列代数式课件
发布时间:2024-02-03 代数式课件列代数式课件。
优秀的人总是会提前做好准备,在平时的学习和工作中,幼儿园教师经常会提前准备一些资料。资料的定义比较广,可以指生活学习资料。有了资料才能更好地安排接下来的学习工作!你是否收藏了一些有用的幼师资料内容呢?为此,小编特意呈上“列代数式课件”,请阅读后分享你的朋友!
列代数式课件(篇1)
一、说教材:
代数式是在学生学习了用字母表示数的基础上,进一步拓宽知识,它既是有理数的概括与抽象,又是整式运算的基础,也是学习方程应用题,进一步学习函数知识等的基础。列代数式,即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验,使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换。它可以帮助人们从数量关系的角度更准确清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的紧密联系。
二、说目标:
2.1教学目标
根据学生已有的知识基础,依据课程标准和教材分析,确定本节课的教学目标:
1、知识与技能目标:了解代数式的概念,会列出代数式表示简单的数量关系,发展符号感,掌握代数式的有关书写格式。
2、过程与方法目标:在具体情境中让学生经历代数式概念的产生过程,分析归纳得出代数式的概念,从而学会用代数式将问题中的数量关系表示出来,并通过合作,比较总结出列代数式的注意事项。
3、情感态度与价值观:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间,通过列代数式表示生活中的简单数量关系,使学生体验列代数式的实际意义与建模思想方法的实际应用价值。
2.2重难点
代数式的概念是代数学的最基本的概念,是今后学习各类代数式的基础。列代数式是学习列方程的基础,因此代数式概念与列代数式是本节的重点。如何引导学生分析实际问题中的数量关系列出代数式,是本节难点。
教师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
三、说教法:
3.1教法分析
针对初一学生的年龄特点和心理特征,结合他们的认知水平,采用启发式,讨论式等教学方法。在教学中注重情境的设置,过程的体验,数学思想的渗透,让学生有充分的思考机会,便课堂气氛活泼,有新鲜感。
3.2学法分析
“授人以鱼,不如授人以渔”。教给学生如何学习是教师的职责。因此在“代数式”教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松、愉快的课堂气氛中亲身体验知识的形成过程。
3.3教学手段
采用多媒体辅助教学,增大课堂教学容量,使学生能充分地学习数学,提高课堂教学效率。利用投影仪进行集体交流,及时反馈信息。
四、说设计:
4.1导入设计
1、创设情境,引入新课(用多媒体展示)
①搭个这样的正方形需要多少根火柴棒?
②每根火柴棒的长为,则一个正方形的周长为,两个正方形的面积为
③一个正方形的面积是个正方形面积的
④一个正方形面积为则它的边长为
先独立思考,再小组交流(四人小组),目的:①把不规范的写法列举出来;②写出正确结果。
通过上面四题,还有加减乘除,乘方,开方六种运算,再通过一题多变为代数式概念的得出作铺垫。
2、展示新知:
问:这些式子有什么共同特征?
请学生发表自己的见解,归纳得出用运算符号把数或表示数的字母连结而成的式子叫代数式。注意教师强调:单独的一个数或字母也是“代数式”。
书写代数式请注意以下几点:
(1)通常写为·或(乘号省略)
(2)通常写作(除号用分数线表示)
(3)数字写在字母的前面。如不写成
3、应用新知
为了及时巩固,帮助学生对所学概念理解,讲完概念后,教师先不忙着讲例题,而是根据学生的实际情况和他们的心理特点,设计了三个习题。
(1)判别
①不是代数式;
②是代数式;
③是代数式;
④是代数式。
判别的时候要紧扣定义,定义其实由两部分组成:
①用运算符号把数或表示数的字母连结而成的式子叫代数式;
②单独的一个数或字母也是代数式。含有“=”或“”这类符号的式子都不是代数式。
(2)下列式子中符合代数式书写要求的是()
(3)用代数式表示米与厘米的和的式子:
①厘米②厘米③米④厘米,四个式子中正确的是()
(a)①②(b)③④(c)①③(d)②③
4.4例题教学
例1.用代数式表示:
(1)的3倍与3的差;
(2)的2倍与的的和;
(3)与的和的平方;
(4)与的平方的和;
(5)与两数平方的和;
(6)的立方根。
例1的目的是让学生体会代数式可以简明地,具有普遍意义地表示实际问题中的量,给数量关系的研究带来方便。设计由浅入深,从倍分和差到平方、立方根,从低级到高低,符合学生的认知规律。另一方面,要求学生书写规范。
例2.一辆汽车以80千米/小时的速度行驶,从a城到b城需小时。如果该车的行驶速度增加v千米/小时,那么从a城到b城需多少时间?
为了帮助学生更好的理解,突破难点,我把例2分解成下面几个问题:
①这是小学学过的哪类应用题?
②行程问题中的三个主要量的关系如何?
③一辆汽车以80千米/小时的速度行驶,从a城到b城需小时,则a城到b城总路程是多少千米?
④这辆汽车原来的速度为80千米/小时,其速度增加v千米/小时后,该车的速度是多少?
⑤在总路程不变的前提下,那么汽车提速后从a城到b城需多少时间?
在层层设问的前提下,引导学生如何分析,起到潜移默化的作用。
以上题目均由多媒体展示,所有过程均采用学生自由讨论,单独作答的形式。
4.5练习:
1、列代数式:
(1)a、b两数的和与它们的差的乘积;
(2)a、b两数的和与它们的差的商;
(3)a、b两数的平方和减去它们乘积的2倍;
(4)a、b两数的和的平方减去它们的差的平方;
(5)用代数式表示奇数、偶数。
2、填空:
(1)大米的单价为元/千克,食油的单价为元/千克,买10千克大米,2千克食油共需元;
(2)日平均气温是指一天中2:00,8:00,14:00,20:00四个时刻气温的平均值,若上述四个时刻气温的摄氏度分别是,则日平均气温的摄氏温度数是;
(3)一个五彩花圃的形状如图,花圃的面积为。
(4)一隧道长米,一列火车长180米,如果该列火车穿过隧道所花的时间为秒,则列车的速度是多少?
进行课堂练习,巩固概念,强化学生对这节课的掌握,根据练习情况,如果错误及时改正。
4.6课堂小结
小结本节课的主要内容,使学生理清这节课的重点内容。
4.7布置作业。
五、说评价:
(1)本节课的教学目标是多元的,涉及知识和能力,过程与方法,情感态度与价值观三方面,体现了“以学生发展为本的教育理念”。
(2)精心设计问题情景,积极引导学生自主讨论,体验过程,获取知识,提高分析问题的能力。
(3)充分利用现代化信息技术,提高课堂效果,活泼学生学习兴趣和学习积极性,使教与学在和谐、愉悦的氛围中进行。
列代数式课件(篇2)
1、代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,
3、多项式:
几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:
(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
4、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键.
本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式。www.Yjs21.COm
(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“”,把括号和它前面的“”号一起去掉,括号里各项都变号。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“C”号,把括号和它前面的“C”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“C”号,括到括号里的各项都变号。
合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
本题考查图形的变化规律,观察得出“每一行和每一列的个数的关系”是解题的关键。
注意:
(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
列代数式课件(篇3)
作为一位不辞辛劳的人民教师,就有可能用到教案,教案是教学活动的依据,有着重要的地位。那么教案应该怎么写才合适呢?以下是小编精心整理的初中数学列代数式教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
教学目标
1、使学生能把简单的与数量有关的词语用代数式表示出来;
2、初步培养学生观察、分析和抽象思维的能力
教学重点和难点
重点:把实际问题中的数量关系列成代数式?
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式???
教学手段
现代课堂教学手段
教学方法
启发式教学
教学过程
(一)、从学生原有的认知结构提出问题
1、用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;(-7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
(二)、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的'数呢?
解:(1)3n;(2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个?
(三)、课堂练习
1设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?
3用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、师生共同小结
首先,请学生回答:
1怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握
练习设计
1、用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2、已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积?
列代数式课件(篇4)
一、教材分析
1.教材分析
我选取的是浙教版七上实验教材第四章第二节,课题为《代数式》,本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式.从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始.同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义.据此,我确定本节课的教学重点为:代数式的概念及用代数式表示常用的数量关系.
2.学情分析
在本节内容学习之前,学生已具有了如下的“现有发展区”.但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解.据此,我认为本节课的教学难点为:用代数式表示实际问题中的数量关系.
二、教学目标
根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:
知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的.
过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展.
三、教法与学法
根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点.
在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”.
四、课堂结构设计
根据问题解决的一般过程,我把这节课的课堂结构设计为以下5个环节,下面对教学过程设计作详细的说明.
五、教学过程设计
1.创设情境,引出问题
我先引导学生欣赏鲁迅纪念馆的一组照片,简单介绍鲁迅其人其事,结合金秋十月,营造秋游氛围,并请学生做导游,教师用富有激情的语言激励学生,做好一名导游可得解决旅程中的许多问题.
如此创设情景,是因为绍兴是鲁迅的故乡,把鲁迅做为背景,可以迅速激发学生的自豪感和学习的兴趣,并渗透了乡土人文教育.同时,旅程的开始也就意味着学习的开始.
在“导游”这个角色的促使下,学生自然会积极主动地思考旅程中遇到的一系列问题:
首先是出发时的行程问题,学生很快进行了解决,教师把所得算式收藏到收藏箱中.到了纪念馆门口,自然遇到了买门票问题.
此时,可通过分析,让学生感知( 60a +40b)所代表的普遍意义.
进入参观后,根据纪念馆的情况又出现了一系列问题,学生一一进行解决.如此设计可使问题与情境有机相融,同时教师又充分考虑到了样例形式的丰富性,使学生意识到学习代数式的必要性.教学时应引导学生正确书写,指出书写的简约美.
接下来教师把收藏箱里的式子全部展示出来,并引导学生观察这些旅程中所得的算式:略,提出问题:它们与我们以前学过的算式有什么区别呢?
使学生造成认知上的冲突,激发其探究的内驱力.
2.对比析误,感知问题
从而水到渠成地得到概念.教师在板书概念后点出课题.
此时学生对代数式只是一个感性认识,于是我又设计了如下的辨析题,通过析误帮助学生区分可能会与代数式混淆的几个关系式,从而加深对代数式构成的理解,使学生的认识有感性上升到理性.
至此学生已经历了代数式概念产生的整个过程,完成了特殊到一般的转化,教学的一个重点已得到了妥善的处理.而教学的另一个重点是用代数式表示数量关系,我打算从列代数式和编代数式两方面让学生进行探索.首先是列:
3.双向建构,探索问题
(1).大家一起来列式:
列是要求学生把文字语言转化为符号语言,考虑到学生转化时可能在关键词意义理解、运算顺序等方面容易出错,我对课本例题进行了重组,并精心设计了变式题,让学生通过对比、辨析,理解关键词的意义,分清运算顺序.教学时应鼓励学生大胆尝试,通过析误让他们得到内化,形成经验.我又及时安排了巩固练习,使学生在练习和集体评析中掌握列式技能,体念成功乐趣.接下来让学生创造性地编代数式,并用文字语言进行描述,再赋予代数式实际背景和几何意义,并在小组合作的基础上通过视频展示台进行交流.
(2).聪明才智共编式
如此设计的意图,是为了让学生从文字语言到符号语言,再从符号语言到文字语言两方面进行建构,强化代数式的概念,提高列式技能,突出了重点.估计此时学生会编出各种不同的代数式,教师要一一予以肯定,尤其是要乘机对学困生进行鼓励和赞赏,让他们感受成功的喜悦,增加学习的信心.可能有些学生会感到困难,而小组合作与交流为他们聆听他人思维,产生共鸣创造了一个很好的平台.由于不同生活经验的学生可以对同一代数式作出不同的解释,如5a可赋予不同的背景,所以此问题的设计为不同的人在数学上得到不同的发展创造了条件,同时让学生体会到代数式的模型思想,达到分散难点的目的.此时学生的思维应该非常活跃,交流此起彼伏,达到了预设中的小高潮.
为乘机促使思维进一步发展,让学生跳一跳能摘到桃子,我设计了如下的探究活动.
4.合作交流,解决问题
(1).开动脑筋齐探索
请学生以小组为单位,选取下列的1个主题,先自主探索,再在组内交流.然后通过视频展示台展示研究成果.
主题1是为了培养学生动手操作和规律探索能力,渗透特殊到一般的思想而设置的.估计学生对此题会有不同的解决方法,从而得到不同的代数式,教师要细心聆听学生的讲解,充分肯定小组合作的成果,并点明这些代数式最后都可化为同一形式,为后续内容学习埋下伏笔.
主题2是为了让学生感受数学美,渗透数学人文和数形结合思想,并为勾股定理等后续内容的学习打下基础.
在此把研究性学习引入课堂,是为了给学生思考、探究、发现和创新提供最大的空间.同时通过展示研究成果,师生共同从语言表达、动手操作、参与合作等方面进行评价,使同学们在多元评价中感受自主探究的乐趣.预计这里又能达到一个高潮.
(2)游戏之中验真知
经过前面的两次高潮,估计学生的思维已有些疲劳,根据注意的转移规律,借鉴中央台的非常6+1栏目,我设计了游戏活动-砸金蛋.8个金蛋内设计了5个题目和3朵彩花,其中问题的顺序已作了充分的预设,不管怎么砸,问题都按照先简后难的固定顺序出现,从而使高层次的问题在思维最活跃时得到解决.
此游戏的开展,吸引了学生的有意注意,舒缓了疲劳,起到了课堂调节剂的作用,使学生在愉快活跃的氛围中主动参与知识的巩固、深化过程,仿佛学中玩,玩中学.最后一题的情境设计突出了参观主线,并暗示参观已结束,进入返程.而在乘车返校途中,又自然而然地引出了实际问题:
(3)返程路上解疑问
如此设计,使问题与情境相融,做到首尾呼应,参观情节贯穿整节课.在讲解时可引导学生在观察动画演示的基础上先独自解决,后请学生代表作分析,以暴露思维过程,教师应及时进行鼓励和评价,使学生在问题解决的过程中体会成功的喜悦.其中拓展问题的设计为下节课的学习作了铺垫.
5.反思小结,拓展问题
(1).你说我讲共交流
小结由师生互动完成,我引导学生从以上几方面进行交流.前三方面对应了本节课的三维目标,第四方面的设计能促使学生进行全面反思,使课堂得到延升.
(2).课后延伸促提高
作业分为阅读作业、书面作业和拓展作业,其中根据学生的发展情况,书面作业又分为必做题和选做题,如此设计的目的,是为了使不同的人在数学上得到不同的发展.
板书预设如下,最后从预设和生成两个方面对本案设计作补充说明.
六、设计说明
1.预设
(1).教学特色:本节课的设计是以问题为主线,以“参观”为形式,参观情境贯穿整节课,而实质是数学本质的渗透,抽象的数学学习与有趣的参观情境有机相融,让学生在这个特殊的"旅程"中感受地方人文,体念学习过程,体会思想方法,突出了数学学习的生活化,使学生真正成为课堂的主角.
(2).重、难点的处理:
突出重点措施:
①.通过列式——比较——辨别——概括等环节,让学生经历代数式概念的产生过程,
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.
突破难点策略:
①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.
②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.
2.生成
预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
列代数式课件(篇5)
各位领导老师,下午好!今天我说课的内容是代数式的值。
下面,我将从教材分析、学情分析、教学目标、教法分析、教学过程及说明五个方面对本次课题进行分析。
一、 教材分析:
(一) 教材的地位及作用:
首先,我们来看一下教材的地位及作用。“代数式的值”是浙教版七年级上册4.5节的内容,是初中代数研究的一个重要问题之一。它是学生在学习了用字母表示数之后的后续内容,又可贯穿于初中代数学习的始终。所以,通过这部分内容的学习,可以帮助学生更好的理解代数的核心问题——代数式的概念,也能让学生为将来的函数学习作一个铺垫。
(二) 教学重难点
基于教材的这样一个地位以及作用,那么本堂课的教学重点是求代数式的值的方法,教学难点是理解用字母表示数与求代数式的值的关系。
二、 学情分析
接下来我从知识、能力和情感态度三个方面分析学生的基础、优势和不足。在本堂课之前,学生已经学习了用字母表示数的知识和概念,掌握了会用字母来表示一些实际问题,但是求代数式的值上还会有一定的偏差。但是,学生对数学的学习有相当的兴趣和积极性,愿意与老师、同学进行探讨交流,相信他们一定能在合作交流的意识与数学能力的提高等方面有所发展。
三、 教学目标
在对教材与学生充分了解的基础上,本堂课的教学目标可以分为以下三个:
知识目标:(1)经历具体情境让学生抽象求代数式值的过程,体会用数值代替代数式里的字母,并会求出代数式的值。
(2)通过求代数式的值让学生进一步理解用字母表示数的意义,进一步增强符号感。
(3)通过对实际例题的体验初步了解整体思想
能力目标:通过学习,培养学生分析问题、解决问题、收集处理信息、团结协作的能力。
情感目标:使学生感受从特殊到一般,又从一般到特殊的辨证过程,激发学生学习数学的兴趣,培养学生辨证唯物主义观点。
四、 教法分析
根据以上的分析,本堂课的教学目标实现策略为“三个一”,即创设一个情境;采用一种反馈模式;贯彻一个自主探索的理念。具体来说,本堂课采用引导探究式学习方法,使学生在一个生活情境的引导下,在多媒体课件的辅助下,通过反复技能演练去发现问题,合作探究与独立思考相结合来解决问题的方法。这种教法的设计,不仅重视了知识的结果,更重视知识的发生,发展和解决过程,贯彻新课程的理念。
五、 教学过程
接下来,我将具体讲解教学过程
根据建构主义理论,教学流程分为情境引入——例题讲解,概念建构——技能演练——小结与作业四个环节。
(一)情境引入
首先我们来看情景引入。
在情境引入上,我着重思考的是如何使我们的数学贴近我们的生活,激起同学们学习的兴趣。因此,我挑选了一个同学们感兴趣的话题——身高预测。在课前,我首先让学生了解了父母亲身高的相关信息。在课上,在给出以下一段文字材料后,
“据某报纸报道,一位医生研究得出由父母身高预测子女成年后的身高公式:儿子的身高是父母身高和的一半再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2”
我给出了三个问题:
第一个问题是(1)已知父亲身高是a米,母亲身高是b米,请同学们用代数式表示儿子和女儿的身高
第一个问题的设计,主要是同学们学过的列代数式的知识的一个回顾,同时也让同学初步感受到今天所学的知识是原来知识上的一个深入,学习的台阶就会相对来说低一点。
在解决了第一个问题以后,我给出了第二个问题
(2)七年级女生小红的父亲身高是1.75米,母亲身高是1.62米,七年级男生小良的父亲身高是1.70米,母亲是1.62米,试预测小良和小红成年后的身高
第二个问题的设计,是今天所学的新知识。由于放入了这样一个生活情境,同学们必然会容易得出答案。
那么,在解决了以上两个问题之后,同学们的兴趣进一步提高,必然想对自己的身高预测一下,因为我就设计了第三个问题:请同学们预测自己的身高。
那么,在第三个问题的时候,由于每个学生父母亲身高的差异性,那么教师又不可能逐个去算,因此,为解决课堂效率与学生个体差异的矛盾上,我设计制作了一个VB软件,只要相应的输入相关数字,结果就能得出。一个小的细节,让学生体验到现在教育技术的巨大作用,同时又激起学生学习相关信息知识的兴趣。
(三) 概念建构
在体验了以上生活情境的过程之后,那么自然而然引出了本堂课的课题:“求代数式的值”。在这个概念建构上,主要从引导自学,感知认知和师生互动,理解知识相结合,培养学生良好的学习习惯,,提高其独立分析和解决问题的能力,变“学会”为“会学”。
(四) 技能演练
在技能演练上,我主要采用了“演——练——拓——求法”四位一体的循环教学模式,用三个例题,层层深入。
第一个例题是:
(一)求解代数式的值
1、当a分别取下列值时,求代数式3-5a的值
(1)a=2
(2)a=-4
(3)a=
(4)a=
(2)解:
当a=-4时,……当
3-5a ……抄
=3-5×(-4)……代
=7 ……算
例一的设计,主要是用不用的数值求同一个代数式的值,从整数,负数,分数,无理数等,力求涉及到数的领域,并通过教师示范,总结出“当,抄,代,算”口诀,便于学生理解记忆
例二:
在例一学生学会了求单字母代数式的基础上,我给出了例二,是求多个字母的代数式问题。那么从知识的深度上来说,又加深了一步。但是,学生很容易想当将其代入,但是在求法上,教师着重强调格式问题。
例三:
在学会了用单字母以及多字母求解代数式的基础上,我将给出例三。例三实际上是涉及到数学中一个很重要的思想——整体思想。对于七年级学生来说,要解决这类问题还是有点难度的,但是,基础稍微好点的学生会容易做出来,基础差点的在教师以及周围学生的.帮组下,相信也能理解。
那么,以上是三个例题的设计,那么为了巩固学生的训练,我在每道例题后面都相应的设计了配套练习。
尤其,我设计了这样一道练习题:
我们知道,学生的反馈模式多种多样,可以有学生出现问题教师指正等多种形式。那么,我们在这里就是采用了错误教育这样一种反馈模式,让学生在错误教育中对知识有更深的理解。
(五) 小结与作业
(1)阅读作业
(2)书面作业
(3) 弹性作业
作业分为三种形式,体现作业的巩固性和发展性原则。阅读作业中的问题思考是后续课堂的铺垫,而弹性作业不作统一要求,供学有余力的学生课后研究。同时,它也是新课标里研究性学习的一部分。
六、 我的板书设计是:
我就讲到这里,恳请各位专家老师批评指正。谢谢!
yJS21.com更多精选幼师资料阅读
代数式课件六篇
教案课件是老师工作中的一部分,老师还没有写的话现在也来的及。教案是教学科研的重要资源,写好教案课件需要注意哪些方面呢?下面小编为您呈送了“代数式课件”主题的相关内容,感谢浏览为你提供实用信息!
代数式课件(篇1)
一、背景分析
1.学习任务分析
我选取的是苏科版七上材第三章第二节,课题为《代数式》,本节是在完成了有理数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式.从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始.我确定本节课的教学重点为:对代数式意义的理解,分析问题中的数量关系,列出代数式
2.学生情况分析
在本节内容学习之前,学生已具有了如下的“现有发展区”.但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解.据此,我认为本节课的教学难点为:正确规范书写代数式和分析问题中的数量关系,列出代数式。
二、教法与学法
教法分析
基于本节课的特点及初一学生形象思维为主的现状,我采用以下方法实现教学目标。以启发式教学为主,在抓好双基的情况下,采用分层指导的思想方法。通过生活情景引出课题,为体现代数式可以表示简单的数量关系,并可以解决生活中的问题,安排了三个例题和适当练习,在课堂最后安排探索规律来列代数式,体现自主探索,合作交流的过程,在达到教学目标的同时,让不同的人在数学上得到不同的发展。
学法分析
遵循教为主导,学为主体,练为主线的教育思想,让学生积极参与教学,通过类比和初步的数学建模思想,在课堂中不断锻炼自己的思维,从而亲身经历知识的发生、发展、形成和应用的过程,并倡导合作交流的学习方法,养成积极主动的学习习惯。
教学手段
在教学过程中,借助多媒体辅助教学,形象直观的体现教学内容,提高学习效率,调动学生的积极性,并在最后设置自我检测。
三、教学过程设计
(一)、复习巩固:用字母表示数量关系
从学生上节课所学内容引入,符合学生的认知规律
(二)、由复习巩固中的代数式引入新课,引入代数式的概念;注意点;代数式的规范写法:
再通过做一做中问题的解决,说明了为什么要学习列代数式。在解决一些实际问题时,往往先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得更简洁,更具一般性。
再次通过巩固新课环节强调要正确写出代数式要注意点:
(1)审清题,弄懂一些术语
(2)抓住关键词,弄清运算顺序
(3)一般先读的先写
(4)用代数式表示应用问题时,还弄清题中的数量关系。
最后通过巩固提高环节说明:同时一个代数式可表示不同的意义。
代数式课件(篇2)
一、说教材:
代数式是在学生学习了用字母表示数的基础上,进一步拓宽知识,它既是有理数的概括与抽象,又是整式运算的基础,也是学习方程应用题,进一步学习函数知识等的基础。列代数式,即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验,使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换。它可以帮助人们从数量关系的角度更准确清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的紧密联系。
二、说目标:
2.1教学目标
根据学生已有的知识基础,依据课程标准和教材分析,确定本节课的教学目标:
1、知识与技能目标:了解代数式的概念,会列出代数式表示简单的数量关系,发展符号感,掌握代数式的有关书写格式。
2、过程与方法目标:在具体情境中让学生经历代数式概念的产生过程,分析归纳得出代数式的概念,从而学会用代数式将问题中的数量关系表示出来,并通过合作,比较总结出列代数式的注意事项。
3、情感态度与价值观:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间,通过列代数式表示生活中的简单数量关系,使学生体验列代数式的实际意义与建模思想方法的实际应用价值。
2.2重难点
代数式的概念是代数学的最基本的概念,是今后学习各类代数式的基础。列代数式是学习列方程的基础,因此代数式概念与列代数式是本节的重点。如何引导学生分析实际问题中的数量关系列出代数式,是本节难点。
教师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
三、说教法:
3.1教法分析
针对初一学生的年龄特点和心理特征,结合他们的认知水平,采用启发式,讨论式等教学方法。在教学中注重情境的设置,过程的体验,数学思想的渗透,让学生有充分的思考机会,便课堂气氛活泼,有新鲜感。
3.2学法分析
“授人以鱼,不如授人以渔”。教给学生如何学习是教师的职责。因此在“代数式”教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松、愉快的课堂气氛中亲身体验知识的形成过程。
3.3教学手段
采用多媒体辅助教学,增大课堂教学容量,使学生能充分地学习数学,提高课堂教学效率。利用投影仪进行集体交流,及时反馈信息。
四、说设计:
4.1导入设计
1、创设情境,引入新课(用多媒体展示)
①搭个这样的正方形需要多少根火柴棒?
②每根火柴棒的长为,则一个正方形的周长为,两个正方形的面积为
③一个正方形的面积是个正方形面积的
④一个正方形面积为则它的边长为
先独立思考,再小组交流(四人小组),目的:①把不规范的写法列举出来;②写出正确结果。
通过上面四题,还有加减乘除,乘方,开方六种运算,再通过一题多变为代数式概念的得出作铺垫。
2、展示新知:
问:这些式子有什么共同特征?
请学生发表自己的见解,归纳得出用运算符号把数或表示数的字母连结而成的式子叫代数式。注意教师强调:单独的一个数或字母也是“代数式”。
书写代数式请注意以下几点:
(1)通常写为·或(乘号省略)
(2)通常写作(除号用分数线表示)
(3)数字写在字母的前面。如不写成
3、应用新知
为了及时巩固,帮助学生对所学概念理解,讲完概念后,教师先不忙着讲例题,而是根据学生的实际情况和他们的心理特点,设计了三个习题。
(1)判别
①不是代数式;
②是代数式;
③是代数式;
④是代数式。
判别的时候要紧扣定义,定义其实由两部分组成:
①用运算符号把数或表示数的字母连结而成的式子叫代数式;
②单独的一个数或字母也是代数式。含有“=”或“”这类符号的式子都不是代数式。
(2)下列式子中符合代数式书写要求的是()
(3)用代数式表示米与厘米的和的式子:
①厘米②厘米③米④厘米,四个式子中正确的是()
(a)①②(b)③④(c)①③(d)②③
4.4例题教学
例1.用代数式表示:
(1)的3倍与3的差;
(2)的2倍与的的和;
(3)与的和的平方;
(4)与的平方的和;
(5)与两数平方的和;
(6)的立方根。
例1的目的是让学生体会代数式可以简明地,具有普遍意义地表示实际问题中的量,给数量关系的研究带来方便。设计由浅入深,从倍分和差到平方、立方根,从低级到高低,符合学生的认知规律。另一方面,要求学生书写规范。
例2.一辆汽车以80千米/小时的速度行驶,从a城到b城需小时。如果该车的行驶速度增加v千米/小时,那么从a城到b城需多少时间?
为了帮助学生更好的理解,突破难点,我把例2分解成下面几个问题:
①这是小学学过的哪类应用题?
②行程问题中的三个主要量的关系如何?
③一辆汽车以80千米/小时的速度行驶,从a城到b城需小时,则a城到b城总路程是多少千米?
④这辆汽车原来的速度为80千米/小时,其速度增加v千米/小时后,该车的速度是多少?
⑤在总路程不变的前提下,那么汽车提速后从a城到b城需多少时间?
在层层设问的前提下,引导学生如何分析,起到潜移默化的作用。
以上题目均由多媒体展示,所有过程均采用学生自由讨论,单独作答的形式。
4.5练习:
1、列代数式:
(1)a、b两数的和与它们的差的乘积;
(2)a、b两数的和与它们的差的商;
(3)a、b两数的平方和减去它们乘积的2倍;
(4)a、b两数的和的平方减去它们的差的平方;
(5)用代数式表示奇数、偶数。
2、填空:
(1)大米的单价为元/千克,食油的单价为元/千克,买10千克大米,2千克食油共需元;
(2)日平均气温是指一天中2:00,8:00,14:00,20:00四个时刻气温的平均值,若上述四个时刻气温的摄氏度分别是,则日平均气温的摄氏温度数是;
(3)一个五彩花圃的形状如图,花圃的面积为。
(4)一隧道长米,一列火车长180米,如果该列火车穿过隧道所花的时间为秒,则列车的速度是多少?
进行课堂练习,巩固概念,强化学生对这节课的掌握,根据练习情况,如果错误及时改正。
4.6课堂小结
小结本节课的主要内容,使学生理清这节课的重点内容。
4.7布置作业。
五、说评价:
(1)本节课的教学目标是多元的,涉及知识和能力,过程与方法,情感态度与价值观三方面,体现了“以学生发展为本的教育理念”。
(2)精心设计问题情景,积极引导学生自主讨论,体验过程,获取知识,提高分析问题的能力。
(3)充分利用现代化信息技术,提高课堂效果,活泼学生学习兴趣和学习积极性,使教与学在和谐、愉悦的氛围中进行。
代数式课件(篇3)
一、教材分析
1.教材分析
我选取的是浙教版七上实验教材第四章第二节,课题为《代数式》,本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式.从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始.同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义.据此,我确定本节课的教学重点为:代数式的概念及用代数式表示常用的数量关系.
2.学情分析
在本节内容学习之前,学生已具有了如下的“现有发展区”.但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解.据此,我认为本节课的教学难点为:用代数式表示实际问题中的数量关系.
二、教学目标
根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:
知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的.
过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展.
三、教法与学法
根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点.
在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”.
四、课堂结构设计
根据问题解决的一般过程,我把这节课的课堂结构设计为以下5个环节,下面对教学过程设计作详细的说明.
五、教学过程设计
1.创设情境,引出问题
我先引导学生欣赏鲁迅纪念馆的一组照片,简单介绍鲁迅其人其事,结合金秋十月,营造秋游氛围,并请学生做导游,教师用富有激情的语言激励学生,做好一名导游可得解决旅程中的许多问题.
如此创设情景,是因为绍兴是鲁迅的故乡,把鲁迅做为背景,可以迅速激发学生的自豪感和学习的兴趣,并渗透了乡土人文教育.同时,旅程的开始也就意味着学习的开始.
在“导游”这个角色的促使下,学生自然会积极主动地思考旅程中遇到的一系列问题:
首先是出发时的行程问题,学生很快进行了解决,教师把所得算式收藏到收藏箱中.到了纪念馆门口,自然遇到了买门票问题.
此时,可通过分析,让学生感知( 60a +40b)所代表的普遍意义.
进入参观后,根据纪念馆的情况又出现了一系列问题,学生一一进行解决.如此设计可使问题与情境有机相融,同时教师又充分考虑到了样例形式的丰富性,使学生意识到学习代数式的必要性.教学时应引导学生正确书写,指出书写的简约美.
接下来教师把收藏箱里的式子全部展示出来,并引导学生观察这些旅程中所得的算式:略,提出问题:它们与我们以前学过的算式有什么区别呢?
使学生造成认知上的冲突,激发其探究的内驱力.
2.对比析误,感知问题
从而水到渠成地得到概念.教师在板书概念后点出课题.
此时学生对代数式只是一个感性认识,于是我又设计了如下的辨析题,通过析误帮助学生区分可能会与代数式混淆的几个关系式,从而加深对代数式构成的理解,使学生的认识有感性上升到理性.
至此学生已经历了代数式概念产生的整个过程,完成了特殊到一般的转化,教学的一个重点已得到了妥善的处理.而教学的另一个重点是用代数式表示数量关系,我打算从列代数式和编代数式两方面让学生进行探索.首先是列:
3.双向建构,探索问题
(1).大家一起来列式:
列是要求学生把文字语言转化为符号语言,考虑到学生转化时可能在关键词意义理解、运算顺序等方面容易出错,我对课本例题进行了重组,并精心设计了变式题,让学生通过对比、辨析,理解关键词的意义,分清运算顺序.教学时应鼓励学生大胆尝试,通过析误让他们得到内化,形成经验.我又及时安排了巩固练习,使学生在练习和集体评析中掌握列式技能,体念成功乐趣.接下来让学生创造性地编代数式,并用文字语言进行描述,再赋予代数式实际背景和几何意义,并在小组合作的基础上通过视频展示台进行交流.
(2).聪明才智共编式
如此设计的意图,是为了让学生从文字语言到符号语言,再从符号语言到文字语言两方面进行建构,强化代数式的概念,提高列式技能,突出了重点.估计此时学生会编出各种不同的代数式,教师要一一予以肯定,尤其是要乘机对学困生进行鼓励和赞赏,让他们感受成功的喜悦,增加学习的信心.可能有些学生会感到困难,而小组合作与交流为他们聆听他人思维,产生共鸣创造了一个很好的平台.由于不同生活经验的学生可以对同一代数式作出不同的解释,如5a可赋予不同的背景,所以此问题的设计为不同的人在数学上得到不同的发展创造了条件,同时让学生体会到代数式的模型思想,达到分散难点的目的.此时学生的思维应该非常活跃,交流此起彼伏,达到了预设中的小高潮.
为乘机促使思维进一步发展,让学生跳一跳能摘到桃子,我设计了如下的探究活动.
4.合作交流,解决问题
(1).开动脑筋齐探索
请学生以小组为单位,选取下列的1个主题,先自主探索,再在组内交流.然后通过视频展示台展示研究成果.
主题1是为了培养学生动手操作和规律探索能力,渗透特殊到一般的思想而设置的.估计学生对此题会有不同的解决方法,从而得到不同的代数式,教师要细心聆听学生的讲解,充分肯定小组合作的成果,并点明这些代数式最后都可化为同一形式,为后续内容学习埋下伏笔.
主题2是为了让学生感受数学美,渗透数学人文和数形结合思想,并为勾股定理等后续内容的学习打下基础.
在此把研究性学习引入课堂,是为了给学生思考、探究、发现和创新提供最大的空间.同时通过展示研究成果,师生共同从语言表达、动手操作、参与合作等方面进行评价,使同学们在多元评价中感受自主探究的乐趣.预计这里又能达到一个高潮.
(2)游戏之中验真知
经过前面的两次高潮,估计学生的思维已有些疲劳,根据注意的转移规律,借鉴中央台的非常6+1栏目,我设计了游戏活动-砸金蛋.8个金蛋内设计了5个题目和3朵彩花,其中问题的顺序已作了充分的预设,不管怎么砸,问题都按照先简后难的固定顺序出现,从而使高层次的问题在思维最活跃时得到解决.
此游戏的开展,吸引了学生的有意注意,舒缓了疲劳,起到了课堂调节剂的作用,使学生在愉快活跃的氛围中主动参与知识的巩固、深化过程,仿佛学中玩,玩中学.最后一题的情境设计突出了参观主线,并暗示参观已结束,进入返程.而在乘车返校途中,又自然而然地引出了实际问题:
(3)返程路上解疑问
如此设计,使问题与情境相融,做到首尾呼应,参观情节贯穿整节课.在讲解时可引导学生在观察动画演示的基础上先独自解决,后请学生代表作分析,以暴露思维过程,教师应及时进行鼓励和评价,使学生在问题解决的过程中体会成功的喜悦.其中拓展问题的设计为下节课的学习作了铺垫.
5.反思小结,拓展问题
(1).你说我讲共交流
小结由师生互动完成,我引导学生从以上几方面进行交流.前三方面对应了本节课的三维目标,第四方面的设计能促使学生进行全面反思,使课堂得到延升.
(2).课后延伸促提高
作业分为阅读作业、书面作业和拓展作业,其中根据学生的发展情况,书面作业又分为必做题和选做题,如此设计的目的,是为了使不同的人在数学上得到不同的发展.
板书预设如下,最后从预设和生成两个方面对本案设计作补充说明.
六、设计说明
1.预设
(1).教学特色:本节课的设计是以问题为主线,以“参观”为形式,参观情境贯穿整节课,而实质是数学本质的渗透,抽象的数学学习与有趣的参观情境有机相融,让学生在这个特殊的"旅程"中感受地方人文,体念学习过程,体会思想方法,突出了数学学习的生活化,使学生真正成为课堂的主角.
(2).重、难点的处理:
突出重点措施:
①.通过列式——比较——辨别——概括等环节,让学生经历代数式概念的产生过程,
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.
突破难点策略:
①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.
②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.
2.生成
预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
代数式课件(篇4)
这节课,先让学生自己阅读课本,了解相关的概念,然后完成自学检测,教师进行适当点评后,学生完成分层练习,巩固对概念的掌握。整一节课基本是以学生自学为主线,完成整个教学过程。意在培养学生的自学能力。如果学生可以养成自己阅读课本,在相应的教材内容中获得自己所需的知识,学生的自学能力会得到很好的锻炼。
但从课堂的实施情况中可以看到,虽然这个教学班的学生基础比较好,起点比较高,但是整个学习过程并不是一帆风顺,可以说学生是在磕磕碰碰中完成了学习任务。几个本来并不难理解的知识点,比如“多项式的项”、“多项式的排列”,如果学生有一定的数学学习的基础和独立分析问题的能力,应该可以自己顺利完成学习,但事实上,必须由老师不断加以点评、分析,学生才能较准确地把握相关语句的含义,说明学生对数学语言的理解和表达还是存在较大困难。这个让学生阅读课文的习惯必须要进一步培养。
这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握,配以学习卷上的分层练习,学生的双基训练很到位,单纯地从学生接受知识的角度,讲授法应该效果更好。但同时学生的自主学习的习惯和能力也不知不觉地被忽略了。事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约。
代数式课件(篇5)
数学 是数字与图形结合的一门学科,有效地学习数学,不仅能提高数学成绩,而且能扩散思维,增强分析问题的能力和逻辑思维能力,从而带动其他学科成绩快速提升,对人的一生也是受益匪浅的。
数学思维导图是建立在中小学数学学习方法和思维导图应用的基础上,由北京龙途教育率先研发并推广到数学教学与学习中的一种数学学习工具。
龙途教育教研团队经过 长达三年时间研发、实践和不断修正,结合全国数十名知名高级教师多年教学实践经验、多省市状元的学习方法和中小学学生心理及生理特点,根据中高考数学历年考试特点和学生接受知识能力特点,利用人类对图形的记忆理解能力远远高于对文字的记忆理解能力这一特点,精心编制了“小学数学思维导图学习卡片”、“中考数学思维导图”和“高考数学思维导图”等,将中高考考点溶于图像之中。由龙途教育思维导图绘制团队亲自带队并精彩讲授,同学们可瞬间掌握并能现场画出知识层次、知识清单、解题方法、中高考考点等,解决了同学们记公式难和不知道学习目标盲目备考的问题。
数学思维导图的研发和使用,正是吻合了数学本身的特点和数学对学习者的作用。数学思维导图由颜色、线条、图形、联想和想象五要素组成,如下图:
它能够:
1,增强使用者充分利用右脑超强记忆的能力;
2,增强使用者的立体思维能力(思维的层次性与联想性);
3,增强使用者的总体规划能力;
4,增强使用者分析和解决问题的能力;
5,帮助教师更好地备课和授课;
6,提升中考生短期复习和冲刺的效率等。
代数式课件(篇6)
有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。
整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。
没有加减运算的整式叫做单项式。
单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。
不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。
同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。
我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。无理式包括根式和超越式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。
我们把有理式与根式统称代数式,把根式以外的无理式叫做超越式。
代数式课件(篇7)
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来。
2.初步培养学生观察、分析和抽象思维的能力。
3. 通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2. 初步培养学生观察、分析和抽象思维的能力.
2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
例1 用代数式表示乙数:
(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(2)甲数的 与乙数的 的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
此时,教师指出:a与b的和,以及b与a的`和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4 设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的 ;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5 设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个; (2)( m)m个?
(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数; (2)与2b+1的积是9的数;
(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?
1?用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2?已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
代数式课件(篇8)
1.经历探索规律并用代数式表示规律的过程.
2.能用字母和代数式表示以前学过的运算律和计算公式.
3.体会字母表示数的意义,形成初步的符号感.
1.搭1个正方形需要4根火柴棒。
(1)接上图的方式,搭2个正方形需要______根火柴棒,搭3个正方形需要_________根火柴棒。
(2)搭10个这样的正方形需要多少根火柴棒?
(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?
(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流。
上面数据转换的过程实际就是代数式求值的过程,请大家归纳求代数式的值的步骤。
1.根据你的计算方法,搭200个这样的正方形需要多少根火柴棒?
利用小明的计算方法,我们用200代替4+3(x-1)中的x,可以得到
你的结果与小明的结果一样吗?
2.请用字母表示以前学过的公式和法则。
例1.用火柴棒按下面的方式搭图形:
(2)写n个图形需要多少根火柴棒?
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(1)写出和上面等式具有同样结构,等号左边最大数是10的式子。
(2)写出一个等式,要求它能代表所有类似的等式,清楚地反映出这类等式的特点。
分析:我们通过观察等式发现,这些式子右边都是一个自然数的平方,左边是一连串自然数相加,其中,最在的自然数的平方恰好是右边的数。即左边最大的数与右边二次幂的底数相同,要表示所有这类式子都具有的这种相等关系,只有使用字母。
解:(1)1+2+3+…+10+9+8+7+…+1=102。
注意:题中所给的每一个式子都只是一个特殊的情况,多个这样的式子也能反映出普遍规律,但是比较麻烦。
要想用一个式子表示类似许多式子的规律性,只有用字母。
自编2道用字母表示数的题目,并解释它的背景。
这节课,你有什么收获吗?你对自己的学习还满意吗?你在学习的过程中有什么困难的地方吗?课后和同学交流一下.
1.先进鲜明的教学理念.
2.和谐融洽的教学气氛.在整个教学过程的设计中师生是朋友,是合作者;教师的引导好象是在讲故事;讲解则是学生探索结果的概括;学生之间也充满合作.
3.紧张活泼的教学节奏.本课设计中安排了不同层次的提问与练习,而且采取了灵活多变的呈现方式,从而使教学过程呈现出紧张活泼的特点
[新湘教版列代数式教案设计]
代数式课件9篇
小编搜集了“代数式课件”相关主题资料,现在分享给您。老师在新授课程时,一般会准备教案课件,不过教案课件里知识点要设计好。老师上课时会按照教案课件来实施。感谢您光临本页请您耐心浏览!
代数式课件 篇1
教学过程是教与学两个过程的统一。在这个过程中,学生是主体,教材是客体,教师是媒体,主要起着沟通学生与教材的作用。教师要重视研究教材,明确课程标准的要求,同时教给学生正确有效的学习方法,推广他们自己创造的学习方法。因此,在复习中,应引导学习归纳、总结、运用知识,激发学生自觉地动脑、动手、动口,大胆探索,勇于提出新的问题,指导学生学会阅读数学课本,学会订正作业及试卷中的错误。教学中教师不要以教师的“讲”来代替学生的“学”,应该把学生的主动权交给学。
一些学生在总复习中抛开课本,在大量的“题海战术”来完成中考试题的广度与深度,结果是事半功倍。因此,在复习教学中,要高度重视课本,把主要精力放在课本的落实上,放在课本中的例题与习题所示的教学方法上,牢固掌握基础知识,灵活运用知识解决问题。以课本为主的同时,注意不要把课本内容机械重复或是“炒冷饭”式复习,要把课本与资料有机地结合起来,使二者互为补充,相得益彰。从课本中获得基础知识,基本方法,从资料中训练技能技巧,使“双基”得到巩固和应用。抓课本要全,不放过任何一个知识点,抓资料要精,教师要对资料自我消化后精选,避免重复做,尽量减轻学生负担。
中考复习,学生学习的科目多、内容多,上课时间都是由教师“导演”或唱“主角”,留给学生的相对自由、主动支配的时间较少,所以,充分发挥课堂45分钟的.综合效益就显得至关重要。在课堂教学中,较少对知识的引入,新旧知识的衔接,例题的选择,班级学生的知识现状和接受能力诸多方面应有足够的思考。精心设计教学程序,合理安排讲练时间,注重知识的纵横联系,综合运用教学知识。加强教学基本思想的渗透和教学基本方法的训练,总结出规律的东西,尽量把问题解决在课堂上。
课外是课内学习的延续与深化。在复习中应通过教师生动的课内教学活动,使学生对数学产生浓厚的兴趣,在课外仍保持着旺盛的学习欲望,思考数学知识和问题。使课内课外相结合,互为补充。
课内打基础,课外求发展,有利于学生创造思维能力的培养和解决实际问题的能力的培养。
课堂教学是集体活动,只能面向大多数,不可能恰如其分地满足每个学生的要求。特别是到了复习阶段“优生吃不饱,差生吃不了”的矛盾更为突出。如果课堂教学内容愈来愈深,题目愈来愈难,使面对多数的基础教育向尖子培养异化,这就会使相当一部分学生学习兴趣受到抑制,学习的积极性得不到发挥。久之,使学生产生厌学情绪,形成过重的心理负担,加剧整体分化,导致“高投入”而“低效益”。面向大多数是教学的绝对规律,因为高智商的学生毕竟是少数。因此正确处理好提优与补差的关系,是大面积提高教学质量,摆脱学生过重负担的途径之一。
复习过程中,除了教师对考试说明所规定的范围,复习的重点要教得准之外,还要准在学生这一头。试题的难度,批改的重点,上课的内容,辅导的对象都要针对中下层学生。复习水平是否提高,问题是否解决,均以中下层学生为准。注意对中下层学生的个别辅导,帮助学生克服畏难情绪,树立决心、信心。本着由浅入深,由表及里,由易到难的认识规律,适当拉开梯度、难度和深度。
所谓通法,就是具有普遍意义的方法,不仅适用于解某个题,而且也适用于解其他一些题,它的思维方式在本质上是定向思维,而培养定向思维能力是教师教学中起始的,基础的教学目标之一。没有熟练的定向思维能力就不可能进一步发展变异的发散思维。有的教师在复习教学过程中刻意追求解题技巧,忽视最基本的方法,把数学竞赛的特有技能或者教师钟爱的个别技巧,作为对中考的要求,一味热衷于“一题多解”,通法和常规方法被湮灭在形形色色的巧招、奇招、怪招之中。其结果转移了学生的学习兴趣与目标,也偏离了中考的基本要求。因此在数学复习阶段要强调通法,着眼于培养学生分析解决某一类问题的一般方法,从而提高学生的一般能力。对那些带规律性、全局性和运用面广的方法,就应花大力气深入研究,务使学生理解实质,真正掌握。而对那些局限性大,应用面窄的奇招、怪招则宜淡化。
中考数学复习阶段,应充分体现“有讲有练,精讲多练,边讲边练,以练为主”的原则,在课堂上要学生提供的机会,练的内容应“全”,练的习题应“精”,练的时间要“足”,练的方法要“活”。可采用提问、讨论、板演、测验、作业等多种方法去练。力争做一题,学一法,会一类,通一片。学生通过教师讲,自己练,有“常学常新”之感,真正达到“温故而知新”之效。特别是一些重要的教学方法和教学思想,需要在反复的练习中经历一个由浅入深,由简单到复杂,由低级到高级的发展过程,才能形成和掌握。练的内容既有利于巩固基础知识,基本方法,也不排斥设计一些一题多解,一题多变,多题一法类型的问题,训练学生的发散思维的能力。训练要循序渐进。
代数式课件 篇2
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解的概念,使学生能说出一个所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对的概念课文没有直接给出,而是用实例形象地说明了的概念。对的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性。
(2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是。如:2, 都是。
(3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。不含表示关系的符号,如等号、不等号。如 , ,等都是,而 , , , 等都不是。
3.教学难点分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写的注意事项:
(1)中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面。如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号。
(2)中有除法运算时,一般按照分数的写法来写。如: 应写作
(3)含有加减运算的需注明单位时,一定要把整个式子括起来。
5.对本节例题的分析:
例1是用表示几个比较简单的数量关系,这些小学都学过。比较复杂一些的数量关系的表示,课文安排在下一节中专门介绍。
例2是说出一些比较简单的的意义。因为中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已。
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是,理清中的运算和运算顺序,才能正确说出一个所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个所表示的数量关系。
第 1 2 页
代数式课件 篇3
初中毕业班数学复习工作是一项很重要的工作,也是教师教学经验的总结,复习工作做得好,考试成绩就会有明显提高。那么如何全面系统地复习好新教材中的所学内容,充分发挥教师的主导作用与学生的主体作用,取得较好的复习效果呢?
学生优良的素质必须根植于“双基”的沃壤之中,因此,复习工作必须常抓基础知识和基本技能,紧扣新课程标准进行教学。笔者通过多年研究中考习题及近几年新教材课改试验区的中考题,发现它们都有共同点:1.注重考察学生的基本运算能力、思维能力和空间想象力的同时,着重考核学生运用数学知识分析和解决简单实际问题的能力;2.试题起点低,平实灵活,知识覆盖面广;3.绝大多数试题源于“教材”。这就从根本上证明了中考试题不会超出课程标准,因此,复习时,要充分挖掘教材,以教材为本,打好复习的坚实基础。
复习的几点经验:教师必须明确方向、突出重点,对中考“考什么”、“怎样考”应心中有数。a.教师对《考试说明》《新课程标准》的理解要透彻,研究要深入,把握要到位。b.提倡增大课堂容量,不是追求面面俱到,而且要讲求实效,注重精选范例,多选融重点知识、重要方法与重要数学思想于一体的试题,做到“难而不怪,新而不奇,活而不俏,宽而不偏”。c.讲范例要突出“导”字、克服“灌”字,“导”字又主要体现在启发学生的思维活动,引导学生探寻解题思路,克服猜题、押题、机械的题型和灌输式的复习方法。d.发挥学生的主体作用,让学生参与解题,参与教学过程,启迪思维,点拨要害。e.不能让学生过早地做综合练习题及中考模拟试题,而应以课本编排体系为主线进行系统复习,达到温故知新的目的。
中考复习的第二阶段应与构建初中数学知识结构和网络为主,对知识和技能的内在联系及数学思想和方法进行较为深入的剖析,围绕典型问题、中考热点复习题对学生进行集中训练,通过专题复习的形式全面复习。同年级数学教师每人研究一两个专题,做到资源共享,互相取长补短。按《考试说明》可分为以下几个专题:1.数与式;2.方程与方程组;3.不等式;4.函数;5.统计与概率;6.直线型;7.相似;8.解直角三角形;9.圆;10.图像信息问题;11.情境应用题;12.阅读理解问题。
复习中的几点经验:
1.选编典型例题时应把握好六条原则:a.重基础,以课本为主;b.重能力,把激活思维放在首位;c.防疏误,加强针对性训练;d.重创新,与中考新题接轨;e.选择部分具有开放性与探究性的题目,培养学生的探究能力;f.体现综合要素,选择部分具有典型性、覆盖性和可探索性的题目,培养学生解答综合试题的能力。
2.引导学生联系实际培养应用意识。教学中要引导学生建立数学模型,理论联系实际,培养应用意识。可编一些结合社会热点的问题,创设新的情境,突出应用数学知识、方法解决问题的能力。
3.引导形成知识网络,培养综合应用能力。
第二阶段的复习是第一阶段复习的延伸和提高,应侧重培养学生的数学能力,精心设计每一节复习课,注意数学思想的形成和数学方法的掌握,提高培养学生的数学能力。
综合模拟训练要针对学生在学习过程中存在的问题,有目的、有计划、有步骤、有针对性地进行。注重抓好以下方面:
1.解题模式训练。有些试题的解答结构基本稳定,具有类似试题解答结构的代表性,若掌握试题的解答要点,加强训练,形成基本稳定的模式,再来解答此类试题就会更迅速准确。但不能无目的地解题而陷入题海,要学会一题多解、举一反三。
2.考试方法训练。考试过程既是考知识能力的过程,又是考方法策略的过程,因此,知识能力固然重要,考试方法策略也很重要。在复习工作中,要有意识、有目的、有计划地安排考试方法的训练:a.培养学生学会应用草稿纸来提高解题速度和能力,并注意纠正学生在解题中常犯的五种错误,即看错、想错、算错、写错、抄错,从而切实提高中考的得分。b.纠错,老师出一些平时做过或考试过的易错习题让学生训练,出现错误立即纠正,直到学生真正弄懂、会做为止。c.模拟考试增加临场经验,通过模拟考试来提高学生的实战能力,让学生消除紧张心理,寻找临考的感觉。
3.让学生向错误学习。要放手让学生自己去搞讲评,自己动手建立错题档案,即诊断本,收集一些有价值的题目,总结其解题方法,找出经常易错的原因进行分析,学会应用数学的思想方法。
4.深入课堂,排忧解难。要及时找出学生复习中暴露出的各种不利因素,调整心态,迎接中考。
5.测试要灵活多变。比如按中考试题来编制训练试题,数学的三大主要题型为填空题、选择题和解答题。训练中做到限时完成,及时反馈结果、订正纠错,及时分析总结、反馈,尽早查缺补漏。总之,中考复习给教师提出了更高更多的要求,要达到理想的复习效果,教师就必须比平时的教学付出更多的时间和精力。只有教师站在学科的整体高度上去认真研究教材,反复推敲,认真准备,精心组织,耐心帮辅,“会当凌绝顶,一览众山小”,才会达到“随风潜入夜,润物细无声”的复习效果。
代数式课件 篇4
有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。
整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。
没有加减运算的整式叫做单项式。
单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。
不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。
同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。
我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。无理式包括根式和超越式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。
我们把有理式与根式统称代数式,把根式以外的无理式叫做超越式。
代数式课件 篇5
作为一位不辞辛劳的人民教师,就有可能用到教案,教案是教学活动的依据,有着重要的地位。那么教案应该怎么写才合适呢?以下是小编精心整理的初中数学列代数式教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
教学目标
1、使学生能把简单的与数量有关的词语用代数式表示出来;
2、初步培养学生观察、分析和抽象思维的能力
教学重点和难点
重点:把实际问题中的数量关系列成代数式?
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式???
教学手段
现代课堂教学手段
教学方法
启发式教学
教学过程
(一)、从学生原有的认知结构提出问题
1、用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;(-7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
(二)、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的'数呢?
解:(1)3n;(2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个?
(三)、课堂练习
1设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?
3用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、师生共同小结
首先,请学生回答:
1怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握
练习设计
1、用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2、已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积?
代数式课件 篇6
一、说教材:
代数式是在学生学习了用字母表示数的基础上,进一步拓宽知识,它既是有理数的概括与抽象,又是整式运算的基础,也是学习方程应用题,进一步学习函数知识等的基础。列代数式,即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验,使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换。它可以帮助人们从数量关系的角度更准确清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的紧密联系。
二、说目标:
2.1教学目标
根据学生已有的知识基础,依据课程标准和教材分析,确定本节课的教学目标:
1、知识与技能目标:了解代数式的概念,会列出代数式表示简单的数量关系,发展符号感,掌握代数式的有关书写格式。
2、过程与方法目标:在具体情境中让学生经历代数式概念的产生过程,分析归纳得出代数式的概念,从而学会用代数式将问题中的数量关系表示出来,并通过合作,比较总结出列代数式的注意事项。
3、情感态度与价值观:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间,通过列代数式表示生活中的简单数量关系,使学生体验列代数式的实际意义与建模思想方法的实际应用价值。
2.2重难点
代数式的概念是代数学的最基本的概念,是今后学习各类代数式的基础。列代数式是学习列方程的基础,因此代数式概念与列代数式是本节的重点。如何引导学生分析实际问题中的数量关系列出代数式,是本节难点。
教师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
三、说教法:
3.1教法分析
针对初一学生的年龄特点和心理特征,结合他们的认知水平,采用启发式,讨论式等教学方法。在教学中注重情境的设置,过程的体验,数学思想的渗透,让学生有充分的思考机会,便课堂气氛活泼,有新鲜感。
3.2学法分析
“授人以鱼,不如授人以渔”。教给学生如何学习是教师的职责。因此在“代数式”教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松、愉快的课堂气氛中亲身体验知识的形成过程。
3.3教学手段
采用多媒体辅助教学,增大课堂教学容量,使学生能充分地学习数学,提高课堂教学效率。利用投影仪进行集体交流,及时反馈信息。
四、说设计:
4.1导入设计
1、创设情境,引入新课(用多媒体展示)
①搭个这样的正方形需要多少根火柴棒?
②每根火柴棒的长为,则一个正方形的周长为,两个正方形的面积为
③一个正方形的面积是个正方形面积的
④一个正方形面积为则它的边长为
先独立思考,再小组交流(四人小组),目的:①把不规范的写法列举出来;②写出正确结果。
通过上面四题,还有加减乘除,乘方,开方六种运算,再通过一题多变为代数式概念的得出作铺垫。
2、展示新知:
问:这些式子有什么共同特征?
请学生发表自己的见解,归纳得出用运算符号把数或表示数的字母连结而成的式子叫代数式。注意教师强调:单独的一个数或字母也是“代数式”。
书写代数式请注意以下几点:
(1)通常写为·或(乘号省略)
(2)通常写作(除号用分数线表示)
(3)数字写在字母的前面。如不写成
3、应用新知
为了及时巩固,帮助学生对所学概念理解,讲完概念后,教师先不忙着讲例题,而是根据学生的实际情况和他们的心理特点,设计了三个习题。
(1)判别
①不是代数式;
②是代数式;
③是代数式;
④是代数式。
判别的时候要紧扣定义,定义其实由两部分组成:
①用运算符号把数或表示数的字母连结而成的式子叫代数式;
②单独的一个数或字母也是代数式。含有“=”或“”这类符号的式子都不是代数式。
(2)下列式子中符合代数式书写要求的是()
(3)用代数式表示米与厘米的和的式子:
①厘米②厘米③米④厘米,四个式子中正确的是()
(a)①②(b)③④(c)①③(d)②③
4.4例题教学
例1.用代数式表示:
(1)的3倍与3的差;
(2)的2倍与的的和;
(3)与的和的平方;
(4)与的平方的和;
(5)与两数平方的和;
(6)的立方根。
例1的目的是让学生体会代数式可以简明地,具有普遍意义地表示实际问题中的量,给数量关系的研究带来方便。设计由浅入深,从倍分和差到平方、立方根,从低级到高低,符合学生的认知规律。另一方面,要求学生书写规范。
例2.一辆汽车以80千米/小时的速度行驶,从a城到b城需小时。如果该车的行驶速度增加v千米/小时,那么从a城到b城需多少时间?
为了帮助学生更好的理解,突破难点,我把例2分解成下面几个问题:
①这是小学学过的哪类应用题?
②行程问题中的三个主要量的关系如何?
③一辆汽车以80千米/小时的速度行驶,从a城到b城需小时,则a城到b城总路程是多少千米?
④这辆汽车原来的速度为80千米/小时,其速度增加v千米/小时后,该车的速度是多少?
⑤在总路程不变的前提下,那么汽车提速后从a城到b城需多少时间?
在层层设问的前提下,引导学生如何分析,起到潜移默化的作用。
以上题目均由多媒体展示,所有过程均采用学生自由讨论,单独作答的形式。
4.5练习:
1、列代数式:
(1)a、b两数的和与它们的差的乘积;
(2)a、b两数的和与它们的差的商;
(3)a、b两数的平方和减去它们乘积的2倍;
(4)a、b两数的和的平方减去它们的差的平方;
(5)用代数式表示奇数、偶数。
2、填空:
(1)大米的单价为元/千克,食油的单价为元/千克,买10千克大米,2千克食油共需元;
(2)日平均气温是指一天中2:00,8:00,14:00,20:00四个时刻气温的平均值,若上述四个时刻气温的摄氏度分别是,则日平均气温的摄氏温度数是;
(3)一个五彩花圃的形状如图,花圃的面积为。
(4)一隧道长米,一列火车长180米,如果该列火车穿过隧道所花的时间为秒,则列车的速度是多少?
进行课堂练习,巩固概念,强化学生对这节课的掌握,根据练习情况,如果错误及时改正。
4.6课堂小结
小结本节课的主要内容,使学生理清这节课的重点内容。
4.7布置作业。
五、说评价:
(1)本节课的教学目标是多元的,涉及知识和能力,过程与方法,情感态度与价值观三方面,体现了“以学生发展为本的教育理念”。
(2)精心设计问题情景,积极引导学生自主讨论,体验过程,获取知识,提高分析问题的能力。
(3)充分利用现代化信息技术,提高课堂效果,活泼学生学习兴趣和学习积极性,使教与学在和谐、愉悦的氛围中进行。
代数式课件 篇7
⑴、会求代数式的值,感受代数式求值可以理解为一个转换过程或种算法。
⑵、能解释代数式值的实际意义。
透函数思想。
过程与方法: 让学生在实际情境中经历探究思考、合作交流的过程,体会获取
知识的方法,积累学习的经验,感受数学的生活化。
而使学生更加热爱数学、热爱生活。 情感、态度与价值观:使学生认识到数学与生活紧密相连,数学活动充满着探索
难点:理解代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。
请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。
(设计说明:让同学们在游戏中发现,代数式中的字母可以用数字代替求出固定的结果,初步体会从一般到特殊的过程。)
二、新知探索及内化:
1、说一说:你能由上面的游戏说一说什么是代数式的值吗?
用数值代替代数式里的字母,按照代数式中运算关系计算得出的结果,叫做代数式的值。
110nh与他的年龄n岁之间的关系为:例如,35岁的人每天所需的睡眠时10110?35间是t==7.5h 10
算一算,你每天所需要的睡眠时间?
(设计说明:以和学生息息相关的睡眠时间问题讲解分析代数式的值的概念,对学生兴趣的培养.学习目的的端正都是有益的.这里应注意学生活动,师不能越俎代庖。
注意:代数式中的字母在取值时必须保证在取值后代数式有意义。如:在代55数式 中,字母a不能取C3。因为若a= C3时,代数式 的分母零,a?3a?3
1、例:堤坝的横截面是梯形,测得梯形上底为a=18m,下底b=36m,高h=20m,
求这个截面的面积。
2、例:根据所给x的值,求代数式4x+5的值:(1)x=2(2)x=-3.5 (3)1x=2 2
师:在今后解决问题的过程中,往往需要根据代数式中字母取值确定代数式的值,你能根据代数式的值的概念找出求代数式的值的方法吗?
(1)写出条件:解:当??时,(2)抄写代数式(3)代入数值(4)计算出结果
(设计目的:由学生探索方法大胆实践有利于培养学生开拓进取精神,养成善于思考总结规律的习惯。)根据下列各组x、y 的值,求出代数式 的值:
(1)x=2,y=3;(2)x=-2,y=-4。
师:你能从上面的运算过程说一说代数式的值在计算时需要注意哪些问题吗? 交流得:注意:①代入数值后“乘号”要填上;②要按数的运算法则进行运算③如果字母的值是负数、分数,代入时应加上括号④解题格式,由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值,把“当??时”写出来。
(设计说明:一环紧扣一环的发问,使学生对代数式的值的概念有了清楚的认识,分散了难点,也培养了学生逻辑思维能力。)
五分钟检测:
1.若x+1=4,则(x+1)2=
2. 若x+1=5,则(x+1)2-1=
3. 若x+5y=4,则2x+10y=
4. 若x+5y=4,则2x+7+10y =
5. 若x2+3x+5=4,则2x2+6x+10=
2.思考:一辆卡车在行驶时平均每小时耗油8L,行驶前油箱中有油80L. ⑴用代数式表示行驶xh后,油箱中的剩余油量Q=______;
⑵计算行驶2h,5h,8h后,油箱中的剩余油量。
⑶这里,能求x=12h时剩余油量Q的值吗?
(设计说明:代数式里的字母虽然可以取不同的数值,但是这些数值不能使代数式和它表示的实际问题失去意义。本题中的x不能取负数和大于10的值,为什么?)
1、 求代数式的值的步骤:
(1)代入,将字母所取的值代入代数式中时,注意:①不要犯张冠李戴的错误;②注意整体代入。
(2)计算,按照代数式指明的运算进行,计算出结果。
2、求代数式的值的注意事项:
(1)由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值
写出来。(2)如果字母的值是负数、分数,并且要计算它的乘方,代入时应加上括号;
(3)代数式中省略了乘号时,代入数值以后必须添上乘号。
3、相同的代数式可以看作一个字母――整体代入。
4、代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。
代数式课件 篇8
数与代数运算的教学设计
马王小学
张家鹏
I.问题介绍和旧知识复习
(1)复习和复习方法
问:我们学到了什么操作?
默认值:加法、减法、乘法、除法。
Transition:每个操作都有自己的含义和自己的计算规则。让我们回顾和整理这部分的知识。显示:(提示)
1.回忆加减乘除的知识点2。熟悉这些知识的概念 3、掌握知识点之间的关系 4.整理知识
要求:请按照提示尝试整理这部分知识。计算规则可以举例说明。
二、整理和回顾旧知识
(二)汇报交流1.预置运算含义:
加法含义: 将两个(或多个)数组合成一个数的运算称为加法。
减法的意思:知道两个加数和其中一个加数之和,求另一个加数的运算,
称为减法。
乘法的含义:求几个相同加数之和的简单运算。
除法的意思:知道两个因子和一个因子的乘积,求另一个因子的运算。监控:乘法的意义。
(1)整数乘法的含义:求几个相同加数之和的简单运算。 (2)小数乘法的含义:
一个小数乘以一个整数的含义与整数乘法相同,也是求几个相同加数之和的简单运算;
(3)分数乘法的含义:
一个整数和一个分数的乘法有时可以表示几个相同的分数相加,有时可以表示整数的几分之一是;
两个相乘分数意味着找到其中一个分数的分数。
问题:比较整数、小数、分数四种算术运算的含义,你发现了什么?预设:整数、小数、分数的加减乘除的含义
数学本质完全一样,只是小数乘法和分数乘法的含义
From 表达式被扩展,出现数次或数的分数。问题:能否以图形的形式展示这四种操作之间的关系?
2.运算规则
问题:请在群里讨论一下,整数、小数和分数的运算规则
有什么相似之处?有什么不同?可以举出例子。报表通讯:加减法:默认:①
整数加法的计算方法:
同位对齐,从一位数加起来,哪位满十,加1。整数减法计算方法:
同位数,一位数减,如果一位数不够减,则前一位数减1,本位数加10再减。小数加法的计算方法:
对齐小数点,从最后一位加起来,哪一位加到十,前一位前一位,最后对齐结果中的横线。在小数点上,在小数点上。小数减法计算方法:
对齐小数点,从最后一位减去。如果被减数的小数末尾位数不够,可以加“0”再减。如果该位的数字不足以减去,则需要从前一位退1,在标准位上加10,然后再减去。
分数加减法的计算方法:
分母相同的分数加减法时,分母不变,只加减分子;加减分母不同的分数时,先通过 ,然后按照分母相同的分数的加减法计算。注意:计算结果应写为最小分数。默认值:②
整数、小数、分数的加减法同点:同一计数单位内的所有数加减法。乘除: 默认值:①
整数乘法的计算规则:
相同位数对齐,从最后一位开始,将第一个因数乘以每一位上的数第二个因数依次相乘,乘到哪位,乘积的末尾与哪位对齐,然后每个乘积相加。 (整数末尾加0的乘法:可以先把0前面的数相乘,然后看每个因数末尾有多少个0,相乘后的数末尾加几个0。) 计算整数除法规则:
从被除数的最高商开始,除法时,看被除数的前几位,如果前几位不够除,再看一位数字。写出除以哪位数字的商;每个除法的余数必须小于除数。小数乘法的计算规则:
要计算小数乘法,先按照整数乘法的计算规则计算乘积,然后看因子中的小数位数,从最后一位数数产品的数字。在小数点上,数字的小数部分末尾有一个0,一般应该去掉0。
小数除法计算规则:
除数是整数的小数除法:
根据整数除法的规则,商的小数点应该和被除数的小数点对齐,如果有除法结束后还有余数,余数后加零,继续除法。
除数是小数的除法规则:
先看除数有多少位小数,被除数的小数点右移几位地方。除以小数除法,其中除数是整数。默认②:
同点:
小数乘法先按整数乘法计算规则计算,小数除法将除数转为整数后,也按整数计算到整数除法规则。
区别:
小数乘除也需要确定计算结果中小数点的位置。分数乘法规则: 预设①:
分数乘以分数,以分数的分子相乘的积为分子,分母相乘的积为分母。乘以点。分数除法规则:
A数除以B数(0除外)等于A乘以B数的倒数。预设②:相似度:分数的除法应转换为分数的乘法;差:除数的倒数经过小数除法的转换后相乘。
问题:如果四次算术运算都涉及0或1,有哪些特殊情况?默认值:
任意数加0得0,任意数乘0得0,0除以任意数得0,0不能作为除数,乘任意数得原数,任意数除以1就是原数。 3. 四种运算的关系
问题:观察下列方程,说说四种运算的关系。
默认值:
加数 + 加数 = 总和,一个加数 = 总和 - 另一个加数。
Minuend - Minuend = Difference,Minuend = Minuend + Difference,Minuend = Minuend - Difference。
因素×因素=产品,一个因素=产品÷另一个因素。股息÷除数=商,股息=股息×商,股息=股息÷商。
问题:根据这些关系,检查加减乘除计算的一般方法是什么?默认值:
加法可以通过减法或加法检查;减法可以通过加法或减法检查;乘法可以通过乘法或除法检查;除法可以通过乘法或除法检查。问题:根据四个操作之间的关系,完成以下等式。你能用字母表示这些关系吗?
默认值:
一个加数 = 和 - 另一个加数,被减数 = 减数 + 差,被减数 = 被减数 - 差一个乘数 = 乘数 ÷ 另一个乘数,被除数 = 除数 × 商,除数 = 被除数 ÷ 商
问题: 请分小组讨论,四种混合操作的顺序是什么? 可以举个例子。 默认值:
如果是同级运算,一般从左到右计算。 如果既有加减,又有乘除,先做乘除,再做加减。 如果有括号,则首先计算括号内的括号。
仔细观察每一个计算问题,先想想它是什么。 再想想操作方法是什么。 最后想想要注意什么。
作业:练习 15,第 79 页的问题 1。
练习十五,第 79 页的问题 2。
代数式课件 篇9
一、教材分析
1.教材分析
我选取的是浙教版七上实验教材第四章第二节,课题为《代数式》,本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式.从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始.同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义.据此,我确定本节课的教学重点为:代数式的概念及用代数式表示常用的数量关系.
2.学情分析
在本节内容学习之前,学生已具有了如下的“现有发展区”.但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解.据此,我认为本节课的教学难点为:用代数式表示实际问题中的数量关系.
二、教学目标
根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:
知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的.
过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展.
三、教法与学法
根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点.
在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”.
四、课堂结构设计
根据问题解决的一般过程,我把这节课的课堂结构设计为以下5个环节,下面对教学过程设计作详细的说明.
五、教学过程设计
1.创设情境,引出问题
我先引导学生欣赏鲁迅纪念馆的一组照片,简单介绍鲁迅其人其事,结合金秋十月,营造秋游氛围,并请学生做导游,教师用富有激情的语言激励学生,做好一名导游可得解决旅程中的许多问题.
如此创设情景,是因为绍兴是鲁迅的故乡,把鲁迅做为背景,可以迅速激发学生的自豪感和学习的兴趣,并渗透了乡土人文教育.同时,旅程的开始也就意味着学习的开始.
在“导游”这个角色的促使下,学生自然会积极主动地思考旅程中遇到的一系列问题:
首先是出发时的行程问题,学生很快进行了解决,教师把所得算式收藏到收藏箱中.到了纪念馆门口,自然遇到了买门票问题.
此时,可通过分析,让学生感知( 60a +40b)所代表的普遍意义.
进入参观后,根据纪念馆的情况又出现了一系列问题,学生一一进行解决.如此设计可使问题与情境有机相融,同时教师又充分考虑到了样例形式的丰富性,使学生意识到学习代数式的必要性.教学时应引导学生正确书写,指出书写的简约美.
接下来教师把收藏箱里的式子全部展示出来,并引导学生观察这些旅程中所得的算式:略,提出问题:它们与我们以前学过的算式有什么区别呢?
使学生造成认知上的冲突,激发其探究的内驱力.
2.对比析误,感知问题
从而水到渠成地得到概念.教师在板书概念后点出课题.
此时学生对代数式只是一个感性认识,于是我又设计了如下的辨析题,通过析误帮助学生区分可能会与代数式混淆的几个关系式,从而加深对代数式构成的理解,使学生的认识有感性上升到理性.
至此学生已经历了代数式概念产生的整个过程,完成了特殊到一般的转化,教学的一个重点已得到了妥善的处理.而教学的另一个重点是用代数式表示数量关系,我打算从列代数式和编代数式两方面让学生进行探索.首先是列:
3.双向建构,探索问题
(1).大家一起来列式:
列是要求学生把文字语言转化为符号语言,考虑到学生转化时可能在关键词意义理解、运算顺序等方面容易出错,我对课本例题进行了重组,并精心设计了变式题,让学生通过对比、辨析,理解关键词的意义,分清运算顺序.教学时应鼓励学生大胆尝试,通过析误让他们得到内化,形成经验.我又及时安排了巩固练习,使学生在练习和集体评析中掌握列式技能,体念成功乐趣.接下来让学生创造性地编代数式,并用文字语言进行描述,再赋予代数式实际背景和几何意义,并在小组合作的基础上通过视频展示台进行交流.
(2).聪明才智共编式
如此设计的意图,是为了让学生从文字语言到符号语言,再从符号语言到文字语言两方面进行建构,强化代数式的概念,提高列式技能,突出了重点.估计此时学生会编出各种不同的代数式,教师要一一予以肯定,尤其是要乘机对学困生进行鼓励和赞赏,让他们感受成功的喜悦,增加学习的信心.可能有些学生会感到困难,而小组合作与交流为他们聆听他人思维,产生共鸣创造了一个很好的平台.由于不同生活经验的学生可以对同一代数式作出不同的解释,如5a可赋予不同的背景,所以此问题的设计为不同的人在数学上得到不同的发展创造了条件,同时让学生体会到代数式的模型思想,达到分散难点的目的.此时学生的思维应该非常活跃,交流此起彼伏,达到了预设中的小高潮.
为乘机促使思维进一步发展,让学生跳一跳能摘到桃子,我设计了如下的探究活动.
4.合作交流,解决问题
(1).开动脑筋齐探索
请学生以小组为单位,选取下列的1个主题,先自主探索,再在组内交流.然后通过视频展示台展示研究成果.
主题1是为了培养学生动手操作和规律探索能力,渗透特殊到一般的思想而设置的.估计学生对此题会有不同的解决方法,从而得到不同的代数式,教师要细心聆听学生的讲解,充分肯定小组合作的成果,并点明这些代数式最后都可化为同一形式,为后续内容学习埋下伏笔.
主题2是为了让学生感受数学美,渗透数学人文和数形结合思想,并为勾股定理等后续内容的学习打下基础.
在此把研究性学习引入课堂,是为了给学生思考、探究、发现和创新提供最大的空间.同时通过展示研究成果,师生共同从语言表达、动手操作、参与合作等方面进行评价,使同学们在多元评价中感受自主探究的乐趣.预计这里又能达到一个高潮.
(2)游戏之中验真知
经过前面的两次高潮,估计学生的思维已有些疲劳,根据注意的转移规律,借鉴中央台的非常6+1栏目,我设计了游戏活动-砸金蛋.8个金蛋内设计了5个题目和3朵彩花,其中问题的顺序已作了充分的预设,不管怎么砸,问题都按照先简后难的固定顺序出现,从而使高层次的问题在思维最活跃时得到解决.
此游戏的开展,吸引了学生的有意注意,舒缓了疲劳,起到了课堂调节剂的作用,使学生在愉快活跃的氛围中主动参与知识的巩固、深化过程,仿佛学中玩,玩中学.最后一题的情境设计突出了参观主线,并暗示参观已结束,进入返程.而在乘车返校途中,又自然而然地引出了实际问题:
(3)返程路上解疑问
如此设计,使问题与情境相融,做到首尾呼应,参观情节贯穿整节课.在讲解时可引导学生在观察动画演示的基础上先独自解决,后请学生代表作分析,以暴露思维过程,教师应及时进行鼓励和评价,使学生在问题解决的过程中体会成功的喜悦.其中拓展问题的设计为下节课的学习作了铺垫.
5.反思小结,拓展问题
(1).你说我讲共交流
小结由师生互动完成,我引导学生从以上几方面进行交流.前三方面对应了本节课的三维目标,第四方面的设计能促使学生进行全面反思,使课堂得到延升.
(2).课后延伸促提高
作业分为阅读作业、书面作业和拓展作业,其中根据学生的发展情况,书面作业又分为必做题和选做题,如此设计的目的,是为了使不同的人在数学上得到不同的发展.
板书预设如下,最后从预设和生成两个方面对本案设计作补充说明.
六、设计说明
1.预设
(1).教学特色:本节课的设计是以问题为主线,以“参观”为形式,参观情境贯穿整节课,而实质是数学本质的渗透,抽象的数学学习与有趣的参观情境有机相融,让学生在这个特殊的"旅程"中感受地方人文,体念学习过程,体会思想方法,突出了数学学习的生活化,使学生真正成为课堂的主角.
(2).重、难点的处理:
突出重点措施:
①.通过列式——比较——辨别——概括等环节,让学生经历代数式概念的产生过程,
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.
突破难点策略:
①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.
②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.
2.生成
预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
最新代数式课件精选11篇
前辈告诉我们,做事之前提前下功夫是成功的一部分。在学习工作中,幼儿园教师有提前准备可能会使用到资料的习惯。资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。参考资料可以促进我们的学习工作效率的提升。所以,你有哪些值得推荐的幼师资料内容呢?小编特别为你收集的“最新代数式课件精选11篇”,如果合你所需,不妨马上收藏本页。
代数式课件(篇1)
各位领导老师,下午好!今天我说课的内容是代数式的值。
下面,我将从教材分析、学情分析、教学目标、教法分析、教学过程及说明五个方面对本次课题进行分析。
一、 教材分析:
(一) 教材的地位及作用:
首先,我们来看一下教材的地位及作用。“代数式的值”是浙教版七年级上册4.5节的内容,是初中代数研究的一个重要问题之一。它是学生在学习了用字母表示数之后的后续内容,又可贯穿于初中代数学习的始终。所以,通过这部分内容的学习,可以帮助学生更好的理解代数的核心问题——代数式的概念,也能让学生为将来的函数学习作一个铺垫。
(二) 教学重难点
基于教材的这样一个地位以及作用,那么本堂课的教学重点是求代数式的值的方法,教学难点是理解用字母表示数与求代数式的值的关系。
二、 学情分析
接下来我从知识、能力和情感态度三个方面分析学生的基础、优势和不足。在本堂课之前,学生已经学习了用字母表示数的知识和概念,掌握了会用字母来表示一些实际问题,但是求代数式的值上还会有一定的偏差。但是,学生对数学的学习有相当的兴趣和积极性,愿意与老师、同学进行探讨交流,相信他们一定能在合作交流的意识与数学能力的提高等方面有所发展。
三、 教学目标
在对教材与学生充分了解的基础上,本堂课的教学目标可以分为以下三个:
知识目标:(1)经历具体情境让学生抽象求代数式值的过程,体会用数值代替代数式里的字母,并会求出代数式的值。
(2)通过求代数式的值让学生进一步理解用字母表示数的意义,进一步增强符号感。
(3)通过对实际例题的体验初步了解整体思想
能力目标:通过学习,培养学生分析问题、解决问题、收集处理信息、团结协作的能力。
情感目标:使学生感受从特殊到一般,又从一般到特殊的辨证过程,激发学生学习数学的兴趣,培养学生辨证唯物主义观点。
四、 教法分析
根据以上的分析,本堂课的教学目标实现策略为“三个一”,即创设一个情境;采用一种反馈模式;贯彻一个自主探索的理念。具体来说,本堂课采用引导探究式学习方法,使学生在一个生活情境的引导下,在多媒体课件的辅助下,通过反复技能演练去发现问题,合作探究与独立思考相结合来解决问题的方法。这种教法的设计,不仅重视了知识的结果,更重视知识的发生,发展和解决过程,贯彻新课程的理念。
五、 教学过程
接下来,我将具体讲解教学过程
根据建构主义理论,教学流程分为情境引入——例题讲解,概念建构——技能演练——小结与作业四个环节。
(一)情境引入
首先我们来看情景引入。
在情境引入上,我着重思考的是如何使我们的数学贴近我们的生活,激起同学们学习的兴趣。因此,我挑选了一个同学们感兴趣的话题——身高预测。在课前,我首先让学生了解了父母亲身高的相关信息。在课上,在给出以下一段文字材料后,
“据某报纸报道,一位医生研究得出由父母身高预测子女成年后的身高公式:儿子的身高是父母身高和的一半再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2”
我给出了三个问题:
第一个问题是(1)已知父亲身高是a米,母亲身高是b米,请同学们用代数式表示儿子和女儿的身高
第一个问题的设计,主要是同学们学过的列代数式的知识的一个回顾,同时也让同学初步感受到今天所学的知识是原来知识上的一个深入,学习的台阶就会相对来说低一点。
在解决了第一个问题以后,我给出了第二个问题
(2)七年级女生小红的父亲身高是1.75米,母亲身高是1.62米,七年级男生小良的父亲身高是1.70米,母亲是1.62米,试预测小良和小红成年后的身高
第二个问题的设计,是今天所学的新知识。由于放入了这样一个生活情境,同学们必然会容易得出答案。
那么,在解决了以上两个问题之后,同学们的兴趣进一步提高,必然想对自己的身高预测一下,因为我就设计了第三个问题:请同学们预测自己的身高。
那么,在第三个问题的时候,由于每个学生父母亲身高的差异性,那么教师又不可能逐个去算,因此,为解决课堂效率与学生个体差异的矛盾上,我设计制作了一个VB软件,只要相应的输入相关数字,结果就能得出。一个小的细节,让学生体验到现在教育技术的巨大作用,同时又激起学生学习相关信息知识的兴趣。
(三) 概念建构
在体验了以上生活情境的过程之后,那么自然而然引出了本堂课的课题:“求代数式的值”。在这个概念建构上,主要从引导自学,感知认知和师生互动,理解知识相结合,培养学生良好的学习习惯,,提高其独立分析和解决问题的能力,变“学会”为“会学”。
(四) 技能演练
在技能演练上,我主要采用了“演——练——拓——求法”四位一体的循环教学模式,用三个例题,层层深入。
第一个例题是:
(一)求解代数式的值
1、当a分别取下列值时,求代数式3-5a的值
(1)a=2
(2)a=-4
(3)a=
(4)a=
(2)解:
当a=-4时,……当
3-5a ……抄
=3-5×(-4)……代
=7 ……算
例一的设计,主要是用不用的数值求同一个代数式的值,从整数,负数,分数,无理数等,力求涉及到数的领域,并通过教师示范,总结出“当,抄,代,算”口诀,便于学生理解记忆
例二:
在例一学生学会了求单字母代数式的基础上,我给出了例二,是求多个字母的代数式问题。那么从知识的深度上来说,又加深了一步。但是,学生很容易想当将其代入,但是在求法上,教师着重强调格式问题。
例三:
在学会了用单字母以及多字母求解代数式的基础上,我将给出例三。例三实际上是涉及到数学中一个很重要的思想——整体思想。对于七年级学生来说,要解决这类问题还是有点难度的,但是,基础稍微好点的学生会容易做出来,基础差点的在教师以及周围学生的.帮组下,相信也能理解。
那么,以上是三个例题的设计,那么为了巩固学生的训练,我在每道例题后面都相应的设计了配套练习。
尤其,我设计了这样一道练习题:
我们知道,学生的反馈模式多种多样,可以有学生出现问题教师指正等多种形式。那么,我们在这里就是采用了错误教育这样一种反馈模式,让学生在错误教育中对知识有更深的理解。
(五) 小结与作业
(1)阅读作业
(2)书面作业
(3) 弹性作业
作业分为三种形式,体现作业的巩固性和发展性原则。阅读作业中的问题思考是后续课堂的铺垫,而弹性作业不作统一要求,供学有余力的学生课后研究。同时,它也是新课标里研究性学习的一部分。
六、 我的板书设计是:
我就讲到这里,恳请各位专家老师批评指正。谢谢!
代数式课件(篇2)
知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。
教学目标:
1. 了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2. 了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3. 了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。
4 了解电子计算器使用基本过程。会用电子计算器进行四则运算。
教学重难点:
1. 考查近似数、有效数字、科学计算法;
2. 考查实数的运算;
3. 计算器的使用。
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即
(6)开方 如果x2=a且x≥0,那么=x; 如果x3=a,那么
在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.
(3)乘法交换律 ab=ba.
其中a、b、c表示任意实数.运用运算律有时可使运算简便.
代数式课件(篇3)
各位评委、各位老师,大家好!今天我说课的题目是:《代数式的值》。我准备从如下几个方面展示:教材分析,教法、学法分析,教学程序设计,评价与反思。
一、教材分析
(一)、教材内容的地位和作用
《代数式的值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?
(二)、教学目标
根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:
知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。
情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。
(三)、教学重点、难点
教学重点:代数式求值的书写格式。
教学难点:代数式求值的书写格式,变式训练知识的运用。
二:教法、学法分析
本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果,而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
三、教学程序设计
板 书 设 计:
代数式的值
四.评价与反思
新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。
教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。
无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。
以上是我对《代数式的值》一课的说课,不当之处请各位评委、老师批评指正,谢谢。
代数式课件(篇4)
作为从事数学教育的人,让更多的学生掌握扎实的基础知识与具备较高的数学思维水平与解题能力是每个老师的共同愿望,如何在短时间内达到这一目的是许多老师非常关注的问题。我对初三数学总复习有如下做法:
好的复习计划,对指导师生进行系统复习,具有明显的导向作用,初三数学复习计划的制定应注意:
1.钻研教材,确定复习重点。确定复习重点可从以下几方面考虑:⑴.根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。这是确定复习重点的依据和标准。⑵.熟识每一个知识点在初中数学教材中的地位、作用;⑶.熟悉近年来中考试题类型,以及考试改革的情况。
2.了解学生的知识状况。一是对平时教学中掌握的情况进行定性分析;二是进行摸底测试。
3.制定复习计划。根据知识重点、学生的知识状况及总复习时间制定比较具体详细可行的复习计划。复习计划主要内容应包括系统复习安排和综合复习安排,系统复习初中的每一章节内容,要计划好复习时间、复习重点、基本复习方法;计划好如何挖掘教材,使知识系统化;训练哪些方法培养哪些能力、掌握哪些数学思想等。综合复习应设计如何引导学生对初中数学完成由厚到薄的转变;如何培养学生综合应用知识解决问题的能力;安排如何引导学生对各种数学方法进行训练,使知识系统化、熟练化,形成技能技巧,促进数学能力的提高,使学生形成知识体系。
初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。如何进行基础知识的复习呢?我认为:一是要紧扣教材,依据教材的要求,不断提高,注重基础。二是要突出复习的特点上出新意,以调动学生的积极性,提高复习效率。从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在系统复习中教师要从引导学生弄清知识的结构入手,由结构找性质,由性质找方法,则熟练掌握方法到形成能力。在每一个章节复习中,为了有效地使学生弄清知识的结构,宜先用一定的时间让学生按照自己的实际查漏补缺,有目的地自由复习。要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上。复习中教师应在学生中巡回辅导,了解信息,及时反馈,然后再引导学生对本章节知识进行系统归类,弄清内部结构,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握,方法的运用和能力的提高,此阶段切忌求快、求深、求难。否则中差生是达不到合格水平的。复习时还注意到知识的纵横联系,将各部分知识串在一起,弄清它们之间的共同性和区别,弄清它们的联系,可使对知识的学习深入一步。因此,复习时除按课本章节顺序进行外,还可将知识按另外的方式进行归类总结。
例题与习题的选用应从学生的实际出发。因此在复习中根据教学的目的、教学重的点和学生实际,要注意引导学生对相关例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的例习题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。目前,“题海战术” 的普遍现象还存在,学生整天忙于解题,没有时间总结解题规律和方法,这样既增重学生负担,又不能使学生熟练掌握知识灵活运用知识。事实上,许多复习题目是从同一道题中演变过来的,其思维方式和所运用的知识完全相同。如果不掌握它们之间的内在联系,就题论题,那么遇上形式稍为变化的题,便束手无策,教师在讲解中,应该引导学生对有代表性的问题进行灵活变换,使之触类旁通,培养学生的应变能力,提高学生的技能技巧,挖掘教材中的例题、习题功能,可从以下几方面入手:⑴.寻找其它解法;⑵.改变题目形式;⑶.题目的条件和结论互换;⑷.改变题目的条件;⑸.把结论进一步推广与引伸;⑹.串联不同的问题;⑺.类比编题等。
四、注重各种数学思想与数学方法的训练,提高学生的数学素质。
初中数学中已经出现和运用了不少数学思想和方法。如转化的思想是一种重要的思想方法,应通过不同的形式给以训练,使学生熟练掌握,致于分析、综合、归纳等的重要数学思想方法,也让学生有所了解。
初中数学教材中出现的数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法、分析综合法、反证法、作图法。这些方法要按要求灵活运用。因此复习中针对要求,分层训练。
对学生进行数学思想方法和训练可采用以下方法:
1.采取不同训练形式。一方面应经常改变题型:填空题、判断题、选择题、简答题、证明题等交换使用,使学生认识到,虽然题变了,但解答题目的本质方法未变,增强学生训练的兴趣,另一方面改变题目的结构,如变更问题,改变条件等。
2.适当进行题组训练。用一定时间对一方法进行专题训练,能使这一方法得到强化,学生印象深,掌握快、牢。
相信在复习过程中,认真抓好每一个环节,最后必定会取得自己满意的好效果,好成绩!
代数式课件(篇5)
【教材分析】
《代数式》是浙教版七上实验教材第四章第二节课程。本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。从数到式是学生认识上 “质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。
【学生情况分析】
在本节内容学习之前,学生已具有了如下的“现有发展区”。但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。
【教学目标】
根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:
知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的。
过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。
【重点难点】
教学重点:代数式的概念及用代数式表示常用的数量关系。
教学难点:用代数式表示实际问题中的数量关系。
【教法学法】
根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。
在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”。
代数式课件(篇6)
面临最后30天倒数的九年级同学,在这个非常时刻,都把心思集中在紧锣密鼓的考试复习当中。考试在即,时间却不多的情况下,怎么在最短时间内提高复习效率,比别人多拿点分数呢?方法不需要多,短时间掌握最有效的方法才是王道。
基础较好的同学和基础较薄弱的同学,复习方法稍微有一些区别。学习成绩较好或中上的同学,最后这段时间可以重点把时间花在大题上。把老师提供的或者本学期曾经考过的大题再重新做几遍,直至自己完全理解和掌握,还能举一反三为止。当然前提是本学期最基础的公式和定理必须得熟悉掌握,才能把时间留给大题了~而学习成绩一般的同学,建议大家补基础,把最基础的公式和定理背熟、掌握、会运用。中考背负着升学的压力,有时候抱着考出正常水平的心理反而往往会考出超出预期的水平。最后30天,除了严格按照老师的复习节奏,有条不紊的执行老师的复习规划之外,同学们可以制定一个属于自己的复习计划:
1、梳理整个初中最重要的定义、性质和定理,整理列成一个表格随时看。
2、把各年级数学课本上老师讲解的例子重做一遍,加深印象,没时间可以挑重要考点的案例做。
3、把本学期考过的所有试卷整理好,把做错的题目重做一遍,列出本张试卷掌握不够好的知识点,想想怎么样在下次考试中取得进步。
这三点当中,第一和第三点尤其重要。纵观往年中考,比较热门的考点有这几个:有理数的定义和运算、整式的运算、分式的运算、一元二次方程、函数的变量、反比例函数、直角三角形及勾股定理、圆的定义和各个元素、科学计数法、绝对值和相反数的运算、数轴的基本概念和运算。中考对知识灵活运用的要求比较高,要求大家对基础掌握非常扎实,所以建议大家多补基础。
除了老师提供的练习册和试卷,有兴趣的同学可以在业余零碎的时间学习应用,例如真题馍馍的“一天一考点”功能就是针对中考复习的。
祝大家考出理想成绩,我们一起加油吧!
[如何复习中考数学]
代数式课件(篇7)
一、教材分析
(一)、教材内容的地位和作用
《代数式的值》选自义务教育课程标准实验教科书(浙教版)七年级数学(上)第四章,是我个人根据学生的知识基础、认知能力以及思维品质等实际情况而在教学中加以设计的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?
(二)、教学目标
根据新《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:
1. 知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。
2. 情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。
(三)、教学重点、难点
教学重点:代数式的值的概念。
教学难点:代数式的值的概念,书写格式训练知识的运用。
二、教法、学法分析
本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
三、教学程序设计
教学流程 设计思路与媒体应用分析
(一)回顾以前做过的题目,引入课题
(二)探索交流,获得新知
引导学生回忆回顾以前做过的题目的过程,点出课题并总结代数式的值的概念。由于有了前面的铺垫,立刻就有同学回答。板书课题并投影显示概念。
掌握了代数式的值的概念,
三、例题教学
例1 当n分别取下列值时,求代数式 的值
(1)n=-1; (2)n=4;
(3)n=0.6
例2 已知a=-2. b= 1/3 ,求代数式 2ab-6b2 的值
例3. 已知 ,求代数式 的值。
四、知识实际应用
例4. 如图,用100米的篱笆围成一个有一边靠墙的长方形的饲养场,设饲养场的长为x米,
(1)用代数式表示饲养场的面积_________________。
(2)当x分别为40米,50米,60米时,哪一种围成的面积最大?
x
五、思维拓展
按右下图示的程序计算,若开始输入的n值为3.
则最后输出的结果是______。
六、课堂小结
1. 什么叫代数式的值:用数值代替代数式里的字母,
按照代数式中的运算关系计算得出的结果。
2. 求代数式的值的步骤:
①指出代数式中字母表示的数;
②抄写原来的代数式;
③ 用字母代表的数替换代数式中的字母;
④对所得到的算式进行计算,求出代数式的值.
七、布置作业 究竟如何引入新课呢?如果直接点题引入新课,可能较为平淡,引发不起学生更大的学习兴趣。这或许对生参与这节课学习的积极性略有影响。因此,我在一开始便用回顾以前做过的题目的方式,为引出课题打下伏笔。
从实践的角度下定义,便于学生理解记忆。而对于数学概念的学习,要关注概念的实际背景与形成过程,克服机械记忆的学习方式。
以往我们在课堂教学中都是老师讲解例题然后学生演练,学生往往被动接受,忽略了学生为主体的教育目标。本课改为学生运用新知自主探索,教师协助指引。演练过程中学生往往不会想到代数式中字母取值的不确定性,而在代数式求值过程中忽略强调字母取值的条件,待他们板演后与同学们一起检验,对演练有误的同学提示更正,对正确的同学加以表扬。可充分调动学生的学习积极性。
学生演算完后会很容易就发现答案,这个设计为引出下一题打下伏笔。
由于有前面的铺垫学生很快会回答出答案。
添括号补乘号等是多数同学都有可能忽略的问题,师生共同分析比较后可进一步加强学生对所学知识的感性认识。
这里设置的几个题目,既有来自于数学知识本身,也有跨学科间的联系。通过对问题的解答,进一步巩固了代数式的值的概念,还加强了学生运用数学知识解决实际问题的能力。
自然设问,符合常理,进一步激起了学生探究的欲望。提问时遵循了学生的思维规律,并给予了学生充分的时间,让他们自己去交流,去体会知识的形成过程。
若学生配合较好,可以继续探究,并适当加大难度。这里包括例题共设计了四道题,前三道题既有趣味性,又复习了本节课的内容。第四题是一个动手实验的题目,提供给学有余力的学生,充分体现了分层教学的思想。
总结性提问的问题包括了本节课的学习内容,让学生自己对这节课进行评价,学会反思。
课外作业注重发挥学生的主观能动性,让不同的学生都得到不同的发展。
四、板 书 设 计:
一、代数式的值定义 四、思维拓展
二、例题教学例1 、例2. 例3 五、课堂小结
三、知识实际应用例4 六、布置作业
五、“求代数式的值”一课的设计理念:
本节课我所讲授的内容是“代数式的值”,它是冀教版七年级新教材第五章第4小节的内容,是前一部分用字母表示数及列代数式等知识的完结与提升。为将来学习函数,感受数字与字母之间的关系打下基础。在设计这节课时,我力图落实“创设情境——自主探究——合作交流——巩固深化——反思升华——检测评价的教学流程,初步落实”初中数学课堂教学中以小目标分层推进的策略与研究“来与老师们共同探讨,以便更好的调整自己的课堂教学。
新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。
代数式课件(篇8)
⑴、会求代数式的值,感受代数式求值可以理解为一个转换过程或种算法。
⑵、能解释代数式值的实际意义。
透函数思想。
过程与方法: 让学生在实际情境中经历探究思考、合作交流的过程,体会获取
知识的方法,积累学习的经验,感受数学的生活化。
而使学生更加热爱数学、热爱生活。 情感、态度与价值观:使学生认识到数学与生活紧密相连,数学活动充满着探索
难点:理解代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。
请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。
(设计说明:让同学们在游戏中发现,代数式中的字母可以用数字代替求出固定的结果,初步体会从一般到特殊的过程。)
二、新知探索及内化:
1、说一说:你能由上面的游戏说一说什么是代数式的值吗?
用数值代替代数式里的字母,按照代数式中运算关系计算得出的结果,叫做代数式的值。
110nh与他的年龄n岁之间的关系为:例如,35岁的人每天所需的睡眠时10110?35间是t==7.5h 10
算一算,你每天所需要的睡眠时间?
(设计说明:以和学生息息相关的睡眠时间问题讲解分析代数式的值的概念,对学生兴趣的培养.学习目的的端正都是有益的.这里应注意学生活动,师不能越俎代庖。
注意:代数式中的字母在取值时必须保证在取值后代数式有意义。如:在代55数式 中,字母a不能取C3。因为若a= C3时,代数式 的分母零,a?3a?3
1、例:堤坝的横截面是梯形,测得梯形上底为a=18m,下底b=36m,高h=20m,
求这个截面的面积。
2、例:根据所给x的值,求代数式4x+5的值:(1)x=2(2)x=-3.5 (3)1x=2 2
师:在今后解决问题的过程中,往往需要根据代数式中字母取值确定代数式的值,你能根据代数式的值的概念找出求代数式的值的方法吗?
(1)写出条件:解:当??时,(2)抄写代数式(3)代入数值(4)计算出结果
(设计目的:由学生探索方法大胆实践有利于培养学生开拓进取精神,养成善于思考总结规律的习惯。)根据下列各组x、y 的值,求出代数式 的值:
(1)x=2,y=3;(2)x=-2,y=-4。
师:你能从上面的运算过程说一说代数式的值在计算时需要注意哪些问题吗? 交流得:注意:①代入数值后“乘号”要填上;②要按数的运算法则进行运算③如果字母的值是负数、分数,代入时应加上括号④解题格式,由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值,把“当??时”写出来。
(设计说明:一环紧扣一环的发问,使学生对代数式的值的概念有了清楚的认识,分散了难点,也培养了学生逻辑思维能力。)
五分钟检测:
1.若x+1=4,则(x+1)2=
2. 若x+1=5,则(x+1)2-1=
3. 若x+5y=4,则2x+10y=
4. 若x+5y=4,则2x+7+10y =
5. 若x2+3x+5=4,则2x2+6x+10=
2.思考:一辆卡车在行驶时平均每小时耗油8L,行驶前油箱中有油80L. ⑴用代数式表示行驶xh后,油箱中的剩余油量Q=______;
⑵计算行驶2h,5h,8h后,油箱中的剩余油量。
⑶这里,能求x=12h时剩余油量Q的值吗?
(设计说明:代数式里的字母虽然可以取不同的数值,但是这些数值不能使代数式和它表示的实际问题失去意义。本题中的x不能取负数和大于10的值,为什么?)
1、 求代数式的值的步骤:
(1)代入,将字母所取的值代入代数式中时,注意:①不要犯张冠李戴的错误;②注意整体代入。
(2)计算,按照代数式指明的运算进行,计算出结果。
2、求代数式的值的注意事项:
(1)由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值
写出来。(2)如果字母的值是负数、分数,并且要计算它的乘方,代入时应加上括号;
(3)代数式中省略了乘号时,代入数值以后必须添上乘号。
3、相同的代数式可以看作一个字母――整体代入。
4、代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。
代数式课件(篇9)
第一章实数与中考
1.正确理解实数的有关概念;
2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;
3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。
5.会用多种方法进行实数的大小比较。
中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。
牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。
大纲要求:
1.使学生复习巩固有理数、实数的有关概念.
2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:
1.有理数、无理数、实数、非负数概念;
2.相反数、倒数、数的绝对值概念;
3.在已知中,以非负数a2、|a|、(a≥0)之和为零作为条件,解决有关问题。
(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数,
实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).
从数轴上看,互为相反数的两个数所对应的点关于原点对称.
实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.
例1①a的相反数是-,则a的倒数是_.
③(泉州市)去年泉州市林业用地面积约为1000亩,用科学记数法表示为约_.
【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.
例2.(-2)3与-23.
例3.-的绝对值是;-3的倒数是;的平方根是.
分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。
例4.下列各组数中,互为相反数的是()D A.-3与B.|-3|与一C.|-3|与D.-3与
例1下列实数、sin60°、、()0、3.14159、-、(-)-2、中无理数有()个
【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.
代数式课件(篇10)
1.注重课堂学习,提高效率。在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
2.夯实基础知识,学会思考。在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
3.注意知识的迁移,学会融会贯通。课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
4.复习形成梯度,选择典型习题。如果说第一阶段是中考复习的基础,是重点,侧重了双基训练,那么第二阶段的复习就是第一阶段复习的延伸和提高,这个阶段的练习题要选择有一些难度的题,但又不是越难越好,难题做的越多越好,做题要有典型性,代表性,所选择的难题是自己能够逐步完成的,这样才能既激发自己解难求进的学习欲望,又能使自己从解决较难问题中看到自己的力量,增强学习的信心,产生更强的求知欲望。
5.重视基础知识,注重解题方法。基础知识就是初中数学课程中所涉及的概念、公式、公理、定理等。要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应该熟练掌握!
代数式课件(篇11)
1、当a=2,b=1,c=3时, 的值是 。
2、当a= , b= 时,代数式(a-b)2的值为 。
3、如果代数式2a+5的值为5,则代数式a2+2的值为 。
4、如果代数式3a2+2a-5的值为10,那么3a2+2a= 。
5、某电视机厂接到一批订货,每天生产m台,计划需a天完成任务,现在为了适应市场需求,要提前3天交货,用代数式表示实际每天应多生产多少台电视机。并求当m=1000,a=28时,每天多生产的台数。
例:(1)a、b互为倒数,x、y互为相反数,且y0,则(a+b)(x+y)-ab- 的值为 。
(2)若 ,求 的值。
(3)如图:正方形的边长为 a。①用代数式表示阴影的面积;
②若 a=2cm 时,求阴影的面积(结果保留)。
(2) =3 5 +3=
(3)① ;②当a=2时,上式=2- 。
评析:(1)解决本例的关键是:由a、b互为倒数得ab=1,由x、y互为相反数得x+y=0和
(2)本例采用的是整体代入的数学思想;
(3)本例主要是用规则图形的面积去解决不规则图形面积的求解问题。
(1)随着x值的逐渐增大,两个代数式的值怎样变化?
(2)当代数式2x+5的值为25时,代数式2(x+5)的值是多少?
A、6 B、 C、13 D、
4、小明在计算41+N时,误将+看成-,结果得12,则41+N= 。
5、已知:a+b=4,ab=1,求 2a+3ab+2b 的值。
6、当x=3时,代数式px3+qx+1的值为。
求:当x=-3时,代数式px3+qx+1的'值为多少?
1、(福建漳州中考题)若 ,则 的值是_______________。
2、(20福建福州中考题)已知 ,则 的值是 。
3、(2009年江苏省中考题)若 ,则 。
4、(江苏泰州中考题改编)根据如图所示的程序计算,若输入的x的值为1,则输出的y值为 。
1、 2、 3、2 4、15 5、实际每天应多生产 台电视机;120台。
1、
(1)随着x值的逐渐增大,两个代数式的值也逐渐增大。
(2)由代数式2x+5的值为25,得x=10。
所以代数式2(x+5)的值是30。
6、当x=3时,33p+3q+1=2009。
所以,33p+3q=。
当x=-3时,(3)3p+(3)q+1=2008+1=。
等差数列课件
我们为您挑选特别的“等差数列课件”,保证让您连连惊喜。老师们在正式上课之前需要精心准备这个学期的教学教案课件,每个老师都要认真思考自己的教案课件。一个出色的教案是实现教学目标和落实教学内容的必不可少的工具。请务必将这篇文章收藏好,下次再读。
等差数列课件 篇1
教学目标
1。通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2。利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3。通过参与编题解题,激发学生学习的兴趣。
教学重点,难点
教学重点是通项公式的认识;教学难点是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑。
教学方法
研探式。
教学过程
一。复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。
二。主体设计
通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 )。找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。
1。方程思想的运用
(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项。
(2)已知等差数列 中,首项 , 则公差
(3)已知等差数列 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。
2。基本量方法的使用
(1)已知等差数列 中, ,求 的值。
(2)已知等差数列 中, , 求 。
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于 和 的`二元方程组,以求得 和 , 和 称作基本量。
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。
如:已知等差数列 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列 中, 求 ; ; ; ;…。
类似的还有
(4)已知等差数列 中, 求 的值。
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3。研究等差数列的单调性
,考察 随项数 的变化规律。着重考虑 的情况。 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果。这个结果与考察相邻两项的差所得结果是一致的。
4。研究项的符号
这是为研究等差数列前 项和的最值所做的准备工作。可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2)等差数列 从第________项起以后每项均为负数。
三。小结
1。 用方程思想认识等差数列通项公式;
2。 用函数思想解决等差数列问题。
四。板书设计
等差数列通项公式
1。 方程思想的运用
2。 基本量方法的使用
3。 研究等差数列的单调性
4。 研究项的符号
等差数列课件 篇2
数列是刻画离散现象的函数,是一种重要的属性模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列。
在推导等差数列前n项和公式的过程中,采用了:
1、从特殊到一般的研究方法;
2、倒叙相加求和。不仅得出来等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。等差数列的前n项和是学习极限、微积分的基础,与数学课程的其他内容(函数、三角、不等式等)有着密切的联系。
掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。
经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。
获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的.能力。
三、教法学法分析
教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。
探索与发现公式推导的思路是教学的重点。如果直接介绍“倒叙相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。
应用公式也是教学的重点。为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。
建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
泰姬陵坐落于印度古都阿格,是世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成共有100层。你知道这个图案一共花了多少宝石吗?
设计意图:
(1)、源于历史,富有人文气息。
(1)、学生叙述高斯首尾配对的方法(学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段。)
(2)、为了促进学生对这种算法的进一步理解,设计了下面的问题。
问题1:图案中,第1层到第21层共有多少颗宝石?(这是奇数个项和的问题,不能简单模仿偶数个项求和的方法,需要把中间项11看成是首、尾两项1和21的等差中项。
通过前后比较得出认识:高斯“首尾配对”的算法还得分奇数、偶数个项的情况求和。
(3)、进而提出有无简单的方法。
借助几何图形的直观性,引导学生使用熟悉的几何方法:把“全等三角形”倒置,与原图补成平行四边形。
几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面,只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。
Sn=(从求确定的前n个正整数之和到求一般项数的前n个正整数之和,旨在让学生体验“倒叙相加求和”这一算法的合理性,从心理上完成对“首尾配对求和”算法的改进)
由于前面的铺垫,学生容易得出如下过程:
∵Sn=an+an—1+an—2+…a1,
等差数列的性质(如果m+n=p+q,那么am+an=ap+aq。)
设计意图:
一言以蔽之,数学教学应努力做到:以简驭繁,平实近人,退朴归真,循循善诱,引人入胜。
公式1Sn=;
某长跑运动员7天里每天的训练量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。这位长跑运动员7天共跑了多少米?(本例提供了许多数据信息,学生可以从首项、尾项、项数出发,使用公式1,也可以从首项、公差、项数出发,使用公式2求和。达到学生熟悉公式的要素与结构的教学目的。
通过两种方法的比较,引导学生应该根据信息选择适当的公式,以便于计算。)
等差数列—10,—6,—2,2,…的前多少项和为54?(本例已知首项,前n项和、并且可以求出公差,利用公式2求项数。
事实上,在两个求和公式中包含四个元素,从方程的角度,知三必能求余一。)
变式练习:在等差数列{an}中,a1=20,an=54,Sn=999,求n。
在等差数列{an}中,已知d=20,n=37,Sn=629,求a1及an。(本例是使用等差数列的求和公式和通项公式求未知元。
事实上,在求和公式、通项公式中共有首项、公差、项数、尾项、前n项和五个元素,如果已知其中三个,连列方程组,就可以求出其余两个。)
4、当堂训练,巩固深化。
通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。
采用课后习题1,2,3。
5、小结归纳,回顾反思。
①、回顾从特殊到一般的研究方法;
②、体会等差数列的基本元素的表示方法,倒叙相加的算法,以及数形结合的数学思想。
①、通过本节课的学习,你学到了哪些知识?
②、通过本节课的学习,你最大的体验是什么?
③、通过本节课的学习,你掌握了哪些技能?
作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
习题3.3第2题(3,4)。
(1)、已知a2+a5+a12+a15=36,求是S16。
(2)、已知a6=20,求s11。
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
等差数列课件 篇3
教材:(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。过程:
一、引导观察数列:4,5,6,7,8,9,10,…… 3,0,-3,-6,…… , , , ,…… 12,9,6,3,…… 特点:从第二项起,每一项与它的前一项的差是常数 — “等差”
二、得出等差数列的定义: 注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称: 首项 公差 2.若 则该数列为常数列3.寻求等差数列的通项公式: 由此归纳为 当 时 (成立) 注意: 1° 等差数列的通项公式是关于 的一次函数 2° 如果通项公式是关于 的一次函数,则该数列成ap 证明:若 它是以 为首项, 为公差的ap。 3° 公式中若 则数列递增, 则数列递减 4° 图象: 一条直线上的一群孤立点三、例题: 注意在 中 , , , 四数中已知三个可以求 出另一个。例一 (见教材)例二 (见教材)
四、关于等差中项: 如果 成等差数列则 证明:设公差为 ,则 ∴ 例四 《教学与测试》p77 例一:在-1与7之间顺次插入三个数 使这五个数成ap,求此数列。五、小结:等差数列的定义、通项公式、等差中项六、作业:
等差数列课件 篇4
1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;
(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;
(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.
2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.
3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.
①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.
②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.
③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.
④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.
⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.
⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的兴趣.
教学重点是通项公式的认识;教学难点 是对公式的灵活运用.
前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?
的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
(1)已知 中,首项 ,公差 ,则-397是该数列的第______项.
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
(1)已知 中, ,求 的值.
(2)已知 中, , 求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.
教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知 中, 求 ; ; ; ;….
(4)已知 中, 求 的值.
,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2) 从第________项起以后每项均为负数.
1. 用方程思想认识通项公式;
等差数列课件 篇5
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法――通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
教学过程:
前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。本节微课重点讲解等差数列的定义, 并且能初步判断一个数列是否是等差数列。
第三部分内容:哪些数列是等差数列?并且求出首项与公差。根据这个练习总结出几个常用的结152秒
三、结尾
本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。
等差数列课件 篇6
等差数列教材(教案) 课 题:等差数列 教 材:(苏教版数学第二册)§子1.2 等差数列 课 型:新授课 教学目标: 1、知识目标:(1)明确等差数列的定义,掌握等差数列的通项公式 (2)会解决知道an,a1,d,n中的三个,求另外一个的问题 2、能力目标:培养学生具有良好的观察能力、归纳能力、应用能力和创新解题能力 3、情感目标:培养学生具有良好的协作精神和探索精神 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学方法:发现法、观察法、讨论法、讲解法及其组合 教 具:多媒体 内容分析:前面学习了数列的定义及表示数列的几种方法――列举法、通项公式、递推公式等,这些方法从不同的角度反映了数列的.特点,具备这些知识后,为本节课探索等差数列的定义、通项公式等创造了条件。 教学过程: 一、创设情境 教师活动 学生活动 设计意图 1、小明昨天背记了1个英文单词,从今天开始,他背记的单词量逐日增加,依次为:6,11,16,21,……请同学们仔细观察一下,以上数列有什么特点? 学生独立思考后口答 问题是数学的心脏,数学来源于生活 2、提出问题:多少天后他背记的单词量达到301? 表明自己观点 让学生大胆猜想,引发思考,引出新课 二、探索活动 教师活动 学生活动 设计意图 1、交流与发现:(1)等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差都等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。注意 ①公差d一定是由后项减前项所得,而不能用前项减后项来求 ②对于数列{an},若an-an-1=d(与n无关的数或字母),n≥2,n∈N+,则此数列是等差数列,d为公差。 (2)等差数列的通项公式:an=a1+(n-1)d 学生与同桌交流后回答 探索、研究等差数列的定义及通项公式 2、例题讲解 (1)求等差数列8,5,2……的第20项 (2)-401是不是等差数列-5,-9,-13……的项?如果是,是第几项? 解:(1)由a1=8,d=5-8=2-5=-3 N=20,得a20=8+(20-1)×(-3)=-49 (2)由a1=-5,d=-9-(-5)=-4 得数列通项公式为:an=-5-4(n-1) 由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之得n=100,既-401是这个数列的第100项。 在等差数列{an}中,已知a5=10,a12=31,求a1,d,a20,an 解法一:∵a5=10,a12=31,则 a1+4d=10 a1=-2 a1+11d=31 d=3 ∴an=a1+(n-1)d=3n-5 a20=a1+19d=55 解法二:a12=a5+7d 31=10+7d d=3 ∴a20=a12+8d=55 小结:第二通项公式an=am+(n-m)d 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。 解:设{an}表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:a1=33,a12=10,n=12 ∴a12=a1+(12-1)d,即110=33+11d 解得:d=7 因此,a2=33+7=40,a3=40+7=47,a4=54,a5=61, a6=68,a7=75,a8=82,a9=89,a10=96,a11=103, 答;梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm。 先让学生发表观点,后喊两名中等生板书 学生小组讨论后发表观点并积极上黑板板书 发挥学生优势,画出图形,讨论先求什么 会用通项公式,学会用方程思想解题 做好“条件”转化:学会列方程组解决 培养学生一题多解的能力 学会应用,培养数学建模能力与应用能力 三、巩固练习教师活动 学生活动 设计意图 练习: 1、(1)求等差数列3,7,11,……的第4项与第10项。 (2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。 2、在等差数列{an}中,(1)已知a4=10,a7=9,求a1与d; (2)已知a3=9,a9=3,求a12。 a1+3d=10 a1+6d=19 点拨:(1)由题意得: (2)解法一:由题意可得: a1+2d=9 a1=11 a1+8d=3 d=-1 ∴该数列的通项公式为:an=11+(n-1)×(-1)=12-n, ∴a12=0 解法二:由已知得:a9=a3+6d, 即:3=9+6d, ∴d=-1 又∵a12=a9+3d, ∴a12=3+3×(-1)=0 喊4名中等学生板书 喊2名中等学生板书: 令7n-5=100,解得:n=15, ∴100是这个数列的第15项 喊2名中等学生板书 喊2名中等学生板书,注意对照 会用通项公式 会判断一数是否为某一数列的其中一项,注意解题步骤的规范性与准确性 会由an,a1,d,n中的三个,求另外一个,培养发散性思维,培养一题多解能力与创新解题能力 四、反思总结 教师活动 学生活动 设计意图 通过本节课的学习,你有什么体会和收获?本课涉及哪些数学知识、思想、方法? 培养学生总结、归纳能力 及时总结,授之以渔 教学反思: 本节课的教学体现了“自主探索与合作交流”的教学理念,学生在探索中获得了数学的“思想、方法、能力、素质”。 一、情境创设,自然有效。 实践证明,通过问题发现问题,符合职业中学学生的认知特点,自然有效。 二、自主探索,惊喜不断。 本课从多层面开展课堂活动,既有民主和谐的师生互动式活动,更有学生的独立思考、演练、小组讨论、观察,发现,总结交流等学习活动,学生在探索过程中学得灵活、踏实、轻松、愉快,体验学习数学的成功和快乐。 三、夯实基础,提高效益。 本课以课本例题、练习为原型,创造性地使用教材,层层推进,激发学生学习潜能,培养学生具有良好的思维特性,渗透基本的数学思想和方法,培养学生数学建模能力,培养学生创新解题能力和应用能力,极大的提高了数学课堂教学效益。 四、新的思考。 1、要注意an=am+(n-m)d和an=pn-q(p、q是常数)的理解与应用; 2、在等差数列通项公式的应用中,应突出它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么两项可以决定一个等差数列。
等差数列课件 篇7
1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )
3.设等差数列{an}的前n项和为Sn,若a6=S3=12,则{an}的通项an=________.
解析:由已知a1+5d=123a1+3d=12a1=2,d=2.故an=2n.
4.在等差数列{an}中,已知a5=14,a7=20,求S5.
a1=a5-4d=14-12=2,
所以S5=5a1+a52=52+142=40.
1.(杭州质检)等差数列{an}的前n项和为Sn,若a2=1,a3=3,则S4=( )
S4=4a1+4×32×2=8.
2.在等差数列{an}中,a2+a5=19,S5=40,则a10=( )
解析:选C.由已知2a1+5d=19,5a1+10d=40.
解得a1=2,d=3.∴a10=2+9×3=29. X k b 1 . c o m
3.在等差数列{an}中,S10=120,则a2+a9=( )
解析:选B.S10=10a1+a102=5(a2+a9)=120.∴a2+a9=24.
4.已知等差数列{an}的公差为1,且a1+a2+…+a98+a99=99,则a3+a6+a9+…+a96+a99=( )
解析:选B.由a1+a2+…+a98+a99=99,
得99a1+99×982=99.
∴a1=-48,∴a3=a1+2d=-46.
又∵{a3n}是以a3为首项,以3为公差的等差数列.
=33(48-46)=66.
5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )
又∵a1+an=a2+an-1=a3+an-2,
将③代入④中得n=13.
6.在项数为2n+1的等差数列中,所有奇数项的'和为165,所有偶数项的和为150,则n等于( )
解析:选B.由等差数列前n项和的性质知S偶S奇=nn+1,即150165=nn+1,∴n=10.
7.设数列{an}的首项a1=-7,且满足an+1=an+2(n∈N*),则a1+a2+…+a17=________.
∴{an}是一个首项a1=-7,公差d=2的等差数列.
∴a1+a2+…+a17=S17=17×(-7)+17×162×2=153..
8.已知{an}是等差数列,a4+a6=6,其前5项和S5=10,则其公差为d=__________.
9.设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,则S16=________.
解析:由等差数列的性质知S9=9a5=-9,∴a5=-1.
又∵a5+a12=a1+a16=-9,
∴S16=16a1+a162=8(a1+a16)=-72.
10.已知数列{an}的前n项和公式为Sn=n2-23n-2(n∈N*).
(1)写出该数列的第3项;
(2)判断74是否在该数列中.
(2)n=1时,a1=S1=-24,
n≥2时,an=Sn-Sn-1=2n-24,
即an=-24,n=1,2n-24,n≥2,
由题设得2n-24=74(n≥2),解得n=49.
∴74在该数列中.
11.(高考课标全国卷)设等差数列{an}满足a3=5,a10=-9.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.
a1+2d=5,a1+9d=-9,可解得a1=9,d=-2,
所以数列{an}的通项公式为an=11-2n.
(2)由(1)知,Sn=na1+nn-12d=10n-n2.
因为Sn=-(n-5)2+25,
所以当n=5时,Sn取得最大值.
12.已知数列{an}是等差数列.
(1)前四项和为21,末四项和为67,且各项和为286,求项数;
(2)Sn=20,S2n=38,求S3n.
解:(1)由题意知a1+a2+a3+a4=21,an-3+an-2+an-1+an=67,
所以a1+a2+a3+a4+an-3+an-2+an-1+an=88.
所以a1+an=884=22.
因为Sn=na1+an2=286,所以n=26.
(2)因为Sn,S2n-Sn,S3n-S2n成等差数列,
所以S3n=3(S2n-Sn)=54.
等差数列课件 篇8
第三课时 等差数列(一) 教学目标: 明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识. 教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点: 等差数列“等差”特点的理解、把握和应用. 教学过程: Ⅰ.复习回顾 上两节课我们共同学习了数列的定义及给出数列的两种方法――通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子 Ⅱ.讲授新课 10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,… 首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列. 1.定义 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式 若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N*时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d