1)自主探究新知识的方法;

(2)本节课应用了哪些数学思想。

5、布置作业

(1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

(2)教材P74—7、8

四、板书设计

2.2.2对数函数及其性质

一、概念例题

二、图象

三、性质

四、教学反思

高一数学课件教案 篇7

各位评委大家好,我要说课的内容是人教版必修一1.1节《集合的含义与表示》,本次说课包括五部分:说教材、说教法、说学法、说教学程序和说板书。

说教材

1、教材分析:

集合是现代数学的基本语言,可以简洁、准确地表达数学内容。 本节是让学生学会用集合的语言来描述对象,章末我们会用集合和对应的语言来描述函数的概念,可见它是今后数学学习的基础,也是培养学生抽象概括能力的重要素材。

2、教材目标:

根据素质教育的要求和新课改的精神,我确定教学目标如下:

①知识与技能:(1)了解集合的含义与集合中元素的特征

(2) 熟记常用数集符号

(3) 能用列举、描述法表示具体集合

②过程与方法: 让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. 让学生通过观察、归纳、总结的过程,提高抽象概括能力。

③ 情感态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性.

3、教学重点、难点

教学重点: 集合的基本概念与表示方法;

教学难点: 运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 说教法

1.学情分析

《集合的含义及表示》这一课时是学生进入高中阶段学习、接触到高中数学的第一堂课,它直接影响到了学生对高中阶段数学学习的认识;如果我们教学上过于草率,学生很容易对数学失去学习兴趣。再者,这是高中数学课程的第一章的第一课时,是整个高中数学的奠基部分,所以我们不仅要正确地传授知识,更要把握好教学的难度。如果传授得过于简单,那么学生容易麻痹大意,对今后的学习埋下隐患;如果讲得太深,那么学生会有畏难心理,也会对今后的学习造成影响。

2. 方法选择

在教学中注意启发引导,通过预习学案的形式把知识问题化,通过实例引导学生观察归纳,上课组织学生分组讨论,让他们经历观察、猜测、推理、交流、反思的理性思维的基本过程,切实改变学生的学习方法。

说学法

让学生通过课前结合学案,阅读教材,自主预习,课上交流、讨论、概括,课后复习巩固三个环节,更好地完成本节课的教学目标。值得提出的是:集合作为一种数学语言,最好的学习方法是使用,所以应该多做转换练习,

说教学程序

(一) 创设情境,揭示课题

军训前学校通知:*月*日*点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主动参与的积极性。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

(二)研探新知,建构概念

让学生阅读课本P2内容,让小组思考讨论,代表发言,师生共同补充答案它们的共同特征:它们都是指定的一组对象。这时我借此引入集合的概念,把一些元素组成的总体叫做集合,简称集,通常用大写字母A,B,C,?表示。 把研究的对象称为元素,通常用小写拉丁字母a,b,c,?表示;

接下来,我引导学生把集合的涵义进行拓展,期间结合一些师生互动:我们班上的女生能不能构成一个集合,班上身高在1.75米以上的男生能不能构成一个集合,班上高的男生能不能构成一个集合??,通过身边这些大量例子,让学生了解集合的概念,并切实感受到学习集合语言的重要性。

对于集合元素的特征:确定性、互异性、无序性。我则在学生了解集合概念基础上,通过设置三个问题(1)班里个子高的同学能否构成一个集合?(2)在一个给定的集合中能否有相同的元素?(3)班里的全体同学组成一个集合,调整座位后这个集合有没有变化?调整后的集合和原来的集合是什么关系?让学生思考:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

这样设计将知识问题化,问题生活化,激发学生学习的主动性,引导学生归纳出集合中元素的三大特性,用简练的语言概括为——确定性、互异性、无序性用两集合相等的概念。

思考3:(1)设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

(2)对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?

(3)如果元素a是集合A中的元素,我们如何用数学化的语言表达?

(4)如果元素a不是集合A中的元素,我们如何用数学化的语言表达?用符号∈或?填空:

[设计说明]这几个问题比较简单,直接提问同学回答,并师生一起完善答案。通过问题的层层深入,目的是引导学生归纳出元素与集合的关系及表示方法。

反馈练习:

(1)设A为所有亚洲国家组成的集合,则

中国____A, 美国____A,

印度____A, 英国____A;

对于集合中常用的符号,我做了这样处理:简要介绍后,让学生用两三分钟的时间结合符号特点记忆。目的在于给学生一个信号:课堂上能消化的东西要及时记住。

2.集合的表示法:列举法和描述法

让学生自习阅读课本P3——P4的内容5-7分钟,接着让同学试着解决如下三个问题

(1) 由大于10小于20的所有整数组成的集合;

(2) 表示不等式x-7《3的解集;

(3) 由1——20以内的所有素数组成的集合;

把集合的元素一一列举出来,并用花括号“{}”括起来表示的方法叫做列举法。 用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

通过三个问题不仅检验了学生的自学效果,同时也让学生明白列举法和描述法两种方法各自的优缺点,更重要的是对集合的列举法和描述法的规范表达做进一步强调, 最后,我带领学生分析了课本P4的例题,对集合的列举法和描述法的规范表达做进一

步的强调,让学生完成书上的习题,并请几个学生上台来演练,通过练习达到及时的反馈。

(四)归纳整理,整体认识

1.本节课我们学习了哪些知识内容?

2.你认为学习集合有什么意义?

3. 比较列举法与描述法的优缺点。

(五)布置作业

作业:习题1.1A组: 2、3、4.

作业的布置是要突出本节课的重点——集合概念的理解以及集合的表示法,让学生对数学符号的适用在课外进行延伸和巩固。

说板书

在教学中我把黑板分为三部分,把知识要点写在左侧,中间是课本例题演练,右侧是实例应用。在左侧的知识要点主要列出了集合、元素的概念、元素的特性:确定性,互异性,无序性,和集合的表示法:列举法和描述法。

以上是我对《集合的含义与表示》这节教材的认识和对教学过程的设计。对这节课的设计,我始终在努力贯彻一教师为主导,以学生为主题,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力为指导思想,利用各种教学手段激发学生的学习兴趣,体现了对学生创新意识的培养。

高一数学课件教案 篇8

本节课是《普通高中课程标准实验教科书·数学5》(北师大版)第一章数列第二节等差数列第一课时.数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.

【教学目标】

1. 知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

【设计思路】

1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

一:创设情境,引入新课

1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18,自然放水每天水位降低2.5,最低降至5.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:)组成一个什么数列?

3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

三:举一反三,巩固定义

1.判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四:利用定义,导出通项

1.已知等差数列:8,5,2,…,求第200项?

2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

五:应用通项,解决问题

1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差数列 3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况.

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

六:反馈练习:教材13页练习1

七:归纳总结:

1.一个定义:

等差数列的定义及定义表达式

2.一个公式:

等差数列的通项公式

3.二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

高一数学课件教案 篇9

各位领导 教师同仁:

我说课的内容是正切函数的性质和图像。

教材理解分析

《1,4.3 正切函数的性质与图像》是人教社A版必修4第一章第4节的第3小节的内容。是前面系统的学习了正弦与余弦函数的概念,图像及其性质以后滴内容

学习目标

1、掌握正切函数的性质及其应用

2、理解并掌握作正切函数图象的方法;

3、体会类比、换元、数形结合等思想方法。

学情分析

由于我们文科平行班基础不太好加之学习函数的图像及性质又是一个难点,自主学习必然会出现困难。加之教学时间紧,任务重,前面地学习也不是很好。

根据教材结构和学情我对具体地教学过程和设计作如下说明:

在学法上大胆采用高效课堂模式,让学生探究,大胆去掉非主线知识内容,内容程序尽量简洁明了,一课一得,便于学生掌握。教学过程共有这样几个方面

一、复习引入

(1)画出下列各角的正切线

(2)复习相关诱导公式

二、探究新知

探究一 正切函数的性质

探究二 正切函数的图像

三、新知运用

例1 求函数的定义域、周期和单调区间.

四、课堂练习

1、求函数y=tan3x的定义域,值域,单调增区间。

2、 观察正切曲线,写出满足下列条件x的范围:

(1) ; (2) ; (3)

五.小结与课后作业

高一数学课件教案 篇10

说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。

一、说教材

1、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其 他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

2、教学目标的确定及依据。

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

(2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。

(3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

(4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;

难点:利用指数函数的图象和性质得到对数函数的图象和性质;

关键:抓住对数函数是指数函数的反函数这一要领。

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用“从特殊到一般”、“从具体到抽象”的方法。

(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

(4)多媒体演示法。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、说教学程序

1、复习导入

(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

2、认定目标(出示教学目标)

3、导学达标

按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.

(1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。 把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。

因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

(2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x= , , ,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.

方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。

这样可以充分调动学生自主学习的积极性。

(3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。

作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

4、巩固达标(见课件)

这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。

5、反馈练习(见课件)

习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

6、归纳总结(见课件)

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

7、课外作业 :(1)完成P178 A组1、2、3题

(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?

五、说板书

板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

高一数学课件教案 篇11

一、说教材

1、教材的地位和作用

《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。

2、 教学目标

(1)知识目标:

a、通过实例了解集合的含义,理解集合以及有关概念;

b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。

(2)能力目标:

a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;

b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。

(3)情感目标:

a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;

b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

3、重点和难点

重点:集合的概念,元素与集合的关系。

难点:准确理解集合的概念。

二、学情分析(说学情)

对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。

三、说教法

针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。

四、学习指导(说学法)

教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。

五、教学过程

1、引入新课:

a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。

b、介绍集合论的创始者康托尔

2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。

3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。

教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。

4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。

5、集合的符号记法,为本节重点做好铺垫。

6、从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。

7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。

8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。

9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。

10、知识的实际应用:

问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。

11、课堂小节

以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。

六、评价

教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。

七、教学反思

1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。

2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。

热搜课件:小班数学教案(7篇)


不为明天做好准备的人是没有未来的,为了使每堂课能够顺利的进展,教师通常会准备好下节课的教案,所以,很多老师会准备好教案方便教学,教案的作用就是为了缓解老师的压力,提升教课效率。你知道如何去写好一份优秀的幼儿园教案呢?以下是小编为大家精心整理的“热搜课件:小班数学教案(7篇)”,供大家参考,希望能帮助到有需要的朋友。

小班数学教案 篇1

活动目标:

1、学习运用并用对应的方法比较两组物体的多、少,具体感知物体的多少。

2、学习将一组物体并置对应摆放在另一组物体的下方或右方的技能。

重点:让幼儿学习运用对应的方法比较两组物体的多少。

难点:会自己动手将一组物体并置对应摆放在另一组物体的下方或右下方。

活动准备:

磁性教具小狗8只,猫7只,鱼6只。

活动过程:

一、引出课堂内容。

(1) 首先将8个小狗排列整齐。

教师:今天有许多的小客人来到我们小二班作客,看看是谁来了呢?

教师:哦,原来是小狗呀!有多少小狗呢?(引导幼儿说出许多)

二、演示提问。

(1)将7只猫一一对应排列。

教师:今天小狗还请了许多的小猫去它们家做客,那我们一看小狗和小猫是不是一样多?(引导幼儿说出不一样多)

教师:我们一起来说一说“小狗和小猫不一样多”。

(2) 启发幼儿说出小狗多1个,猫少1只。

教师:请小朋友想一想,怎样才能使小狗和猫变成一样多呢?(添1只或减少1只小狗)。

(3) 启发幼儿说出猫多1只,鱼少1只,并想办法使猫和鱼的数量一样多。

教师:小猫去小狗家做客,小狗端来了小猫最爱吃的小鱼招待小猫。

师边演示边提问:我们一看小猫和小鱼是不是一样多呢?(猫多1只,鱼少1只)

教师:我们一起来说一说“小狗和小猫不一样多”。

教师:那小朋友们开动小脑筋仔细想一想,怎么样才能使小猫和鱼变成一样多呢? (添1只鱼或减少1只小猫)。

教师:我们这样一一对应的排列物体就能很清楚的看出来两组物体谁多谁少,并且给两组数量不一样的物体添一或者减一就能使两组数量不一样的物体变的一样。

三、活动,收拾教具,结束活动。

教师:现在小朋友们学会了给两种物体比较多少,回家以后也可以在家里给家里的东西比一比谁多谁少。

小班数学教案 篇2

活动目标

1.能按物体的长短分类。

2.喜欢参加分类活动,能耐心按规则进行分类。

3.培养幼儿比较和判断的能力。

4.引发幼儿学习的兴趣。

5.有兴趣参加数学活动。

活动准备

班级的旧图画笔若干;高笔筒、矮笔筒(可用大号牙膏盒在2/3处一分为二)人手各一个。

活动过程

1.介绍活动内容及规则

出示旧图画笔及高矮笔筒,告诉幼儿:班级的图画笔需要整理,请小朋友来帮忙,把长的插在高笔筒内,短的插在矮笔筒内。

2.幼儿进行长短分类

请每个幼儿自己取一高一矮的笔筒各一个,分别选长或短的图画笔插入相应的笔筒,直至插满。

3.检查分类结果

请幼儿相互检查分类结果,看看长笔都有哪些颜色,以及短笔都有哪些颜色。

活动延伸

在进行本活动时,还可根据物体的大小、颜色进行分类。例如:让幼儿对图书、积木进行分类整理。整理画笔、图书、积木的活动可放在一个单位时间内进行,也可以分几次按小组轮流操作的方式单独进行。

活动反思

整个活动下来,发现幼儿之间在能力上还是有差异的,大部分幼儿能很好地进行比较,但在表达方面上就有所欠缺,部分幼儿不能表达出自己的观点。在这点上还需要进一步思考,思考如何在数学活动中引导他们大胆讲出自己的想法,并帮助他们梳理总结。

在活动之前也看过一些关于“比长短”的文章,和同行的活动反思,所以在准备学具和提要求时更谨慎了。引出“一端对齐法”的概念,对幼儿能较快地理解还是有帮助的。相信对将来三个以上的物体进行比较有一定的帮助。

小班数学教案 篇3

活动目标:

1、能排除颜色大小的干扰将图形分类。2、能用语言表述自己的分类结果。

活动准备:

1、大圆形、大三角形、大正方形各一个。

2、有图形标记的房子大图。

3、颜色大小不同的三角形、圆形、正方形的卡片若干

活动过程:

一、谈话引趣

1、出示大圆形、大三角形、大正方形,提问:小朋友们,你们认识我吗?(幼儿按老师出示的图形回答问题)

2、教师扮演图形妈妈自我介绍:我是XX图形妈妈。引导幼儿跟图形妈妈问好,加深印象。

二、送图形宝宝回家

1、教师继续扮演引趣:我们的图形宝宝们还没有回家,小朋友能帮帮我们吗?要是看到图形宝宝请送它们回家

2、出示带有图形标记的房子大图。提问:小朋友说说哪座房子是谁的家,你是怎么看出来的?引导幼儿认识图形标记

3、请图形妈妈回家等图形宝宝(教师用大图形示范,学说句式:我送XX回家)4、在教室里找找图形宝宝。引导语:小朋友,我们一起来找找调皮的图形宝宝藏在哪里?

5、引导幼儿将不同的图形宝宝送回相应的家,并试着一边送一边说:我送图形(三角形、圆形等)宝宝回家。

6、请个别幼儿上台操作,要求一次只能送一个图形宝宝回家。其他幼儿评价

三、指导幼儿操作材料《我送图形回家》

1、分发材料,让幼儿分组按照标记,把图形分类。

2、要求边送边说:我送图形(三角形、圆形等)宝宝回家。

课后反思:

数学活动对于小班幼儿来说是比较枯燥的,针对小班幼儿的年龄特点,我设计了这节按图形分类的活动,从教学目标达成情况来说,本节课基本达到了课前的预想效果。下面我自己对本节课的教与学进行了反思:

一、活动刚开始我设计的是图形妈妈来求助,我采用了拟人化的图形卡片,幼儿的注意力就全被我吸引了。接下来的活动就容易开展

了。小班的孩子们能顺利地认识并说出图形的名称,这个环节较为顺利。

二、第二个环节中送图形宝宝找家。原来我设计的是引导幼儿对房子进行观察,发现房屋上的圆形、三角形、正方形的标志,从而确定是哪个图形的家。但因为是借班上课,可能对小朋友们不是太了解,可能是我对问题阐述得不够清楚,幼儿的思维一直停留在发现房子里没有图形宝宝。孩子们有模仿性,一个小朋友这样回答后,再提问了两个小朋友就还是一样的回答。我有些乱了阵脚,但我还是顺着孩子们的话往下接:“对,图形宝宝们都不在(出自:-:小班数学教案图形)家,所以要请小朋友帮忙。老师发现啊这座房子上有正方形的标志,我想这应该是正方形的家,你们同意吗?”幼儿们终于发现了房子上的窗户和屋顶上的图形标志不一样,这个部分才得以顺利进行下来。

三、第三个环节通过孩子们自主操作送图形宝宝回家,不仅吸引了幼儿的注意力,增强了动手能力,还在实践中复习三角形、圆形和正方形,让幼儿进一步掌握了图形。这一部分开始后幼儿的情绪高涨,都争着要去送图形宝宝。我适时提出要求,一次只能送一个图形宝宝;不能大声叫,会吓跑图形宝宝。有课的前部分的铺垫,幼儿都能很准确地把图形送回家。

小班数学教案 篇4

一、活动目标:

1、 能正确区分红、黄、蓝、绿四种颜色,并且将相同颜色进行匹配。

2、 学习5以内的序数,能按照序数找到相应的位置。

3、喜欢参加数学活动,体验情景操作活动的乐趣。

二、活动准备:

长颈鹿戏院场景,排成四排座位,每排5个凳子,分别是红黄蓝绿四种颜色。坐垫20个围成圆圈

戏票25张(其中红点卡1—5当作红票,黄点卡1—5当作黄票,蓝点卡1—5当作蓝票,绿点卡1-5当绿票)

兔妈妈的胸饰一个

三、活动过程:

(一)创设小兔看戏的情景,激发幼儿学习的兴趣

——孩子们,今天长颈鹿叔叔在森林里开了一家“小戏院”,你们想跟妈妈一起去看戏吗?(想)

(二)介绍小戏院,了解小戏院的规则,初步认识1至5以内的序数

1、出示戏票,了解戏票的颜色和作用

——看,这是什么?(出示4张不同颜色的大戏票)这是看戏的'戏票,有了这个戏票,才能进小戏院看戏。

——看看这些戏票有什么不一样?鼓励幼儿说出戏票分红、黄、蓝、绿四种颜色。

——认识了小戏票,我们再到小戏院里瞧瞧吧,

2、播放PPT课件,了解戏票和座位颜色的对应,初步感知1至4的序数。

——瞧,小戏院里有什么呀?有几排小椅子呀?(和幼儿点数)

——第一排是什么颜色的椅子呀?第二排呢?

——蓝色椅子在第几排?

——最后第四排椅子是什么颜色的?

——那红色的戏票坐在哪一排呀?什么颜色的椅子?

——孩子们真棒呀,戏票的颜色是要跟椅子的颜色一样,红色的戏票就要坐到红颜色的椅子上去。

——那黄色、绿色和蓝色的戏票又该坐到哪里呢?谁来告诉我?

——孩子们好聪明呀,发现了戏票和座位之间的秘密,我们一起来告诉长颈鹿叔叔吧。(引导幼儿一起完整讲诉:红戏票坐在第一排的红椅子上,黄戏票坐在第二排的黄椅子上,蓝戏票坐在第三排的蓝椅子上,绿戏票坐在第四排的绿椅子上。)

3、尝试按照戏票上的点子找相应位置,进一步强化1至5以内的序数练习。

——孩子们,你们知道吗,一张戏票有一张对应的座位,那这几张戏票的位置都在哪呢?(出示红色1至5的戏票)我们一起来看看这些戏票上还有什么特别的地方呀?(引导幼儿观察戏票上的不同点子)

——每张票上的点子都一样多吗?(不一样)有的是1个,2个……

——1个点表示什么呢?从小红旗开始, 1个点坐在第一个位置,那两个点呢?就是坐在第二个位置,以此类推(结合引导将5张红票分别贴在对应的座位上)

——小结:原来,拿到戏票后先找到一样颜色的椅子,然后看看戏票上的点子数,从小红旗开始数,就能找到戏票的座位了

4、知识迁移,帮小动物找座位,巩固1至5以内序数的认识。

——听说长颈鹿叔叔的小戏院开张了,小动物们买了戏票也来看戏了,可是他们不知道自己的座位在哪,我们一起来帮帮找找吧。(分别将五只小动物带着戏票正面呈现)

——我们先帮小熊找位置吧。它的戏票是红色的一个点子,那就到红色第一排去找,从小红旗开始数,第几个?小熊的位置就在红色第一排第一个,真开心。(将小熊的图片放到相应位置)

——那么小猫呢?它坐在哪个颜色第几排的第几个位置呀?(依次分别请孩子们将小动物找到对应的座位,并引导孩子用话语讲述)

——孩子们真能干,帮小动物们都找到了座位,瞧,它们好开心呀。

(三)组织孩子们入场看戏,在情景中快乐体验,学以致用

——孩子们,小戏院快开戏了,我们快带着戏票进场吧,戏票就在你的垫子下,拿出来吧。

——看看你的戏票是什么颜色的?上面几个点子,从小红旗开始自己点数吧

——幼儿自己带着戏票入场,找到相应的座位就坐。

——长颈鹿叔叔登场:孩子们,欢迎你们来看戏,现在我来检票了,看看你们有没有找到正确的座位了(长颈鹿叔叔一一检票)

——对于坐错的,则要及时地引导孩子们帮忙纠正,直到所有孩子都正确为止。

(四)好戏开始啦——

——孩子们,好戏开始了,记得安静看戏,做个有礼貌的小观众哦。

——播放皮影戏之类的,让孩子们有个真实的快乐体验。

小班数学教案 篇5

一、活动背景:

皮亚杰说过,数概念是事物间建立两种关系的总和。其中的一种关系就是顺序关系,它是幼儿学数学前的准备阶段。本周我上了节排序的课,是以穿糖果(穿木珠)的方式开展的。让孩子要能说出分辨事物的规律,既糖果是按什么规律穿的,颜色?大小?形状?同时希望他们可以自己按规律排列出来。

当时我想这对于小班孩子来说,还是有点难度的。需要他们用有限的知识来找出规律。但值得肯定的是排序活动不但能培养幼儿的观察力,同时对他的思维也很有好处。事实也的确证明了这点。

二、活动评析

孩子们对于我安排的红糖果、绿糖果、圆糖果、方糖果等很喜欢。我先让他们看看每种糖果间有什么不同,孩子一下子就看出颜色、形状、大小不一样了,接着我在黑板上挂出排列好的糖果项链,和孩子一起找找规律。大部分的孩子都能说出规律。在让孩子根据范例自己排列时,孩子的模仿力很强,大部分都会排列出。只要少数的孩子不太会。

总的来说孩子对这样动手的课还是很喜欢的,大部分的孩子都能按规律进行简单的排序,只有少数能力稍弱的孩子似乎还没会按规律排序,没能达到这次目标。我准备再进行补一次。

三、活动反思

在今后的活动中,我得注意让孩子在生活中懂得观察,发现事物见的简单的不同,逐渐让他们知道些规律,毕竟我们的课堂还是要来源于生活的,这样的结合才会更好。

小班数学教案 篇6

活动目标

1、学习用一一对应的方法比较两组物体数量的多少。

2、学习在标记图上从左到右地摆放物体。

3、初步形成边讲述边操作的讲述习惯。

活动准备

1、教具:贴绒或磁性图片(小猴子5个,香蕉5个)以及标记图。

2、学具:第一、二、三组:幼儿用书第3页,人手一支笔。第四、五、六组:幼儿用书第4页,剪下第17页上的实物卡片。(提供给幼儿5头大象、4串香蕉、5个萝卜、4只小兔、也可以4头大象,5串香蕉、4个萝卜、5只小兔,放在桌上的小筐里。)

活动过程

一、集体活动

1、在标记图上探索从左到右地整齐地摆放物体。

出示标记图,猴子及香蕉图片,请个别幼儿上来给小猴子排队,让幼儿说说自己是怎样为他们排队的,集体讨论:怎样为猴子排队最整齐?通过讨论使大家明确:将小猴子在红旗的后面,红线的上面一个跟着一个排列最整齐。

2、尝试一一对应摆放物体。

启发幼儿给小猴子送香蕉吃,先请个别幼儿上来给小猴子送香蕉,在请大家评价:他送的好不好,为什么好?为什么不好?使大家清楚地发现:将香蕉放在红线的下面,并且香焦和猴子一一对整齐最好。最后,可再请一位幼儿到前面来摆放香蕉,鼓励他边摆放香蕉边和大家一起说:一只小猴子我送你一只香蕉,二只小猴子我送你……

3、学习用比较的方法感知物体的多少。

教师:小猴子和香蕉哪个多?哪个少?你是从哪里看出来的?

请幼儿闭上眼睛,教师拿走一只香蕉。提问幼儿:小猴子和香蕉哪个多?哪个少?你从哪里看出来的?

在请幼儿闭上眼睛,教师拿走两只猴子。提问幼儿:小猴子和香蕉哪个多?哪个少?你是从哪里看出来的?

二、操作活动

1、第一、二、三组。观察比较两组物体的数量。

引导幼儿观察画面边指图边说:图上有什么?是怎样排列的?哪个多?哪个少?请你给多的一组打√

观察画面,请你给多的一组物体涂上颜色。

2、第四、五、六组。对应摆放实物,比较实物多少。启发幼儿在标记图上摆放动物和食物,鼓励幼儿边摆放边说:一个×,送你一个×。

三、活动评价

展示个别幼儿的活动材料,请幼儿说说:画面上有什么?哪个多?哪个少?教师进行简单的评价,对边讲述边操作的幼儿给予表扬。

小班数学教案 篇7

活动目标

1、通过游戏的形式认识圆形、正方形、三角形,能按要求正确分图形。

2、体验游戏的快乐,激发幼儿对数学活动的兴趣。

活动准备:小兔、小猪、小熊图片各二张,各种图形饼干若干,画有(圆形、三角形、正方形)车票若干。

活动过程

一、引题,激发幼儿兴趣。

1、今天除了有很多客人老师来我们班做客外,还有几个朋友来做客。我们一起来是谁吧2、出示图片,说一说:说说它叫什么名字?并请幼儿像小动物问好。

噢,原来是小兔子,小熊,小猪来啦。

3、小动物来做客,你们拿什么好东西来招待他们呢?你们带了吗,没有老师这准备了一些饼干,我们一起来分给他们吧!(通过教具吸引幼儿的眼球,更好地激发幼儿参与活动的兴趣,调动幼儿参与活动的积极性)

二、提出问题,认识图形。

1、你们看,老师准备了一盘饼干。(教师出示一盘有各种图形的饼干)

2、师:咦,你们看看这盘子里的饼干是一样的吗?它们都有哪些不同?(认识三角形、圆形、正方形。)

3、师:你们知道为什么不一样吗?因为小兔子说他喜欢吃三角形的饼干,小熊喜欢吃圆形的饼干,小猪喜欢吃正方形的饼干。(边说边在小动物的旁边贴一个相应图形的饼干)

三、分一分

1、请个别幼儿来说一说。

师:现在老师已经告诉你们小动物们喜欢吃什么样的饼干了,老师要考考你们,看你们记住了没有。

2、分一分:请个别幼儿来分一分说一说。边分边说。

3、请幼儿集体来分一分。

4、一起看一看有没有送错的饼干。(通过认一认环节幼儿认识三角形,圆形,正方形,并说出不同图形的名称。让幼儿进行初步感知圆形,三角形,正方形的不同特征特征。分一分环节,通过幼儿亲身体验。在分和说的过程中幼儿进一步认识区别不同的图形。)

四、到小动物家做客师:小动物们今天都得到了自己喜欢吃的饼干,他们很开心。为了表示感谢,邀请小朋友到它们家去玩。不过,小动物们说家离这儿很远,需要乘火车去。你们看他们给我们寄来了火车票,这些火车票可有趣啦!上面都画有不同的图形,和小动物的照片。看,这张火车票上有什么图形?是谁的照片呢?是小兔子,上面还有他喜欢吃的三角形饼干图形。这张呢?唐老师说去谁家的时候你们就要拿出到他们家的火车票。

1、去小兔子家做客。

幼儿拿出相应的车票,老师看幼儿是否拿错了。小兔子拿出了它最喜欢的三角形饼干分给小朋友。谢谢小兔子。我们去小熊家吧。给小兔子再见。

2、去小熊家做客。

3、去小猪家做客。

4、我们再开着火车到别的地方去玩吧。

结束活动:这一环节起到一个加强巩固的作用,通过游戏让幼儿加深对圆形,三角形,正方形的认识,也保持住了幼儿高涨的兴趣和积极性。在体验游戏快乐的同时也激发了幼儿对书写活动的兴趣。

活动反思:

《图形分类》是要求幼儿能够按形状、颜色特征进行图形分类与排队的一次活动,为了更好地吸引孩子的注意力,提高活动的兴趣,根据中班幼儿的年龄特点,用帮图形宝宝排队的情景激发幼儿的兴趣,使幼儿在轻松愉悦的气氛中学习,激发了幼儿的探索欲望,在组织形式上,我采用集体活动、游戏活动、小组操作。在活动中,幼儿的的思维很活跃,能把自己的发现主动的用语言表达出来。使幼儿的`能力得到多方面的发展。在活动中我通过个别回答和集体回答提高表达的机会,提高幼儿口语表达能力,反应能力和观察能力能得到发展。

初中数学教学课件教案1500字


为了促进学生掌握上课知识点,老师需要提前准备教案,没有写的老师就需要抓紧完成了。 对学生反应的了解可以帮助教师提高课堂效率。下面我们为您呈上“初中数学教学课件教案”相关主题内容,敬请浏览本文内容!

初中数学教学课件教案(篇1)

一、教学目标:

1.知识目标:

①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.

举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0.

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

用字母a表示数,则绝对值的代数意义可以表示为:

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8,,-的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|.

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵|2|=2,|-2|=2

∴这个数是2或-2.

五、巩固练习

练习一:教材P641、2,P66习题2.4A组1、2.

练习二:

1.绝对值小于4的整数是____.

2.绝对值最小的数是____.

3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业

教材P66习题2.4A组3、4、5.

初中数学教学课件教案(篇2)

教育改革的关键在于教师观念的转变,现代教育理论告诉我们:教师的职责现在已经越来越少地传授知识,而是越来越多地鼓励、思考……将越来越成为一位顾问、一位交流意见的参加者、一位帮助发现而不是拿出现成真理的人,必须拿出更多的时间和精力去从事那些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。这说明了一个道理:教师的地位发生了根本性的变化,不再仅仅是知识的传授者,还要确定“以人为本”的观念,把课堂教学看作自己也是学生人生中的一段激荡的生命经历,鼓励、激发学生去不断探索,把学生的“发现”与“创造”视为最有价值的劳动成果,教师与学生平等地对话,与他们共同感悟思潮的跌宕涌动。我想从三个方面谈谈自己在教学时的一些认识:

一、联系生活、感知数学

“数学课程不仅要考虑数学自身的特点,而且应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”这就要求我们遵循学生的思维规律,在实际问题和数学模型之间架起一座桥梁,让学生在不知不觉中走进数学、感知数学。数学来源于生活并服务于生活,主体(学生)在思考问题时,既符合自身的认知规律,又有直觉洞察、直观猜想、合理归纳与活动思维过程,有利于提高自己对数学的认识。

二、身临其境,探索规律

“数学教学活动必须建立在学生的认识发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。

在教学时教师应根据知识的内在结构和学生的学习规律,提供现象和问题,创设思维情境,引导学生主动参与,进行观察、思考、探索。这样有利于激发学生解决问题的热情,提升学生的学习水平。比如在探究一元二次方程的根与系数的关系时,我们可以按下列步骤来创设情境。

1.求三个一元二次方程的两根之和与两根之积。一般来说学生都是先把方程的根求出来,然后计算,学生可能体会不到什么,此时课堂气氛比较平稳。

2.求一元二次方程的两根之和与两根之积,这时很多学生会感到很繁,怕动手计算,课堂出现沉闷现象。此时教师立即口答出答案,学生就会感觉到很惊奇,为之一振,进而产生疑问:“老师怎么会看出答案?这里会不会有规律?”课堂出现窃窃私语,激活了学生的思维,活跃了课堂气氛。

3.提出问题:你能根据你开始的计算和老师的结论观察出一元二次方程的根与系数之间的关系吗?学生们跃跃欲试,开始投入到观察、思考、探索中去。

4.提出问题:你敢肯定你所猜测到的结论是正确的吗?再一次激发学生的斗志,使他们敢于说理、敢于证明,给予他们充分展示自己才华的机会。

三、由点到面,触类旁通

复习不是简单的知识重复,而是一个再认识、再提高的过程,复习中的最大矛盾是时间短、内容多、要求高。复习既要做到突出重点、抓住典型,又能在高度概括中深刻揭示知识的内在联系,让学生在掌握规律中理解、记忆、熟练、提高。比如在复习一元二次方程根的判别式和根与系数的关系时,可以把一元二次方程根的判别式、根与系数的关系和二次函数的有关知识相联系,根的判别式可以作为判别二次函数的图像与x轴的交点个数的依据:当△>0时,抛物线与x轴有两个不同的交点;当△<0时,抛物线与x轴没有交点;当△=0时,抛物线与x轴只有一个交点即顶点。如果抛物线与x轴有两个不同的交点,用根与系数的关系可以求抛物线与x轴的两个交点之间的距离,可以判别抛物线与x轴交点的位置(交点是在坐标原点的左边还是在坐标原点的右边)等等。这样在复习过程中把知识拓一拓、伸一伸,能激起学生思维的火花、学习的积极性,培养学生运用知识提高分析问题和解决问题的能力。

总之,课堂教学面对的是独立、有个性、有思维的学生,课堂教学设计应适应学生的发展,应随“学情”的变化而变化。课堂教学设计的成效如何,完全取决于教师对教材的理解、对学生情况的了解。只有教师具备“以学生为本”的教学理念,才能一切从学生实际出发、一切为学生考虑,才能真正做到教学服务于学生,实现“不同的人在数学上得到不同的发展”。

初中数学教学课件教案(篇3)

我在这次国培中学习了“初中数学概念课堂教学设计”。虽只有短短的时间,却让我受益匪浅。

数学概念是数学命题、数学推理的基础,数学学习的真正开始是从对数学概念的学习开始的,作为一名初中数学老师,我也常常在思考,如何进行概念教学?如何充分利用有限的45分钟,让学生真正理解概念?通过这次国培,给我们今后的数学概念教学提供了一种可以借鉴的教学模式:即“创设问题情景,归纳共同特征——建立数学模型,抽象出概念——在交流中深化概念,辨析概念的内涵与外延——巩固、应用与拓展。”概念教学注意以下几点:

1、注重了数学与生活之间的联系。

《数学课程标准》要求:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型,老师们从学生实际出发,创设了许多有利于学生学习的现实背景与材料,极大的鼓起了学生学习数学的兴趣。

2、概念的得出注重了探究过程、分析过程,体现了活动主题。

通过一组实例,分析共性,找共同特征。

3、铺垫导入恰当,让预设与生成合情合理。

课堂教学的优秀与否,既要看预设,又要看生成。做到了新知不新,新概念是在旧概念的基础上滋生和发展出来的,她们这样的引入,符合学生的最近发展区需要,教师适时搭建了一个新旧知识的桥梁,然后引导学生分析、观察,学生就会印象深刻。

4、注重了数学陷阱的设置。

把学生对概念理解中的易错点、易混淆点列出来,让学生判断、研究可以让学生对概念理解更深刻。

5、注重了学科间的渗透。

在数学教学中,如何使学生形成数学概念,正确的理解和掌握概念是极为重要的,这是学好数学的基础之一。要让学生真正理解概念,要把握好以下三点:一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;二要注重揭示概念的本质,准确理解概念的内涵与外延;三要注重概念的实际应用,实现知识的升华。

初中数学教学课件教案(篇4)

教学目标:

1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)

2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题

教 具: 多媒体、棉线、三角板

教学过程:

情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

如何来描述我们所看到的现象?

教学过程:

1、 一段拉直的棉线可近似地看作线段

师生画线段

演示投影片1:①将线段向一个方向无限延长,就形成了______

学生画射线

②将线段向两个方向无限延长就形成了_______

学生画直线

2、 讨论小组交流:

① 生活中,还有哪些物体可以近似地看作线段、射线、直线?

(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)

②线段、射线、直线,有哪些不同之处, 有哪些相同之处?

(鼓励学生用自己的语言描述它们各自的特点)

3、 问题1:图中有几条线段?哪几条?

“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

点的记法: 用一个大写英文字母

线段的记法:①用两个端点的字母来表示

②用一个小写英文字母表示

自己想办法表示射线,让学生充分讨论,并比较如何表示合理

射线的记法:

用端点及射线上一点来表示,注意端点的字母写在前面

直线的记法:

① 用直线上两个点来表示

② 用一个小写字母来表示

强调大写字母与小写字母来表示它们时的区别

(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)

练习1:读句画图(如图示)

(1) 连BC、AD

(2) 画射线AD

(3) 画直线AB、CD相交于E

(4) 延长线段BC,反向延长线段DA相交与F

(5) 连结AC、BD相交于O

练习2:右图中,有哪几条线段、射线、直线

4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?

学生通过画图,得出结论:过一点可以画无数条直线

经过两点有且只有一条直线

问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

为什么?(学生通过操作,回答)

小组讨论交流:

你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

5、 小结:

① 学生回忆今天这节课学过的内容

进一步清晰线段、射线、直线的概念

② 强调线段、射线、直线表示方法的掌握

6、 作业:①阅读“读一读” P121

②习题4的1、2、3。4作为思考题

初中数学教学课件教案(篇5)

知识技能目标

1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2.利用反比例函数的图象解决有关问题.

过程性目标

1.经历对反比 例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2.探索反比例函数的图象的性质,体会用数 形结合思想解数学问题.

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数 的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数 (k是常数,k0)的图象,探究它有什么性质.

二、探究归纳

1.画出函数 的图象.

分析 画出函数图象一般分 为列表、描点、连线三个步骤,在反比例函数中自变量x 0.

解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1) 、(-3,-2)、(-2,-3)等.

3.连线:用平滑的 曲线将第一象限各点依次连起来,得到图象的 第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

上述图象,通常称为双曲线(hyperbola).

提问 这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数 的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).

学生讨论、交流以下问题,并 将讨论、交流的结果回答 问题.

1.这个函数的图 象在哪两个象限?和函数 的图象 有什么不同?

2.反比例函数 (k0)的图象在哪两个象限内?由什么确定?

3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数 有下列性质:

(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

注 1.双曲线的两个分支与x轴和y轴没有交点;

2.双曲线的两个分支关于原点成中心对称.

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速 度快,小华乘汽车比骑自行车到镇上的时间少.

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

三、实践应用

例1 若反比例函数 的图象在第二、四象限,求m的值.

分析 由反比例函 数的定义可知: , 又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.

解 由题意, 得 解得 .

例2 已知反比例函数 (k0),当x0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.

分析 由于反比例函数 (k0 ),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.

解 因为反比例函数 (k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.

例3 已知反比例函数的图象过点(1,-2).

(1)求这个函数的解析式,并画出图象;

(2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

分析 (1) 反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.

解 (1)设:反比例函数的解析式为: (k0).

而反比例函数的图象过 点(1,-2),即当x=1时,y=-2.

所以 ,k=-2.

即反比例函数的解析式为: .

(2)点A(-5,m)在反比例函数 图象上,所以 ,

点A的坐标为 .

点A关于x轴的对称点 不在这个图象上;

点A关于y轴的对称点 不在这个图象上;

点A关于原点的对称点 在这个图象上;

例4 已知函数 为反比例函数.

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当-3 时,求此函数的最大值和最小值.

解 (1)由反比例函数的定义可知: 解得,m=-2.

(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.

(3)因为在第个象限内,y随x的增大而增大,

所以当x= 时,y最大值= ;

当x=-3时,y最小值= .

所以当-3 时,此函数的最大值为8,最小值为 .

例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

(1)写出用高表示长的函数关 系式;

(2)写出自变量x的取值范围;

( 3)画出函数的图象.

解 (1)因为100=5xy,所以 .

(2)x0.

(3)图象如下:

说明 由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

1.反比例函数的图象是双曲线(hyperbola).

2.反比例函数有如下性质:

(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线 从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

五、检测反馈

1.在同一直角坐标系中画出下列函数的图象:

(1) ; (2) .

2.已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当 时,y的值;

(3)当x取 何值时, ?

3.若反比例函数 的图象在所在象限内,y随x的增大而增大,求n的值.

4.已知反比例函数 经过点A(2,-m)和B(n,2n),求:

(1)m和n的值;

(2)若图象上有两点P1(x1,y1)和P2( x2,y2),且x1 x2,试比较y1和 y2的大小.

初中数学教学课件教案(篇6)

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材

本节课选自人教版初中数学八年级上册第十二章第一节内容《全等三角形》,属于图形与几何领域。本节课是在学生掌握了三角形的边之间的关系、角之间的关系的基础上进行的学习,主要学习全等三角形的概念、对应顶点、对应边、对应角的概念,以及全等三角形的性质,为后面探究证明全等三角形成立的条件奠定了基础,也为后面要学习的几何证明奠定了基础,故而本节课在教材中起着承上启下的作用。

二、说学情

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,而且在生活中也为本节课积累了很多经验。所以,本节课的学习对学生来说是相对比较容易的。故而本节课着重强调让学生自己动手,发现知识,亲身感受知识的形成过程。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

理解并掌握全等三角形的概念及性质。

(二)过程与方法

经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。

(三)情感、态度价值观

感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:全等三角形的概念与性质。教学难点是:全等三角形的性质。

五、说教法和学法

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。所以在这节课中我将采用激、导、探的教学方法。让学生带着问题学、在探索中学、在动手操作中学。在教学中积极培养学生的学习兴趣和动机,明确学习目的。

六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)导入新课

首先是导入环节,我采用图片导入的方式,在多媒体上播放生活中全等物体的图片,并提问:图片中的图形有什么特点?你们还能不能举出这样的例子?从而引出课题《全等三角形》。

这样导入的好处是生活中的实例生动有趣,可以很好地吸引学生的兴趣,激发学生的好奇心,建立数学与生活的联系,更好的将数学融入到生活中去。

(二)讲解新知

其次是讲解新知环节,这一环节主要是学习全等三角形的相关概念和全等三角形的性质。

在开始的时候,我会先给学生分发纸板,请他们拿出三角尺按在纸板上,描出三角板,并裁下。在使用剪刀的过程中我会提醒学生注意安全。完成裁剪操作后,我会抛出问题“照图形裁下来的纸板和三角尺的形状、大小完全一样吗?”“把三角尺和裁得的纸板放在一起能够完全重合吗?”

学生得到答案之后,我会继续在多媒体上给出用同一张底片冲洗出来的两张尺寸一样的照片,请学生观察,并提出问题“两张照片中的图形放在一起是否也能完全重合?”由此我会给出概念:能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形。

在提出全等三角形的概念之后,我会顺势在多媒体上展示一个三角形,并以此作出平移、翻折、旋转三种变换,请学生观察,并提问“对于操作前后的两个三角形,什么变了?什么没变?”。期间,我会给学生发放三角形纸片,请学生自己在白纸上进行平移、翻折、旋转这三种变换,并将变换后得到的三角形剪下来,提示可以采取测量、剪裁重合等操作帮助观察,看看什么变了、什么没变。通过这样的操作,学生能够得到位置变化、形状大小不变的结论,我会和学生一起总结:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

接下来,我会在黑板上呈现平移变换前后的两个三角形,请学生再次动手操作重合步骤,并将两个三角形中重合的顶点、边、角标注出来,也请学生上黑板进行标注,接着根据图示向学生讲解对应顶点、对应边、对应角的概念。在这里我会顺势讲解全等三角形的符号表示。

前面的教学当中,我让学生反复将全等三角形重合,并寻找其对应边和对应角,为后面学生发现其相等关系做好了铺垫。最后我会抛出问题,在这组全等三角形中,对应边有什么关系?对应角呢?学生能够通过观察或者动手操作得出结论:全等三角形的对应边相等,对应角相等。

本节课内容是本章的基础性内容,这样就更需要学生亲身感受知识的形成过程,于是我不断设计让学生亲自动手操作,包括制作全等三角形并将其重合等活动,帮助学生感受全等三角形形状大小相同的特点,更好的理解与记忆本堂课的重点知识。

通过这样一道习题再次巩固如何寻找对应边和对应角。

(四)小结作业

最后是课堂小结,我会请学生谈一谈,通过这一节课的学习,你有什么收获?以学生自主总结的方式不仅可以加深对知识点的理解与记忆,还有助于我了解学生的学习情况,便于我调整自己的授课思路与节奏。

课后思考:我们学习了全等三角形的性质,那如何判断两个三角形是否全等?留下这样的思考问题,可以为下节课的学习做铺垫。

七、说板书设计

我的板书设计遵循简洁明了的原则,突出了本节课的重点部分,以下是我的板书设计:

高中函数课件经典


我们听了一场关于“高中函数课件”的演讲让我们思考了很多。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。经过阅读本页你的认识会更加全面!

高中函数课件 篇1

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

y=ax^2+bx+c (-b/2a,/4a) x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

当h>0,k

当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

当△=0.图象与x轴只有一个交点;

当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a

5.抛物线y=ax^2+bx+c的最值:如果a>0(a

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

高中函数课件 篇2

老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。

一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。

课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。

多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。

学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。

建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。

与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。

高中函数课件 篇3

课前预习:一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。

记笔记:这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。

课后复习:同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。

涉猎课外习题:想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。

学会归类总结:学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合,如果单纯的记忆每个公式,不但增加记忆量,而且容易忘,此时我们必须学会归类总结,把经常搭配使用的公式等总结在一起记忆,这样会大大的减少我们的记忆量,同时提高我们做题效率(因为公式都绑在一起了吗)。

建立纠错本:我们在学习数学的时候可能会经常因为同样一类题目而失分,自己也十分懊恼,其实有办法可以解决这个问题,就是建立纠错本,帮我们经常会出错的题目都集中在一起(当然只要是做错过得都可以记录上),然后空闲的时候看看,考试之前再看看,这样考试的时候出现同类题目再出错的几率就降低好多。

高中函数课件 篇4

在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。 y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。

重点是对周期变换、相位变换规律的理解和应用。

难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。

函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。

培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。

通过学数学,用数学,进而培养学生对数学的兴趣。

三、教具使用

①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。

②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。

以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。 五、教学过程

1我们已经学习了几种图象变换?

2这些变换的规律是什么?

帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。

(1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。

(2) 在上述变换过程中,横坐标的`伸长和缩短与ω之间存在怎样的关系?

(1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?

高中函数课件 篇5

我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时――指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析   基于对教材的理解和分析,我制定了以下的教学目标

1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力

3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

1.教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

2.教学思想: 贯彻引导发现式教学原则,在教学中既注重提供知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

四 教学过程分析: 根据新课标的理念,我把整个的教学过程分为五个阶段,即:创设情境,形成概念发现问题,探求新知 强化训练,巩固双基小结归纳,拓展深化  布置作业,提高升华

在本节课的开始,我设计了一个游戏情境,学生分组,通过动手折纸,观察对折的次数与所得的层数之间的关系,得出对折次数x与所得层数y的关系式。此时教师给出指数函数的定义,即形如  (a>0且a≠1) 的函数称为指数函数,定义域为R.教师将引导学生探究为什么定义中规定a>0且a≠1呢?对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时为后面研究函数的图象和性质埋下了伏笔。在给出学生定义之后可能会有同学感觉定义的形式十分简单,此时教师给出问题,打破学生对定义的轻视,你能否判断下列函数哪些是指数函数吗?(1)(2)   (3)(4)在学生判断的过程中教师给予适时指导,教师提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,进而得出只有(1)是指数函数。通过这一环节使学生对定义有了更进一步的认识。此时教师把问题引向深入,我们要研究一个函数,光有定义是远远不够的,还要对一个函数的图像和性质进行进一步的研究。教师带领学生进入下一个环节――发现问题,探求新知。

指数函数是学生在学习了函数基本概念和性质以后接触到的第一个具体函数,所以在这部分的安排上我更注重学生思维习惯的养成,即应从哪些方面,那些角度去探索一个具体函数,所以我设置了以下三个问题,(1)怎样得到指数函数的图像?(2)指数函数图像的特点(3)通过图像,你能发现指数函数的那些性质?这也是本节课的重点环节。(1)函数图像学生分成四个小组,分别完成           通过前面知识的学习,学生可以较快的通过描点法将图像画出,最后教师在多媒体上将这四个图像给予展示,这样做既避免了学生在画图过程中占用过多时间又让学生体会到了合作交流的乐趣。()此时教师组织学生讨论,观察图像的特点,得出a>1和0

我将给出表格,引导学生根据图像填写。让学生充分感受以图像为基础研究函数的性质这一重要的数学思想。表格的完成将会使学生体会到很大的成功感,也将学生思考的热情带入高峰,通过前面几个环节,学生已基本掌握了本节课指数函数的相关知识,此时我将带领学生体验运用新知识去解决问题的乐趣,进入本节课的下一个环节――当堂训练,共同提高。

(1)  1.72.5 , 173;      (2)  0.8-01 , 0.8-02;―― 同底指数幂比较大小

(3)(0.3)-0.3,(0.2)-0.3    ――底不同但同指数

――本例题诣在对知识的逆用,建立学生的函数思想及分类讨论思想。

5、小结归纳,拓展深化: 在小结归纳中我将从学生的知识,方法和体验入手,带领学生从以下三个方面进行小结:1给出函数定2作出函数图象 3研究函数性质 4解决简单问题

A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

答案:15天的合同可以签,而30 天的合同不能签。

目的在于让学生体会指数的增长速度之快,同时让学生感受指数的用途,激发学生的兴趣。

以上五个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,使学生对知识的理解逐步深入。而最终的思考题又将激发学生兴趣,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。

高中函数课件 篇6

教学目标

知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。

能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。

德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。

教学重点:函数单调性的有关概念的理解

教学难点:利用函数单调性的概念判断或证明函数单调性

教具:多媒体课件、实物投影仪

教学过程:

一、创设情境,导入课题

[引例1]如图为20xx年黄石市元旦24小时内的气温变化图.观察这张气温变化图:

问题1:气温随时间的增大如何变化?

问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?

[引例2]观察二次函数

的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和y值之间的变化规律。

结论:

(1)y轴左侧:逐渐下降;y轴右侧:逐渐上升;

(2)左侧y随x的增大而减小;右侧y随x的增大而增大。

上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。

二、给出定义,剖析概念

①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值

②单调性与单调区间

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。

注意:

(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。当x1 f(x2)y随x增大而减小。几何解释:递增函数图象从左到右逐渐上升;递减函数图象从左到右逐渐下降。

(2)函数单调性是针对某一个区间而言的,是一个局部性质。

判断1:有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。

判断2:定义在R上的函数f (x)满足f (2)> f(1),则函数f (x)在R上是增函数。

函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。

训练:画出下列函数图像,并写出单调区间:

三、范例讲解,运用概念

具有任意性

例1:如图,是定义在闭区间[-5,5]上的函数出函数的单调区间,以及在每一单调区间上,函数的图象,根据图象说是增函数还减

注意:

(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。

(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。

例2:判断函数f (x) =3x+2在R上是增函数还是减函数?并证明你的结论。

分析证明中体现函数单调性的定义。

利用定义证明函数单调性的步骤。

高中函数课件 篇7

教学目标:

1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;

2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数;

3.能够综合运用各种法则求函数的导数.

教学重点:

函数的和、差、积、商的求导法则的推导与应用.

教学过程:

一、问题情境

1.问题情境.

(1)常见函数的导数公式:(默写)

(2)求下列函数的导数:; ; .

(3)由定义求导数的基本步骤(三步法).

2.探究活动.

例1 求的导数.

思考 已知,怎样求呢?

二、建构数学

函数的和差积商的导数求导法则:

三、数学运用

练习 课本P22练习1~5题.

点评:正确运用函数的四则运算的求导法则.

四、拓展探究

点评 求导数前的变形,目的在于简化运算;如遇求多个积的导数,可以逐层分组进行;求导数后应对结果进行整理化简.

五、回顾小结

函数的和差积商的导数求导法则.

六、课外作业

1.见课本P26习题1.2第1,2,5~7题.

2.补充:已知点P(-1,1),点Q(2,4)是曲线y=x2上的两点,求与直线PQ平行的曲线y=x2的切线方程.

相关推荐

  • 高中数学课件系列 下面是我们为您提供的有关“高中数学课件”的重要资讯。教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师应该设计好自己的教案课件。教案是提高学生思维能力的有效途径。强烈建议您将此页面收藏以备不时之需!...
    2024-06-09 阅读全文
  • 六年级数学课件教案7篇 小学数学是最简单的基础,哪怕没读过书的人也会简单运用,作为一个认真负责任的数学老师,对每一个学生都负责到底,写教案是把课程教好的关键因素之一!那么,如何才能将小学数学教案写的清晰而有条理呢?以下由小编收集整理的《六年级数学课件教案7篇》,希望能帮助到你,请收藏。设计意图《分数乘分数》一课是浙江省九年...
    2023-04-17 阅读全文
  • 初中数学课件教案12篇 教案课件在老师少不了一项工作事项,通常老师都会认真负责去设计好。 良好的教案和课件是提高教学质量和效益的保障。根据您的要求,幼儿教师教育网的编辑为您搜索整理了初中数学课件教案,仅供参考,希望能为你提供参考!...
    2023-03-16 阅读全文
  • 高中数学必修二课件 根据教学要求,教师需要在上课前准备好教案课件,因此教师会认真规划每份教案课件的重点难点。教案是教育教学改革的重要指引,你是否正在寻找合适的教案课件?现在就跟随幼儿教师教育网的脚步一起探索“高中数学必修二课件”的故事吧,欢迎阅读本文!...
    2023-06-27 阅读全文
  • 高一数学课件教案汇总11篇 居安思危,思则有备,有备无患。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了提升学生的学习效率,准备教案是一个很好的选择,有了教案上课才能够为同学讲更多的,更全面的知识。关于好的幼儿园教案要怎么样去写呢?下面是小编精心为你整理的“高一数学课件教案汇总11篇”,仅供参考,欢迎阅读。重点难点...
    2023-04-13 阅读全文

下面是我们为您提供的有关“高中数学课件”的重要资讯。教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师应该设计好自己的教案课件。教案是提高学生思维能力的有效途径。强烈建议您将此页面收藏以备不时之需!...

2024-06-09 阅读全文

小学数学是最简单的基础,哪怕没读过书的人也会简单运用,作为一个认真负责任的数学老师,对每一个学生都负责到底,写教案是把课程教好的关键因素之一!那么,如何才能将小学数学教案写的清晰而有条理呢?以下由小编收集整理的《六年级数学课件教案7篇》,希望能帮助到你,请收藏。设计意图《分数乘分数》一课是浙江省九年...

2023-04-17 阅读全文

教案课件在老师少不了一项工作事项,通常老师都会认真负责去设计好。 良好的教案和课件是提高教学质量和效益的保障。根据您的要求,幼儿教师教育网的编辑为您搜索整理了初中数学课件教案,仅供参考,希望能为你提供参考!...

2023-03-16 阅读全文

根据教学要求,教师需要在上课前准备好教案课件,因此教师会认真规划每份教案课件的重点难点。教案是教育教学改革的重要指引,你是否正在寻找合适的教案课件?现在就跟随幼儿教师教育网的脚步一起探索“高中数学必修二课件”的故事吧,欢迎阅读本文!...

2023-06-27 阅读全文

居安思危,思则有备,有备无患。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了提升学生的学习效率,准备教案是一个很好的选择,有了教案上课才能够为同学讲更多的,更全面的知识。关于好的幼儿园教案要怎么样去写呢?下面是小编精心为你整理的“高一数学课件教案汇总11篇”,仅供参考,欢迎阅读。重点难点...

2023-04-13 阅读全文
Baidu
map