排列组合教案
发布时间:2024-07-15 排列组合教案排列组合教案10篇。
优秀的人总是会提前做好准备,优质课堂,就是幼儿园的老师在讲学生在答,讲的知识都能被学生吸收,因此,老师会在授课前准备好教案,有了教案上课才能够为同学讲更多的,更全面的知识。那么一篇好的幼儿园教案要怎么才能写好呢?为满足你的需求,小编特地编辑了“排列组合教案10篇”,为防遗忘,建议你收藏本页!
排列组合教案【篇1】
【背景】
在日常生活中,有很多需要用排列组合解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。
【教材分析】
“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。
【教学目标】
1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;
2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;
3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。
【教学重点】
经历探索简单事物排列与组合规律的过程
【教学难点】
初步理解简单事物排列与组合的不同
【教学准备】
多媒体、数字卡片。
【教学方法】
观察法、动手操作法、合作探究法等。
【课前预习】
预习数学书99页,思考以下问题:
1、用1、2两个数字能摆出哪些两位数?
2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。
3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。
【教学准备】
PPT
【教学过程】
……
一、以游戏形式引入新课
师:同学们,今天老师带大家去数学广角做游戏。在门口设置了?,?上有密码。这个密码盒的密码是由数字1、2组成的一个两位数,想不想进去呢?
师:谁告诉老师密码,帮老师打开这个密码盒?(生尝试说出组成的数)
生:12、21
师:打开密码盒
师:打开了密码锁,进入数学广角乐园。一关一关的进行闯关活动。第一关:1、2、3能摆出哪些两位数?第二关:如果3人见面,每两个人握一次手,一共要握几次手?
(设计意图:不拘泥于教材,创设学生感兴趣的游戏引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)
二、游戏闯关活动对比
师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?
结论:摆数与顺序有关,握手与顺序无关。
摆数可以交换位置,而握手交换位置没用。
(设计意图:以相同数量进行对比,为什么数字要比握手多一半呢?引发学生知识冲突从而引发思考,激发学生的求知欲。)
三、应用拓展,深化探究
1、数字宫
师:第三关现在我们去那里玩呢?我们一起看看!
从0、4、6中选择两个数字排成两位数,有几种排法?
总结:为什么和上面发现的结果不一样呢?问题出在谁的身上呢?(0)
为什么?(0不能做一个数的第一位)
2、选择线路
师:同学们,米老鼠带我们欣赏完数学广角,准备回家了,有几条路供它选择?演示:
问题:数学城堡到家里,到底有几种走法呢?
(1)分组讨论。
(2)学生汇报,教师演示。
(3)板书:A——C A——D A——E B——C B——D B——E
(设计意图:题目层次性强,与生活联系密切。不同的人在数学上得到不同的发展,人人学有价值的数学。)
【反思】
本节课的设计做到了以下几个亮点突破:
1、创设游戏情境,激发学生探究的兴趣。
整课节始终用创设的游戏情境吸引学生主动参与激发积极性。我设计了:门上的锁密码是多少?本节课通过闯关游戏创设“数字排列”中有趣的数字排列,激发了学生解决问题的探究欲望。又如通过创设“握手活动”与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题的兴趣。
2、课堂中始终体现以学生为主体、合作学习。
“自主、探究、合作学习”是新课程改革特别提倡的学习方式。本节课设计时,注意选则合作的时机与形式,让学生合作学习。在教学关键点时,为了使每一位学生都能充分参与,我选择了让学生同桌合作;在解决重难点时,我选择了学生六人小组的合作探究。在学生合作探究之前,都提出明确的问题和要求,让学生知道合作学习解决什么问题。在学生合作探究中,尽量保证了学生合作学习的时间,并深入小组中恰当地给予指导。合作探究后,能够及时、正确的评价,适时激发学生学习的积极性和主动性。
3、让学生在丰富多彩的教学活动中领悟新知。
本课通过组织学生主动参与多种教学活动,充分调动了学生的多种感悟协调合作,既让学生感悟了新知,又体验到了成功,获取了数学知识,真正体现了学生在课堂教学中的主体地位。
排列组合教案【篇2】
一.课标要求:
1.分类加法计数原理、分步乘法计数原理
通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;
2.排列与组合
通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;
3.二项式定理
能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题。
二.命题走向
本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。
排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。
考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。
三.要点精讲
1.排列、组合、二项式知识相互关系表
2.两个基本原理
(1)分类计数原理中的分类;
(2)分步计数原理中的分步;
正确地分类与分步是学好这一章的关键。
3.排列
(1)排列定义,排列数
(2)排列数公式:系 = =n·(n-1)…(n-m+1);
(3)全排列列: =n!;
(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;
4.组合
(1)组合的定义,排列与组合的区别;
(2)组合数公式:Cnm= = ;
(3)组合数的性质
①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即 Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;
5.二项式定理
(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;
(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;
6.二项式的应用
(1)求某些多项式系数的和;
(2)证明一些简单的组合恒等式;
(3)证明整除性。①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;
(4)近似计算。当|x|充分小时,我们常用下列公式估计近似值:
①(1+x)n≈1+nx;②(1+x)n≈1+nx+ x2;(5)证明不等式。
四.典例解析
题型1:计数原理
例1.完成下列选择题与填空题
(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有 种。
A.81 B.64 C.24 D.4
(2)四名学生争夺三项冠军,获得冠军的可能的种数是( )
A.81 B.64 C.24 D.4
(3)有四位学生参加三项不同的竞赛,
①每位学生必须参加一项竞赛,则有不同的参赛方法有 ;
②每项竞赛只许有一位学生参加,则有不同的参赛方法有 ;
③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。
例2.(06江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答)。
点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的。
题型2:排列问题
例3.(1)(20xx四川理卷13)
展开式中 的系数为?______ _________。
【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;
(2).20xx湖南省长沙云帆实验学校理科限时训练
若 n展开式中含 项的系数与含 项的系数之比为-5,则n 等于 ( )
A.4 B.6 C.8 D.10
点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。
例4.(1)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有 个(用数字作答);
(2)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).
点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助。
题型三:组合问题
例5.荆州市20xx届高中毕业班质量检测(Ⅱ)
(1)将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为(C) A.3 B.6 C.12 D.18
(2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )
A.10种 B.20种 C.36种 D.52种
点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合
例6.(1)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种;
(2)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )
(A)150种 (B)180种 (C)200种 (D)280种
点评:排列组合的交叉使用可以处理一些复杂问题,诸如分组问题等;
题型4:排列、组合的综合问题
例7.平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形。
点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。
例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。
点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c≠0正确分类;没有考虑c=0中出现重复的直线。
题型5:二项式定理
例9.(1)(20xx湖北卷)
在 的展开式中, 的幂的指数是整数的项共有
A.3项 B.4项 C.5项 D.6项
(2) 的展开式中含x 的正整数指数幂的项数是
(A)0 (B)2 (C)4 (D)6
点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令 .在二项式的展开式中,要注意项的系数和二项式系数的区别。
例10. (20xx湖南文13)
记 的展开式中第m项的系数为 ,若 ,则 =____5______.
题型6:二项式定理的应用
例11.(1)求4×6n+5n+1被20除后的余数;
(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余数是多少?
(3)根据下列要求的精确度,求1.025的近似值。①精确到0.01;②精确到0.001。
点评:(1)用二项式定理来处理余数问题或整除问题时,通常把底数适当地拆成两项之和或之差再按二项式定理展开推得所求结论;
(2)用二项式定理来求近似值,可以根据不同精确度来确定应该取到展开式的第几项。
五.思维总结
解排列组合应用题的基本规律
1.分类计数原理与分步计数原理使用方法有两种:①单独使用;②联合使用。
2.将具体问题抽象为排列问题或组合问题,是解排列组合应用题的关键一步。
3.对于带限制条件的排列问题,通常从以下三种途径考虑:
(1)元素分析法:先考虑特殊元素要求,再考虑其他元素;
(2)位置分析法:先考虑特殊位置的要求,再考虑其他位置;
(3)整体排除法:先算出不带限制条件的排列数,再减去不满足限制条件的排列数。
4.对解组合问题,应注意以下三点:
(1)对“组合数”恰当的分类计算,是解组合题的常用方法;
(2)是用“直接法”还是“间接法”解组合题,其原则是“正难则反”;
(3)设计“分组方案”是解组合题的关键所在。
排列组合教案【篇3】
教学片段实录:
小组对衣服的搭配方法交流后归纳、演示:
师:哪一组愿意把你们组的想法和大家一起分享?
生:6种。
师:你能说说理由吗?
生:因为红色裤子跟衣服连起来,再把其他连起来。
师:你能上来连一连吗?(生上来板演)你能向大家解释一下为什么这么连吗?
生:这样按顺序连不会漏掉
师:这个方法简单明了,确实是个好方法。谁还有不一样的方法?
生:写序号,编上1-5号,1号跟3号搭配,1号跟4号,1号跟5号,2号跟3号,2号跟4号,2号跟5号。
师:这个方法很方便,即使我们没有图片也能把他表示出来。还有没有其他方法?
生:摆一摆
(生板演)
师:请你仔细观察,他刚才是先确定什么,再确定什么的?
生:他是先用兰色的衣服跟裤子配,再用黄色的衣服跟裤子配。
师:也就是先确定上装再确定下装。如果先确定下装,你会不会摆呢?
(生板演)
师:他现在是先确定?
生:下装,再确定上装
师:不管是上装不动还是下装不动,这样的搭配方法都非常有规律。
生:我是算出来的,一件衣服可以跟三件衣服搭配,另外一件衣服也跟三件裤子搭配所以3*2
师:他是怎么算的,你们有没有听明白。
生:一件衣服可以配三件下装,两件就是6种。
师小结:你们真能干,想出了这么多的办法,有的把所有的穿法都表示出来了,有的用画画的方法,有的用连线的方法,还有的用编号的方法,还有一些特别聪明的同学一下子算出了有六种穿法。而且一个都没有漏掉,也没有重复。那你最喜欢哪一种方法?为什么?怎么样才能做到不重复,也不漏掉?不管是用什么方法只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
教学反思:
排列与组合这一数学思想将一直影响到学生的后继学习,在高中数学的学习中,学生将全面学习相关知识,组合知识在生活生产中应用很广泛,由于其思维方法的新颖性与独特性,学习时要遵循不重不漏的原则,它又是培养学生思维能力的不可多得的好素材。出于这样的考虑本课教学中我在改变学生学习方式方面做了些尝试,同时训练学生的数学思维。
1、创设生活情境,激发学习兴趣。
在教学《排列组合》时,我没有按知识结构为主线,而是围绕学生的学习情感与体验来组织教学。创设游数学广角的故事情境,穿衣服--吃早点--游数字乐园(数字搭配)--游活动乐园(线路选择)--游游戏乐园(跑道问题,词语搭配)一系列的情境。内容贴近学生生活实际,使学生体会数学的应用价值。学生乐意学,主动学,不仅获得了知识,更获得了积极的情感体验。
2、动手实践体验,探究解决问题。
问题空间有多大,探究的空间就有多大。在本节课一开始,我就放手让学生自己去去探究衣服的几种不同的搭配方法,通过猜想--讨论--实践--汇报--比较--归纳等环节,充分展开探究过程。
3、关注合作交流,引发数学思考
本节课我运用了分组合作,共同探究的学习模式,让学生互相交流,互相沟通。比如9、3、7这三个数字可以组合成多少个三位数,这个问题不是学生一眼就能看出的,一下子就能想明白的,它需要认真观察、思考。因此安排了学生独立思考、独立完成、小组合作交流选择最佳方案再汇报。目的是通过给学生一个比较宽泛的问题,给学生自己动脑思考的空间,再通过小组交流,让所有的学生获得表现自我的机会,也可以实现信息在群体间的多向交流。
同时我也思考:在这节课中,很多同学表现非常出色,对这部分同学该怎么处理?在孩子起点高时是否可以让学生通过这节课的学习能够进行整合分类?即是否能够让学生初步感知排列数与组合数的区别呢?
排列组合教案【篇4】
教学内容:
简单的排列组合
教学目标:
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
教学过程:
1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。
2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。
3、出示练习二十五第3题。
学生看题后,四人小组讨论出有多少种求组合数的方法。
4、学生汇报。
(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。
(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
(1)练习二十五第7题。
通过活动的方式让学生不重不漏地把所有取钱的情况写出来。
(2)练习二十五第9题。
用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。
教学反思:
排列组合教案【篇5】
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的`问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.
从n个不同元素中任取(≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取(≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.
要特别注意,不加特殊说明,本章不研究重复排列问题.
③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
教学设计示例
排列
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
教学重点难点
重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。
难点是解有关排列的应用题。
教学过程设计
一、 复习引入
上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):
1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.
(1)从中任取1本,有多少种取法?
(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?
2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=20xx.
第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.
二、 讲授新课
学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并回答.
(1)用加法原理设计方案.
首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.
(2)用乘法原理设计方案.
首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.
根据以上分析由学生(板演)写出所有种飞机票
再看一个实例.
在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?
找学生谈自己对这个问题的想法.
事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.
首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.
根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).
根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)
第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.
由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.
根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).
请板演的学生谈谈怎样想的?
第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.
第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.
第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.
根据乘法原理,所以共有4×3×2=24种.
下面由教师提问,学生回答下列问题
(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
都是从一些研究的对象之中取出某些研究的对象.
(2)取出的这些研究对象又做些什么?
实质上按着顺序排成一排,交换不同的位置就是不同的情况.
(3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.
上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.
第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.
第三个问题呢?
从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.
给出排列定义
请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取(≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出个元素的一个排列.
下面由教师提问,学生回答下列问题
(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?
从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.
如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.
再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.
(2)还需要搞清楚一个问题,“一个排列”是不是一个数?
生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.
三、 课堂练习
大家思考,下面的排列问题怎样解?
有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)
分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.
解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.
第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.
第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.
第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:
所以,共有9种放法.
四、作业
课本:P232练习1,2,3,4,5,6,7.
数学教案-排列教学目标
排列组合教案【篇6】
求解排列应用题的主要方法:
直接法:把符合条件的排列数直接列式计算;
优先法:优先安排特殊元素或特殊位置
捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列
插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中
定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。
间接法:正难则反,等价转化的方法。
例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:
(1) 全体排成一行,其中甲只能在中间或者两边位置;
(2) 全体排成一行,其中甲不在最左边,乙不在最右边;
(3) 全体排成一行,其中男生必须排在一起;
(4) 全体排成一行,男生不能排在一起;
(5) 全体排成一行,男、女各不相邻;
(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;
(7) 全体排成一行,甲、乙两人中间必须有3人;
(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。
某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中 ,各有多少种不同的选法?
(1)无任何限制条件;
(2)正、副班长必须入选;
(3)正、副班长只有一人入选;
(4)正、副班长都不入选;
(5)正、副班长至少有一人入选;
(5)正、副班长至多有一人入选;
6本不同的书,按下列要求各有多少种不同的选法:
(1)分给甲、乙、丙三人,每人2本;
(2)分为三份,每份2本;
(3)分为三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;
(5)分给甲、乙、丙三人,每人至少1本
例2、(1)10个优秀指标分配给6个班级,每个班级至少
一个,共有多少种不同的分配方法?
(2)10个优秀指标分配到1、2、 3三个班,若名
额数不少于班级序号数,共有多少种不同的分配方法?
.(1)四个不同的小球放入四个不同的盒中,一共
有多少种不同的放法?
(2)四个不同的小球放入四个不同的盒中且恰有一个空
盒的放法有多少种?
排列组合教案【篇7】
一堂课的教学就是诸多要素的有机组合体。相同的要素可以组成不同的结构,其功能却不一样。这就是说,系统的结构不同,系统的功能也往往不同。这给我们以启示:不改变课堂教学的要素,只对这些要素进行科学排列组合,使之成为优化的结构,可以提高教学的整体功能。徐葆琼老师在这一点上是有她独到之处的,《称象》的教学正体现了她这一教学特色。
从这课书的识字教学来看,教者十分注意在阅读教学过程中建立生字的音、义、形的统一联系,但对音、义、形又是分步侧重处理的。即,初读课文时侧重字音,理解课文时侧重字义,复习巩固时侧重字形。这就改变了过去的先教字,后阅读和识字时音、义、形一次解决的教学结构。这样处理,体现了寓识字于阅读教学之中,既分散了识字的难点,又使生字的音、义、形分步得到落实。如教议论的议。初读课文时,只要求学生借助拼音读准字音;分析课文时,联系语言环境理解字义,议论一词本来出现在第二自然段,而官员们议论的具体内容则在第三自然段,教者便把二、三两个自然段结合在一起学习,学生不仅从具体语言环境里懂得了词义,还理解了有关句子的意思,同时还朦胧知道了一点段与段之间的关系;在学完课文后进一步进行基础训练时,用义和议作比较,让学生有意识地识记字形,并指导书写。从这一教例我们不难看出,徐老师对阅读教学中生字的音、义、形的处理以及识字教学与阅读教学的联系都有一个整体考虑、合理安排。这样的结构,无论是识字还是阅读,学生学习起来都比较畅通。
从这课书的阅读教学来看,我认为指导学生学习曹冲所述称象办法最能体现徐老师的教学特色。教者先让学生弄清曹冲说的办法一共有几句话;接着引导学生弄清每一句话的意思;再用一组模拟物让学生一边读书一边演示曹冲所说的方法;学完课文后,教者要学生仿照这件事的表述方法,用指定的几个词口述几句连贯的话。教者对这一部分的教学如此安排是有其匠心的。从理解的角度来看,曹冲所说的四句话是全文的重点和难点;从表达的角度来看,它是读写结合的范例;从年段的训练重点以及阶段的连续性来看,它又是典型材料。在这里可以把听、说、读、写的训练结合起来,还有利于培养学生的观察能力和思维方法,激发学生的学习兴趣,把能力因素和动力因素的训练有机结合起来。一句话,抓住它能一举数得,提高单位时间的教学效率。教者正是看准了这一点,才把上述诸方面排列组合在一起,并有机地联系起来,使之相互作用,协调发展,有效地发挥了整体功能。运用之妙,存乎于心。数得来自一举,这可贵的一举,充分体现了教者丰富的教学经验,高超的教学艺术,独特的教学风格。◆
排列组合教案【篇8】
活动目标:
1、有观察各种车辆特点的兴趣,知道车辆的用途。
2、对一组数字出现不同的排列组合感兴趣,探索不同的排列组合的方法。
3、大胆说出自己的理解。
4、培养幼儿敏锐的观察能力。
活动准备:
1、各种各样新车的照片或图片
2、数字“1、2、3、4”若干套
3、汉字“沪”“京”“浙”等
4、记录纸和笔,制作两个数字完全相同的“车牌”。
活动过程:
一、观察了解新车
师:吴老师每天上班经过白墙的上海车市,那里有些什么车呢?我们一起去看看吧!
播放课件提问:
1、这是什么车?它是怎样的?车上有什么?它由哪几部分组成?
2、你喜欢哪辆新车?为什么?
3、你在马路上见过哪些标志的车?
4、怎样在马路上很快找到自己的新车?
二、车牌数字的排列组合
1、有很多人喜欢相同的车,买回来后在马路上开,如果有一辆车撞了人,警察叔叔怎样找到这辆车呢?
2、老师买了一辆新车,它是什么样的车?(看课件)
我的车牌有1、2、3三个数字,猜猜我的车牌号码是多少?
(1)第一次操作:幼儿两人一组,为“1”“2”“3”三个数字排顺序,看看可以排出哪些车牌号码。,将结果记录下来。
幼儿展示车牌,交流记录结果。
老师小结排列规律:123、132、231、213、312、321。,三个数字可以排6个车牌号码。
(2)第二次操作:老师在给你们一个数字大家试试用四个数字可以排出几组不同的车牌号码。幼儿两人合作共同寻找很记录四个数字的不同排列组合。
三、比较车牌
1、播放课件,观察车牌,这些车牌号码是多少?除了数字还有什么?他们各表示什么?
2、我的朋友车牌是4349,可我在马路上见到一个车牌也是4349,这是怎么回事?
老师总结:车牌由汉字、字母、数字组成,它们的排列组合不一样,才使车牌的号码不会一样。
排列组合教案【篇9】
教学内容背景材料:
义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
初步理解简单事物排列与组合的不同。
教具准备:
乒乓球、衣服图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。
一、情境导入,展开教学
今天,王老师要带大家去“数学广角”里做游戏,可是,我把游戏要用的材料都放在这个密码包里。你们想解开密码取出游戏材料吗?(想)我给大家提供解码的3个信息。
1. 好,接下来老师提供解码的第一个信息:密码是一个两位数。(学生在两位数里猜)(你们猜的对不对呢?请听第二个解码信息)
2. 下面,提供解码的第二个信息:密码是由2和7组成的(学生说出27和72)。能说说看你是怎么想的吗?
3. 下面,提供解码的第三个信息:刚才说了密码可能是27也可能是72。其实这个密码和老师的年龄有关。哪个才是真正的密码是?(学生说出是27)到底是不是27呢?请看(教师出示密码)。真的是27,恭喜大家解码成功!
二、多种活动,体验新知
1、感知排列
师:请小朋友先到“数字宫”做个排数字游戏,好吗?这有两张数字卡片(1 、2)(老师从密码包里拿出),你能摆出几个两位数?(用数字卡摆一摆)
生:我摆了两个不同的数字12和21。(教师板书)
师:同学们想得真好。我又请来了一位好朋友数字3,现在有三个数字1、2、3,让大家写两位数,你们不会了吧?(会)别吹牛!(真的会)好,下面大家分组合作,组长记录。看看你们能够写出几个不同的两位数,注意不要重复,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。好,开始。
学生活动教师巡视并参与学生活动。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)哪组同学来给大家汇报一下。(教师板书结果。)有没有需要补充的呀?
2、探讨排列方法。
有的小组摆出4个不同的两位数,有的小组摆出6个不同的两位数,有什么好的方法能保证既不重复,也不漏掉数呢?还请大家分组讨论。看一看哪组同学的方法最好!(小组讨论,分组交流,学生总结方法。)哪组同学来给大家汇报一下你们的想法?
方法1:我摆出12,然后再颠倒就是21,再摆23,颠倒后就是32,再摆13,颠倒后就是31,一共可以摆出6个两位数。
方法2:我先把数字1放在十位上,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位上,然后把数字1和3分别放在个位组成21和23 ;我再把数字3放在十位上,然后把数字1和2分别放在个位上组成31和32 ,一共摆出了6个两位数。
3、老师和学生共同评议方法:让学生选择自己喜欢的方法再摆一摆,学生试着总结。(如果学生说不出方法2,老师就直接告诉学生)
3、感知组合。
师:你们真是一群善于动脑的好孩子。来,咱们握握手,祝贺祝贺!加油!
排列组合教案【篇10】
教学目标:
1、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。
2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。使学生在数学活动中养成与人合作的良好习惯。
教学过程:
一、创设增境,激发兴趣。
师:今天我们要去"数学广角乐园"游玩,你们想去吗?
二、操作探究,学习新知。
<一>组合问题
l、看一看,说一说
师:那我们先在家里挑选穿上漂亮的衣服吧。(课件出示主题图)
师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。(要求:小组长拿出学具衣服图片、展示板)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法? (4种)
第二种方案(按下装搭配上装)有几种穿法? (4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
<二>排列问题
师:数学广角乐园到了,不过进门之前我们必须找到开门密码。(课件出示课件密码门)
密码是由1、2 、3 组成的两位数.
(1)小组讨论摆出不同的两位数,并记下结果。
(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)
(3)生生相互评价。方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位数.
师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.
三、课堂实践,巩固新知。
1、乒乓球赛场次安排。
师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)
(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?
(2)学生独立思考.
(3)指名学生汇报.规
2、路线选择。(课件展示游玩景点图)
师:我们去公园看看吧。途中要经过游戏乐园。
(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(A,B,C三条)(根据学生的回答课件展示)
从活动乐园到时公园到底有几种不同的走法?
(2)学生独立思索后小组交流 。
(3)全班同学互相交流 。
3、照像活动。
师:我们来到公园,这儿的景色真不错,大家照几张像吧.
师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。
(1)小组活动,老师参与小组活动 。
(2)各小组展示记录方案 。
(3)师生共同评价 。
4、欣赏照片.
师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)
四、总结
今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?
yJS21.com更多精选幼儿园教案阅读
[精]排列组合课件教案(11篇)
教案课件是老师上课的重要部分,相信老师对写教案课件也并不陌生。用教案课件可以保证重点内容不被漏掉,最好教案课件是怎么样的呢?以下是幼儿教师教育网的编辑为大家收集的“排列组合课件教案”,请收藏好,以便下次再读!
排列组合课件教案 篇1
【背景】
为了进一步提高堂效率,提升学生学习力,逐步落实数学堂与“学习力”相结合的自学为主堂教学模式,提升青年教师的整体素质,进步培养青年教师良好的教学能力。我们二年级数学组于XX年10月开展了全员赛活动,并取得了良好效果。本篇教案集授教师努力及组内教师智慧,较能体现学校的主流教学模式,是一篇优秀的案例。
【教材简析】
本节的内容是数学二年级上册数学广角例1简单的排列与组合。排列和组合的思想方法应用得很广泛,是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透这一数学思想方法时就做了一些探索,把它通过学生日常生活中最简单的事例呈现出来。
教材的例1通过2个卡片的排列顺序不同,表示不同的两位数,属于排列知识,而简单的排列组合对二年级学生来说都早有不同层次的接触,如用1、2两个数字卡片来排两位数,学生在一年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,也有不少学生通过平时的益智游戏都能做到不重复、不遗漏地排列。针对这些实际情况,在设计本节时,根据学生的年龄特点处理了教材。整堂坚持从低年级儿童的实际与认知出发,以“感受生活化的数学”和“体验数学的生活化”这一教学理念,结合实践操作活动,让学生在活动中学习数学,体验数学。
【教学目标】
1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;
2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;
3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。
【教学重点】
经历探索简单事物排列与组合规律的过程
【教学难点】
初步理解简单事物排列与组合的不同
【教学准备】
多媒体、数字卡片。有关北京景色的、生字词卡。
【课前预习】
预习数学书99页,思考以下问题
1、用1、2两个数字能摆出哪些两位数?
2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。
3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。
【教学过程】
1、合作探究排列
师:同学们,请看这就是数学广角乐园,数学广角里给我们准备了这么多的闯关游戏,敢不敢试一试?(不怕)你们真是勇敢的好孩子。咱们先来创第一关。
(出示:用数字卡片1、2、3可以摆成几个不同的两位数呢?)
师:第一关,用数字卡片1、2、3可以摆成几个不同的两位数呢?
生汇报。对不对呢?我们来验证一下,听清要求。
同桌合作,一人摆数字卡片,一人把摆好的数记录下来,写好马上做好,比比哪桌合作得又好又快。
实际操作,教师巡视。
板演反馈,同时汇报不同的摆法和想法。
无顺序的汇报→正确的汇报→比较方法→学生说方法→师板书→起名称
师:请把你写出的两位数读出来(无序→正确,师板书,),比较一下谁的更全面一些?(提问其他的答案),为什么XX同学没有完全摆对而这名同学却摆得这么准呢?他有什么诀窍吗?(生边回答师边数字板演示,并进行板书)
师:谁能给这个方法起一个名字呢?
谁还有其它的方法要介绍给大家?
象这样因为数字的位置不同而拼组出了不同的两位数,这样的问题在数学上就叫排列。
师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律进行。顺利过关,进入下一关
2、感知组合
师:同学们,第二关问题是:如果三个人握手,每两个人握一次,三人一共要握多少次呢?
师:大家看,我在和他握手,他也在和我握手,不管我们的位置如何变化只要我们的手不松开我们两个人就是只握了一次手。
那三个人握手到底要握几次?以小组为单位,组长记录次数,其他三人演示,看看每两个人握一次手,三个人一共要握手多少次?
师:两个人握一次手,三人一共要握3次手。
(板书展示握手过程)
3、对比思考——追寻本质
师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?
结论:摆数与顺序有关,握手与顺序无关。
摆数可以交换位置,而握手交换位置没用。
【反思】
本节体现了两个特色
1、预设有效问题是进行数学思维的关键
“思”源于“问题”,要通过“问题解决”使儿童获得知识、方法、能力及思想上的全面发展,首先要有一个好“问题”。因为学生数学思考的形成就是借助于对这些“问题”的思考及通过对这些问题的解决过程之中。在这节中,在每一个活动之前,教师都为学生创设了一个感兴趣的,具有现实意义的问题:“用1、2、3这三个数字,可以编出几个两位数呢?”、“三个人每两人互相握一次手,一共要握几次手?”只有面对这样的好“问题”,学生才能自觉的全身心地投入到问题解决之中,才能通过对这些问题的分析、比较,对这些规律的观察、感悟,对所得结论的描述、解释。而这一过程又正是学生形成数学思考的过程。
2、逐步感悟有序思维的必要性
有序思维在日常生活中有着广泛的用途,让学生通过学习逐步感悟到有序思维的必要性就显得犹为重要了。用1、2、3这三个数字,可以编出几个两位数,让学生非常自然地、主动地进行猜数,并产生怎样思考才能既不重复也不遗漏的问题,激发学生的学习兴趣。接着,通过学生独立思考“用1、2、3写(摆)两位数”引导学生根据自己的实际情况选择不同的方法探究新知,尊重学生的个性差异,使每个学生在原有基础上得到完全、自由的发展,初步感悟有序的写(摆);交流讨论,再说一说你是怎么写(摆)的,它好在哪里?等问题,促使学生去观察、去发现,促进了学生对其隐藏着的数学思想的领悟、认识;最后通过全班交流,引导学生得到了两种基本的排序方法(列表法和图示法),进一步体验到按一定的顺序思考的价值并初步掌握方法。最后,抓住鼓励表扬的握手游戏这一契机,突破教学的难点(初步理解简单事物排列与组合的不同)让学生通过猜一猜、演一演等形式,使他们对其规律进行本质的探究,在活动中体验感受排列与组合的不同。这里,学生经历了猜想、验证、反思等一系列探索活动,体会到思之要有“据”、思之要有“理”、思之要有“序”,这不仅是让学生在活动中学会思考,更是让学生在探究活动中学会科学的探究方法。
这节注重了排列组合的有序性,而对排列组合的合理性诠释得还不够到位。还有些堂上的动态生成的资源捕捉利用不够及时到位等等。我想这在以后教学中还应多反思,多注意的。
排列组合课件教案 篇2
一、教学目标
知识目标:通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
能力目标:经历探索简单事物排列与组合规律的过程,培养学生有顺序地、全面思考问题的意识。
情感价值观目标:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。
二、教学重难点
教学重点:经历探索简单事物排列与组合规律的过程。突破方法:通过创设情境,自主探究突破重点。教学难点:初步理解简单事物排列与组合的不同。突破方法:通过合作交流、探讨突破难点。
三、教学准备
课件、数字卡片、数位表格
四、教学方法与手段
1.从生活情景出发,结合学生感兴趣的动画故事为学生创设探究学习的情境。
2.采用观察法、操作法、探究法、讲授法、演示法等教学方法,通过让学生动手操作、独立思考和开展小组合作交流活动,完善自己的想法,努力构建学生独特的学习方式。
3.通过灵活、有趣的练习,如:握手、拍照等游戏,提高学生解决问题的能力,同时寻求解决问题的多种办法。
五、教学过程
(一)创设情境,激发兴趣
1.故事导入:灰太狼抓走了美羊羊,为了阻止喜洋洋来救,设置了门锁密码,要想闯关成功,要了解一个知识—搭配,揭示课题。
2.猜一猜第一关的密码是由
1、2两个数字组成的两位数,个位上的数字比十位上的数字大,这个密码可能是多少?
(二)动手操作,探索新知
1.过渡谈话,引出例1灰太狼增加了难度,在第二关设置了超级密码锁,密码是
1、2和3组成的两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?”(课件出示例1)
2.尝试学习,自主探究
(1)引导理清题意:你都知道了什么
(2)指导学法:你有什么办法解决这个问题?
(3)动手操作:分发3张数字卡片,任意选取其中两张摆一摆,组成不同的两位数。鼓励学生动脑,找规律去摆,比一比谁摆的数多而不重复。
3.小组交流,展示成果
(1)小组交流:学生自主摆完后,小组交流讨论,探讨排列的方法。
(2)展示成果:指名上黑板展示。
4.交流摆法,总结规律
①交换位置:有顺序的从这3个数字中选择2个数字,组成两位数,再把位置交换,又组成另外一个两位数
②固定十位:先确定十位,再将个位变动。 ③固定个位:先确定个位,再将十位变动。 小结:以上这些办法很有规律,他们的好处:不重复,不遗漏,有顺序。
5.区分排列和组合
握手游戏:每两个人握一次手,3个人握几次手?
这些与顺序有关的问题,我们叫排列。与顺序无关的问题,我们叫组合。
(三)应用拓展,深化方法
1.任务一:比一比谁最快。
2.任务二:购物小超市,买一个拼音本,可以怎样付钱?
3.任务三:涂颜色(教材97页“做一做”)
学生独立思考,动手完成涂色。
4.任务四:搭配衣服。
5.组词:“读、好、书”一共有几种读法?
(四)总结延伸,畅谈感受
今天这节课有趣吗?同学们在数学广角里学到了什么?你有什么收获?以后在解决这类问题时应注意什么?
(五)课后作业
拍照游戏,3个人站一起拍照有几种站法?4个人呢?
六、板书设计
排列与组合1、2 —— 12 21
1、
2、3 ——12 21 23 32 13 31 12 13 21 23 31 32 21 31 12 32 13 23
排列组合课件教案 篇3
教学内容:
简单的排列组合
教学目标:
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
教学过程:
1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。
2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。
3、出示练习二十五第3题。
学生看题后,四人小组讨论出有多少种求组合数的方法。
4、学生汇报。
(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。
(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
(1)练习二十五第7题。
通过活动的方式让学生不重不漏地把所有取钱的情况写出来。
(2)练习二十五第9题。
用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。
教学反思:
排列组合课件教案 篇4
一堂课的教学就是诸多要素的有机组合体。相同的要素可以组成不同的结构,其功能却不一样。这就是说,系统的结构不同,系统的功能也往往不同。这给我们以启示:不改变课堂教学的要素,只对这些要素进行科学排列组合,使之成为优化的结构,可以提高教学的整体功能。徐葆琼老师在这一点上是有她独到之处的,《称象》的教学正体现了她这一教学特色。
从这课书的识字教学来看,教者十分注意在阅读教学过程中建立生字的音、义、形的统一联系,但对音、义、形又是分步侧重处理的。即,初读课文时侧重字音,理解课文时侧重字义,复习巩固时侧重字形。这就改变了过去的先教字,后阅读和识字时音、义、形一次解决的教学结构。这样处理,体现了寓识字于阅读教学之中,既分散了识字的难点,又使生字的音、义、形分步得到落实。如教议论的议。初读课文时,只要求学生借助拼音读准字音;分析课文时,联系语言环境理解字义,议论一词本来出现在第二自然段,而官员们议论的具体内容则在第三自然段,教者便把二、三两个自然段结合在一起学习,学生不仅从具体语言环境里懂得了词义,还理解了有关句子的意思,同时还朦胧知道了一点段与段之间的关系;在学完课文后进一步进行基础训练时,用义和议作比较,让学生有意识地识记字形,并指导书写。从这一教例我们不难看出,徐老师对阅读教学中生字的音、义、形的处理以及识字教学与阅读教学的联系都有一个整体考虑、合理安排。这样的结构,无论是识字还是阅读,学生学习起来都比较畅通。
从这课书的阅读教学来看,我认为指导学生学习曹冲所述称象办法最能体现徐老师的教学特色。教者先让学生弄清曹冲说的办法一共有几句话;接着引导学生弄清每一句话的意思;再用一组模拟物让学生一边读书一边演示曹冲所说的方法;学完课文后,教者要学生仿照这件事的表述方法,用指定的几个词口述几句连贯的话。教者对这一部分的教学如此安排是有其匠心的。从理解的角度来看,曹冲所说的四句话是全文的重点和难点;从表达的角度来看,它是读写结合的范例;从年段的训练重点以及阶段的连续性来看,它又是典型材料。在这里可以把听、说、读、写的训练结合起来,还有利于培养学生的观察能力和思维方法,激发学生的学习兴趣,把能力因素和动力因素的训练有机结合起来。一句话,抓住它能一举数得,提高单位时间的教学效率。教者正是看准了这一点,才把上述诸方面排列组合在一起,并有机地联系起来,使之相互作用,协调发展,有效地发挥了整体功能。运用之妙,存乎于心。数得来自一举,这可贵的一举,充分体现了教者丰富的教学经验,高超的教学艺术,独特的教学风格。◆
排列组合课件教案 篇5
【背景】
在日常生活中,有很多需要用排列组合解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。
【教材分析】
“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。
【教学目标】
1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;
2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;
3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。
【教学重点】
经历探索简单事物排列与组合规律的过程
【教学难点】
初步理解简单事物排列与组合的不同
【教学准备】
多媒体、数字卡片。
【教学方法】
观察法、动手操作法、合作探究法等。
【课前预习】
预习数学书99页,思考以下问题:
1、用1、2两个数字能摆出哪些两位数?
2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。
3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。
【教学准备】
PPT
【教学过程】
……
一、以游戏形式引入新课
师:同学们,今天老师带大家去数学广角做游戏。在门口设置了?,?上有密码。这个密码盒的密码是由数字1、2组成的一个两位数,想不想进去呢?
师:谁告诉老师密码,帮老师打开这个密码盒?(生尝试说出组成的数)
生:12、21
师:打开密码盒
师:打开了密码锁,进入数学广角乐园。一关一关的进行闯关活动。第一关:1、2、3能摆出哪些两位数?第二关:如果3人见面,每两个人握一次手,一共要握几次手?
(设计意图:不拘泥于教材,创设学生感兴趣的游戏引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)
二、游戏闯关活动对比
师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?
结论:摆数与顺序有关,握手与顺序无关。
摆数可以交换位置,而握手交换位置没用。
(设计意图:以相同数量进行对比,为什么数字要比握手多一半呢?引发学生知识冲突从而引发思考,激发学生的求知欲。)
三、应用拓展,深化探究
1、数字宫
师:第三关现在我们去那里玩呢?我们一起看看!
从0、4、6中选择两个数字排成两位数,有几种排法?
总结:为什么和上面发现的结果不一样呢?问题出在谁的身上呢?(0)
为什么?(0不能做一个数的第一位)
2、选择线路
师:同学们,米老鼠带我们欣赏完数学广角,准备回家了,有几条路供它选择?演示:
问题:数学城堡到家里,到底有几种走法呢?
(1)分组讨论。
(2)学生汇报,教师演示。
(3)板书:A——C A——D A——E B——C B——D B——E
(设计意图:题目层次性强,与生活联系密切。不同的人在数学上得到不同的发展,人人学有价值的数学。)
【反思】
本节课的设计做到了以下几个亮点突破:
1、创设游戏情境,激发学生探究的兴趣。
整课节始终用创设的游戏情境吸引学生主动参与激发积极性。我设计了:门上的锁密码是多少?本节课通过闯关游戏创设“数字排列”中有趣的数字排列,激发了学生解决问题的探究欲望。又如通过创设“握手活动”与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题的兴趣。
2、课堂中始终体现以学生为主体、合作学习。
“自主、探究、合作学习”是新课程改革特别提倡的学习方式。本节课设计时,注意选则合作的时机与形式,让学生合作学习。在教学关键点时,为了使每一位学生都能充分参与,我选择了让学生同桌合作;在解决重难点时,我选择了学生六人小组的合作探究。在学生合作探究之前,都提出明确的问题和要求,让学生知道合作学习解决什么问题。在学生合作探究中,尽量保证了学生合作学习的时间,并深入小组中恰当地给予指导。合作探究后,能够及时、正确的评价,适时激发学生学习的积极性和主动性。
3、让学生在丰富多彩的教学活动中领悟新知。
本课通过组织学生主动参与多种教学活动,充分调动了学生的多种感悟协调合作,既让学生感悟了新知,又体验到了成功,获取了数学知识,真正体现了学生在课堂教学中的主体地位。
排列组合课件教案 篇6
教学目标:
1、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。
2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。使学生在数学活动中养成与人合作的良好习惯。
教学过程:
一、创设增境,激发兴趣。
师:今天我们要去"数学广角乐园"游玩,你们想去吗?
二、操作探究,学习新知。
<一>组合问题
l、看一看,说一说
师:那我们先在家里挑选穿上漂亮的衣服吧。(课件出示主题图)
师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。(要求:小组长拿出学具衣服图片、展示板)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法? (4种)
第二种方案(按下装搭配上装)有几种穿法? (4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
<二>排列问题
师:数学广角乐园到了,不过进门之前我们必须找到开门密码。(课件出示课件密码门)
密码是由1、2 、3 组成的两位数.
(1)小组讨论摆出不同的两位数,并记下结果。
(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)
(3)生生相互评价。方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位数.
师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.
三、课堂实践,巩固新知。
1、乒乓球赛场次安排。
师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)
(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?
(2)学生独立思考.
(3)指名学生汇报.规
2、路线选择。(课件展示游玩景点图)
师:我们去公园看看吧。途中要经过游戏乐园。
(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(A,B,C三条)(根据学生的回答课件展示)
从活动乐园到时公园到底有几种不同的走法?
(2)学生独立思索后小组交流 。
(3)全班同学互相交流 。
3、照像活动。
师:我们来到公园,这儿的景色真不错,大家照几张像吧.
师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。
(1)小组活动,老师参与小组活动 。
(2)各小组展示记录方案 。
(3)师生共同评价 。
4、欣赏照片.
师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)
四、总结
今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?
排列组合课件教案 篇7
一.课标要求:
1.分类加法计数原理、分步乘法计数原理
通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;
2.排列与组合
通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;
3.二项式定理
能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题。
二.命题走向
本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。
排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。
考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。
三.要点精讲
1.排列、组合、二项式知识相互关系表
2.两个基本原理
(1)分类计数原理中的分类;
(2)分步计数原理中的分步;
正确地分类与分步是学好这一章的关键。
3.排列
(1)排列定义,排列数
(2)排列数公式:系 = =n·(n-1)…(n-m+1);
(3)全排列列: =n!;
(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;
4.组合
(1)组合的定义,排列与组合的区别;
(2)组合数公式:Cnm= = ;
(3)组合数的性质
①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即 Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;
5.二项式定理
(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;
(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;
6.二项式的应用
(1)求某些多项式系数的和;
(2)证明一些简单的组合恒等式;
(3)证明整除性。①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;
(4)近似计算。当|x|充分小时,我们常用下列公式估计近似值:
①(1+x)n≈1+nx;②(1+x)n≈1+nx+ x2;(5)证明不等式。
四.典例解析
题型1:计数原理
例1.完成下列选择题与填空题
(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有 种。
A.81 B.64 C.24 D.4
(2)四名学生争夺三项冠军,获得冠军的可能的种数是( )
A.81 B.64 C.24 D.4
(3)有四位学生参加三项不同的竞赛,
①每位学生必须参加一项竞赛,则有不同的参赛方法有 ;
②每项竞赛只许有一位学生参加,则有不同的参赛方法有 ;
③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。
例2.(06江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答)。
点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的。
题型2:排列问题
例3.(1)(20xx四川理卷13)
展开式中 的系数为?______ _________。
【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;
(2).20xx湖南省长沙云帆实验学校理科限时训练
若 n展开式中含 项的系数与含 项的系数之比为-5,则n 等于 ( )
A.4 B.6 C.8 D.10
点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。
例4.(1)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有 个(用数字作答);
(2)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).
点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助。
题型三:组合问题
例5.荆州市20xx届高中毕业班质量检测(Ⅱ)
(1)将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为(C) A.3 B.6 C.12 D.18
(2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )
A.10种 B.20种 C.36种 D.52种
点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合
例6.(1)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种;
(2)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )
(A)150种 (B)180种 (C)200种 (D)280种
点评:排列组合的交叉使用可以处理一些复杂问题,诸如分组问题等;
题型4:排列、组合的综合问题
例7.平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形。
点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。
例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。
点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c≠0正确分类;没有考虑c=0中出现重复的直线。
题型5:二项式定理
例9.(1)(20xx湖北卷)
在 的展开式中, 的幂的指数是整数的项共有
A.3项 B.4项 C.5项 D.6项
(2) 的展开式中含x 的正整数指数幂的项数是
(A)0 (B)2 (C)4 (D)6
点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令 .在二项式的展开式中,要注意项的系数和二项式系数的区别。
例10. (20xx湖南文13)
记 的展开式中第m项的系数为 ,若 ,则 =____5______.
题型6:二项式定理的应用
例11.(1)求4×6n+5n+1被20除后的余数;
(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余数是多少?
(3)根据下列要求的精确度,求1.025的近似值。①精确到0.01;②精确到0.001。
点评:(1)用二项式定理来处理余数问题或整除问题时,通常把底数适当地拆成两项之和或之差再按二项式定理展开推得所求结论;
(2)用二项式定理来求近似值,可以根据不同精确度来确定应该取到展开式的第几项。
五.思维总结
解排列组合应用题的基本规律
1.分类计数原理与分步计数原理使用方法有两种:①单独使用;②联合使用。
2.将具体问题抽象为排列问题或组合问题,是解排列组合应用题的关键一步。
3.对于带限制条件的排列问题,通常从以下三种途径考虑:
(1)元素分析法:先考虑特殊元素要求,再考虑其他元素;
(2)位置分析法:先考虑特殊位置的要求,再考虑其他位置;
(3)整体排除法:先算出不带限制条件的排列数,再减去不满足限制条件的排列数。
4.对解组合问题,应注意以下三点:
(1)对“组合数”恰当的分类计算,是解组合题的常用方法;
(2)是用“直接法”还是“间接法”解组合题,其原则是“正难则反”;
(3)设计“分组方案”是解组合题的关键所在。
排列组合课件教案 篇8
教学内容背景材料:
义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
初步理解简单事物排列与组合的不同。
教具准备:
乒乓球、衣服图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。
一、情境导入,展开教学
今天,王老师要带大家去“数学广角”里做游戏,可是,我把游戏要用的材料都放在这个密码包里。你们想解开密码取出游戏材料吗?(想)我给大家提供解码的3个信息。
1. 好,接下来老师提供解码的第一个信息:密码是一个两位数。(学生在两位数里猜)(你们猜的对不对呢?请听第二个解码信息)
2. 下面,提供解码的第二个信息:密码是由2和7组成的(学生说出27和72)。能说说看你是怎么想的吗?
3. 下面,提供解码的第三个信息:刚才说了密码可能是27也可能是72。其实这个密码和老师的年龄有关。哪个才是真正的密码是?(学生说出是27)到底是不是27呢?请看(教师出示密码)。真的是27,恭喜大家解码成功!
二、多种活动,体验新知
1、感知排列
师:请小朋友先到“数字宫”做个排数字游戏,好吗?这有两张数字卡片(1 、2)(老师从密码包里拿出),你能摆出几个两位数?(用数字卡摆一摆)
生:我摆了两个不同的数字12和21。(教师板书)
师:同学们想得真好。我又请来了一位好朋友数字3,现在有三个数字1、2、3,让大家写两位数,你们不会了吧?(会)别吹牛!(真的会)好,下面大家分组合作,组长记录。看看你们能够写出几个不同的两位数,注意不要重复,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。好,开始。
学生活动教师巡视并参与学生活动。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)哪组同学来给大家汇报一下。(教师板书结果。)有没有需要补充的呀?
2、探讨排列方法。
有的小组摆出4个不同的两位数,有的小组摆出6个不同的两位数,有什么好的方法能保证既不重复,也不漏掉数呢?还请大家分组讨论。看一看哪组同学的方法最好!(小组讨论,分组交流,学生总结方法。)哪组同学来给大家汇报一下你们的想法?
方法1:我摆出12,然后再颠倒就是21,再摆23,颠倒后就是32,再摆13,颠倒后就是31,一共可以摆出6个两位数。
方法2:我先把数字1放在十位上,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位上,然后把数字1和3分别放在个位组成21和23 ;我再把数字3放在十位上,然后把数字1和2分别放在个位上组成31和32 ,一共摆出了6个两位数。
3、老师和学生共同评议方法:让学生选择自己喜欢的方法再摆一摆,学生试着总结。(如果学生说不出方法2,老师就直接告诉学生)
3、感知组合。
师:你们真是一群善于动脑的好孩子。来,咱们握握手,祝贺祝贺!加油!
排列组合课件教案 篇9
教学内容
人教版《义务教育课程标准实验教科书数学》三年级上册P112例1、例2
教学准备:教师用多媒体课件一套、每组学生准备一套衣服学具。
教学目标与策略选择:
排列与组合不仅是组合数学的最初步知识和学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识。在二年级上册教材中,学生已经接触了一点排列与组合知识,学生通过观察、猜测以及实验的方法可以找出最简单的事物的排列数和组合数。本册教材就是在学生已有知识和经验的基础上,继续让学生通过观察、猜测、实验等活动找出事物的排列数和组合数。为落实新课程的理念,根据教材和学生实际,我组织许多与教学内容紧密相连的活动,运用小组共同合作、探究的学习方式,让学生互相交流,互相沟通,通过观察、猜测,实验等活动,向学生渗透数学思想,并初步培养学生有顺序地、全面地思考问题的意识。为此,将采取以下教学策略:1、创设生活情境,激发学习兴趣。2、动手实践体验,探究解决问题。3、关注合作交流,引发数学思考
根据以上分析以及课标要求,我拟订这节课的教学目标为:
1、使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。
2、培养学生有顺序地、全面地思考问题的意识。
3、使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。
4、使学生在数学生活动中养成与人合作的良好习惯,并初步培养学生表达解决问题的大致过程和结果。
教学流程设计及意图:
教学流程
设计意图
一、导入新课
今天小丸子要带我们去一个很有趣的地方!出示:数学广角。
二、情境一服饰搭配
1、探究:既然参加活动,就要穿得漂亮些。衣柜里有这样几件衣服,小丸子一共有几种不同的穿法呢?
(1)观察并同桌讨论
(2)小组合作,动手实践
老师为你们准备几种不同的搭配方法,每人选择一种搭配方法试试看。搭配的时候要注意怎么搭配才能不重复不遗漏。搭配好的小朋友可以和你组里的小朋友说说你是怎样想的。看看你们组有几种不同的方法。等下把你们认为组里面最棒的方法推荐给同学。
2、归纳、演示:
搭配方法一:用学具摆一摆。先确定上装,再确定上装。或先确定下装,再确定上装。
搭配方法二:连线。
搭配方法三:列式
搭配方法四:用编号
[备选]若学生提出其他搭配方法,只要有道理都给予肯定。
3、小结:你们真能干,想出了这么多的办法,有的把所有的穿法都表示出来了,有的用画画的方法,有的用连线的方法,还有的用编号的方法,还有一些特别聪明的同学一下子算出了有六种穿法。而且一个都没有漏掉,也没有重复。那你最喜欢哪一种方法?为什么?怎么样才能做到不重复,也不漏掉?
不管是用什么方法只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
三、情境2--早餐搭配
1、出发前,小丸子的妈妈还为她准备了丰富的早餐(出示练习题中的早餐图)
2、合理的早餐应该是一种饮料配一种点心,看看这儿共有几种不同的吃法?
3、学生独立思考
4、展示学生的方法,同时让学生说说自己的搭配方法。哪种方法更好?
5、如果加上一杯果汁,一共有几种搭配方法呢?同桌互相说说想法。
6、小结:生活中看似平常、简单的事情,都藏着数学知识,可见数学知识和生活的关系密不可分。学好数学知识,就可以解决生活中的许多问题!像这样的数学问题需要按一定的顺序思考,找出所有的搭配方法。
四、情境三--游玩数字乐园
1、探究:猜数游戏
这个数是由937字组成的3位数,有几种可能性?
你能不能像刚才穿衣服,吃早餐那样按一定的顺序,不重复、不遗漏地写出这些三位数
3、独立思考
再四人小组交流,互相学习。
4、师生归纳:
同学们都能有条有理地思考,不错!介绍一下,你们是怎样想的?
这样想有什么好处吗?
5、小结:这三个数字可以有条有理、按一定顺序地进行排列。可以先定百位,再写十位和个位,这样写就不会重复、不会遗漏。生活中有许多像这样的排列组合问题。
6、确定范围:由9、3、7组成的最大三位数
五、情境四--活动乐园
小丸子要从儿童乐园经百鸟园到猴山(电脑出示练习题)在媒体上出示编号①②③④⑤有几种线路可以选择
1、独立思考,指名回答。
你能简单地画一画吗?
2、师:是不是这6条路都要选呢?如果是你,你选哪一条?为什么?
师:对,在生活中,可以根据实际情况,选择一条最佳路线。
六、情境五--游戏乐园
(一)跑道问题
小羊小猴跟小虎要进行跑步比赛,一人一个跑道的话有几种不同的站法呢?
(二)词语搭配
小大搭配河,树,山,船你有几种搭配方法
哪种方法好?
同学们能从不同的角度想出不同的方法,并且能从中选出最佳方案。真了不起!
四、情感沟通,全课总结:
1、本次数学广角,你玩得开心吗?你最感兴趣的是什么?从这里你学到了什么吗?
2、生活中经常会遇到,是不是所有的方案都要选择呢?怎么办?
通过猜想--讨论--实践--汇报--比较--归纳等环节,充分展开探索过程。学生可以有各自的表达方法,包括数学化和非数学化的表达方式,从而体现解决问题的多样化和个性化。
通过进一步的活动,给学生一个比较宽泛的问题,给学生探索的空间,初步培养学生有顺序、全面地思考问题,体验、经历数学活动的过程。
选择最佳方案,联系了生活实际,体现数学的应用价值。
与语文学科结合,数学的搭配理念也可以拓展到别的学科。
排列组合课件教案 篇10
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的`问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.
从n个不同元素中任取(≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取(≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.
要特别注意,不加特殊说明,本章不研究重复排列问题.
③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
教学设计示例
排列
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
教学重点难点
重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。
难点是解有关排列的应用题。
教学过程设计
一、 复习引入
上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):
1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.
(1)从中任取1本,有多少种取法?
(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?
2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=20xx.
第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.
二、 讲授新课
学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并回答.
(1)用加法原理设计方案.
首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.
(2)用乘法原理设计方案.
首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.
根据以上分析由学生(板演)写出所有种飞机票
再看一个实例.
在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?
找学生谈自己对这个问题的想法.
事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.
首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.
根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).
根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)
第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.
由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.
根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).
请板演的学生谈谈怎样想的?
第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.
第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.
第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.
根据乘法原理,所以共有4×3×2=24种.
下面由教师提问,学生回答下列问题
(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
都是从一些研究的对象之中取出某些研究的对象.
(2)取出的这些研究对象又做些什么?
实质上按着顺序排成一排,交换不同的位置就是不同的情况.
(3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.
上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.
第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.
第三个问题呢?
从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.
给出排列定义
请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取(≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出个元素的一个排列.
下面由教师提问,学生回答下列问题
(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?
从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.
如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.
再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.
(2)还需要搞清楚一个问题,“一个排列”是不是一个数?
生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.
三、 课堂练习
大家思考,下面的排列问题怎样解?
有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)
分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.
解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.
第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.
第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.
第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:
所以,共有9种放法.
四、作业
课本:P232练习1,2,3,4,5,6,7.
数学教案-排列教学目标
排列组合课件教案 篇11
求解排列应用题的主要方法:
直接法:把符合条件的排列数直接列式计算;
优先法:优先安排特殊元素或特殊位置
捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列
插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中
定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。
间接法:正难则反,等价转化的方法。
例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:
(1) 全体排成一行,其中甲只能在中间或者两边位置;
(2) 全体排成一行,其中甲不在最左边,乙不在最右边;
(3) 全体排成一行,其中男生必须排在一起;
(4) 全体排成一行,男生不能排在一起;
(5) 全体排成一行,男、女各不相邻;
(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;
(7) 全体排成一行,甲、乙两人中间必须有3人;
(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。
某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中 ,各有多少种不同的选法?
(1)无任何限制条件;
(2)正、副班长必须入选;
(3)正、副班长只有一人入选;
(4)正、副班长都不入选;
(5)正、副班长至少有一人入选;
(5)正、副班长至多有一人入选;
6本不同的书,按下列要求各有多少种不同的选法:
(1)分给甲、乙、丙三人,每人2本;
(2)分为三份,每份2本;
(3)分为三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;
(5)分给甲、乙、丙三人,每人至少1本
例2、(1)10个优秀指标分配给6个班级,每个班级至少
一个,共有多少种不同的分配方法?
(2)10个优秀指标分配到1、2、 3三个班,若名
额数不少于班级序号数,共有多少种不同的分配方法?
.(1)四个不同的小球放入四个不同的盒中,一共
有多少种不同的放法?
(2)四个不同的小球放入四个不同的盒中且恰有一个空
盒的放法有多少种?
排序小班数学教案10篇
教案课件是每个老师在开学前需要准备的东西,每个老师都要认真写教案课件。教案是推动学校有机更新的有效手段,怎样的教案课件算为优秀?在本文中我们将剖析“排序小班数学教案”,如果您对这个主题感兴趣请关注我们的网页!
排序小班数学教案 篇1
活动设计背景
在一次区域活动时,发现孩子对于2个物体之间的长短区分很好,但是对于多个物体时,不能很好的区分长短,所以设计了本节课。
活动目标
1、能辨别5个以内物体的长短。
2、在操作活动中体验物体从长到短或从短到长排列的顺序关系,尝试按长短排序。
3、乐于参与集体活动。
4、初步培养观察、比较和反应能力。
5、引导幼儿积极与材料互动,体验数学活动的乐趣。
教学重点、难点
重点:在操作活动中体验物体从长到短或从短到长的顺序关系;
难点:能辨别5以内物体的长短。
活动准备
1、教具准备:5支不同长短的笔;
2、学具准备:长棒;5根不同长短的绳子;5支不同长短的笔;
活动过程
1、预备活动:
师幼互相问好
走线,线上游戏:师幼边走边念儿歌,可是教师说,也可是师幼同说;
2、集体活动:
1)师幼共同探索按长短排序
创设情境:教师给小朋友带来了一群好朋友,他们是小朋友学习的好帮手。我们先给他们排排队吧。教师拿出5支不同长短的笔,师范将5支笔按照从长到短的顺序排列;
引导幼儿从上至下观察,体验笔一支比一支短;在从下至上看,体验笔一支比一支长;
2)幼儿操作探索:
教师:“长棒宝宝也想请小朋友给他们排排队。”
幼儿拿出长棒,将长棒按从短到长的顺序排列,提样长短的顺序关系。
3、分组活动,教师对幼儿进行观察,操作完成引导幼儿说出自己是怎样给物品排序的。
第一组:操作长棒,从长到短排序或从短到长排序,方向不限;
第二组:按长短顺序给绳子排队,方向不限;
第三组:操作笔,按长短排序,体验长短的顺序关系。
4、游戏活动:游戏“说相反”,教师说“××物品长”,幼儿接说“××物
品短”,要求接说的速度越快越好。如火车长——汽车短…….
5、交流小结,收拾学具:
教师引导幼儿将学具按要求收拾好。
活动延伸
1、完成操作册第13——14页的活动;
2、玩“吃小棒”游戏,幼儿3人一组,手上各有3根长短不同的长棒,3个幼儿一同说:“一、二、三、出”,幼儿分别拿出一根长棒,比较长短,长的吃短的,最短的能吃最长的。最后比一比谁手里剩下的小棒数量多。
教学反思
本节课在对教材的把握上设计较好。环节适合幼儿年龄特点,在师幼互动和幼幼互动时,孩子全身心的投入,兴趣很高。数学就是服务生活的,孩子在操作和游戏中掌握了区分长短的方法,理解了长短顺序的关系。
在幼儿分组操作时,忽略了幼儿的个体差异,在对于接受慢的幼儿没有及时给与支持和帮助,在今后的教学活动中,注重幼儿个体差异,并实施重点关注;
如果重新上这节课,我会在保持原有的基础上,在操作环节发现掌握不好的孩子,在游戏环节重点关注策略,是所有的孩子都能很好掌握;另外,在一日活动将此项活动延伸到各个环节,随机教育和引导。
排序小班数学教案 篇2
活动目标:
1、通过观察比较区别图案的大、中、小。
2、尝试将物体按一定的规律排序,初步体验按规律排序的美感。
活动准备:知识准备
教具准备:范作动物新衣样板
学具准备:小羊、小猪、小狗的操作板、大中小图案的纸若干
活动过程:
一、出示小动物操作板,引出活动。
1、今天森林里要开舞会,很多小动物们都要去参加。
2、小羊、小猪、小狗都在发愁?为什么呀?它们有没有漂亮的花衣服?
二、引导幼儿相互讨论,利用桌上的材料来帮小动物按排序规律来设计新衣服。
1、我们小朋友愿不愿意来帮助他们呀?
2、桌上的小碗里有很多漂亮的图案,它们有什么不同?(大、小不同)
3、我们案例尝试一下这个小朋友的方法来给小动物设计的漂亮衣服。按大、中、小的规律来排序。
4、哪么啊有其他的方法来为小动物设计新衣?尝试用小、中、大的规律来给小动物设计新衣。
三、幼儿尝试按照大、中、小或小、中、大的规律来给小动物设计新衣。
1、小朋友的桌上还有许多的小动物在等着大家帮他们设计漂亮的新衣。
2、大家可以尝试用大、中、小的图案来为它们设计,也可用小、中、大的规律来设计。
3、大家一起开动脑筋,为小动物们设计出漂亮的新衣来哦!
四、幼儿相互介绍、展示自己做的新衣。
1、请幼儿来介绍一下,你是按照什么样的规律来为小动物设计新衣的。
2、小动物今天真开心,它们要谢谢大家,设计了这么漂亮的花衣服!他们穿了新衣服去参加舞会喽!
排序小班数学教案 篇3
教学科目:数学
教学内容:有趣的排序
教学目标:
1、通过活动让幼儿了解基本的排列规律。
2、培养幼儿的初步推理能力,尝试有规律的交替排序,培养幼儿的逻辑推理能力。
活动准备:课件
活动过程:
一、以游戏去小兔家玩导入活动。
小兔做客,引起兴趣。
出示课件:咦,谁来啦?(小兔)。小兔要搬新家了,今天,小兔邀请了小乌龟去它家里玩了。(出示课件)它提着蓝子准备去草地上摘些花把新房装饰的更漂亮。
二、探索、发现规律。
1、小兔来到草地上,看见许多的花,它可高兴了,咦,它看见前面的花特别的漂亮,我们一起来看看都有什么颜色的花?这些花是怎样长的?你发现有什么规律?我们也一起看看这些花是怎么排序的。(引导幼儿看课件观察,并说出排序的规律。)
老师小结:这些鲜花是按照一朵红色,一朵白色,一朵红色,一朵白色的规律交替的排列着。所以显得更漂亮。
2、小兔摘好的花往家里走去,哈,一群可爱小鸡拦住了小兔的路,看,小鸡真听话,一个一个的排着队,我们一起看看都有什么颜色的小鸡?你发现这些小鸡是按照什么规律排队的呀?
(引导幼儿看课件观察,并说出排序的规律。)小结:原来小鸡是按照一只红的一只黄的来排列的。所以显得队伍很整齐。
3、小兔走到一棵枫树的下面,看见有红色和干枯了的枫叶在往下掉。
小兔就想:要是枫叶也像小鸡一样排好队来往下掉就好了。小朋友我们一起来想想怎样让枫叶也排整齐队呢?
(引导幼儿看课件观察,并说出排序的规律。)这些颜色怎样排列的?有什么规律?
4、小兔回家看见家里有许多的正方形的箱子,乱乱的,看着很不好,于是小兔也把正方形的箱子也一个一个的排好队,可排着排着,小兔就不知道有的地方要排什么颜色的箱子了,它想请小朋友来帮忙。(引导幼儿看课件观察,并说出排序的规律。)这些颜色怎样排列的?有什么规律?
小结:原来箱子是按照一个红的一个蓝的来排列的。所以家里就不会显得很乱了。
5、小兔把买好的糖果一颗一颗的挂起来,等乌龟来了就能看见小兔买了糖果给它吃,小兔摆着摆着就累的停下了,这可怎么办呀,还有糖果还没摆好呀。小朋友我们来帮助它把糖果摆好吧。(引导幼儿看课件观察,并说出排序的规律。)
6、小兔家要经过一条漂亮的石头小路,这条小路是小兔用不同颜色的小石头有规律的铺成的?有什么规律呢?我们跟着一起来看看吧。(是怎样铺的?你发现有什么规律?)
小结:哦,这条小路是由红色和蓝色铺成的,而且是按照一个红,一个蓝,有规律的反复交替的排着,所以非常的漂亮。
7、天空突然下雨了,把小兔漂亮的有颜色的路都给淋不见了,小兔伤心的想哭了,小兔觉得小朋友非常聪明,它想请小朋友把门前的小路也按照它们的规律来排一排好吗?(老师提供排的物体)。
三、幼儿操作。
幼儿操作,老师巡视指导。
老师评价幼儿操作情况,活动结束。
四、看,小兔的朋友来它家做客了,看见它门口是小朋友完成的路,夸小朋友真的很不错!
排序小班数学教案 篇4
活动设计背景
在一次区域活动时,发现孩子对于2个物体之间的长短区分很好,但是对于多个物体时,不能很好的区分长短,所以设计了本节课。
活动目标
1、能辨别5个以内物体的长短。
2、在操作活动中体验物体从长到短或从短到长排列的顺序关系,尝试按长短排序。
3、乐于参与集体活动。
4、培养幼儿比较和判断的能力。
5、引导幼儿积极与材料互动,体验数学活动的乐趣。
教学重点、难点
重点:在操作活动中体验物体从长到短或从短到长的顺序关系;
难点:能辨别5以内物体的长短。
活动准备
1、教具准备:5支不同长短的笔;
2、学具准备:长棒;5根不同长短的绳子;5支不同长短的笔;
活动过程:
1、预备活动:
师幼互相问好
走线,线上游戏:师幼边走边念儿歌,可是教师说,也可是师幼同说;
2、集体活动:
1)师幼共同探索按长短排序
创设情境:教师给小朋友带来了一群好朋友,他们是小朋友学习的好帮手。教案网.]我们先给他们排排队吧。教师拿出5支不同长短的笔,师范将5支笔按照从长到短的顺序排列;
引导幼儿从上至下观察,体验笔一支比一支短;在从下至上看,体验笔一支比一支长;
2)幼儿操作探索:
教师:长棒宝宝也想请小朋友给他们排排队。
幼儿拿出长棒,将长棒按从短到长的顺序排列,提样长短的顺序关系。
3、分组活动,教师对幼儿进行观察,操作完成引导幼儿说出自己是怎样给物品排序的。
第一组:操作长棒,从长到短排序或从短到长排序,方向不限;
第二组:按长短顺序给绳子排队,方向不限;
第三组:操作笔,按长短排序,体验长短的顺序关系。
4、游戏活动:游戏说相反,教师说物品长,幼儿接说物
品短,要求接说的速度越快越好。如火车长汽车短.
5、交流小结,收拾学具:
教师引导幼儿将学具按要求收拾好。
活动延伸:
1、完成操作册第1314页的活动;
2、玩吃小棒游戏,幼儿3人一组,手上各有3根长短不同的长棒,3个幼儿一同说:一、二、三、出,幼儿分别拿出一根长棒,比较长短,长的吃短的,最短的能吃最长的。最后比一比谁手里剩下的小棒数量多。
教学反思
本节课在对教材的把握上设计较好。环节适合幼儿年龄特点,在师幼互动和幼幼互动时,孩子全身心的投入,兴趣很高。数学就是服务生活的,孩子在操作和游戏中掌握了区分长短的方法,理解了长短顺序的关系。
在幼儿分组操作时,忽略了幼儿的个体差异,在对于接受慢的幼儿没有及时给与支持和帮助,在今后的教学活动中,注重幼儿个体差异,并实施重点关注;
如果重新上这节课,我会在保持原有的基础上,在操作环节发现掌握不好的孩子,在游戏环节重点关注策略,是所有的孩子都能很好掌握;另外,在一日活动将此项活动延伸到各个环节,随机教育和引导。
排序小班数学教案 篇5
比较概念。2、长短不一的小棒各4根;食用山楂条。
活动过程
一、导入
1、调动幼儿情绪。
教师:今天老师要请客啦,看!这是什么?(长条山楂卷)
这两根山楂条一样长吗?(一样长)
老师将其中的一根切下一小块,请一幼儿品尝。
2、比比看,有什么变化?(一根长,一根短)
然后,老师再将长的一根切下一段,给幼儿品尝。
(直至两根全部吃完)
二、展开
1、幼儿自由探索给小棒排序。
请幼儿自己比一比小棒的长短,排一排小棒,主动探索排序方法,教师观察幼儿掌握排序的情况。
2、教师利用课件与幼儿一起总结、归纳排法。
请幼儿观看课件:3-2比较概念
(1)先比较4个物体,找出最长、最短的,最短的放在最前面,最长的放到后面。
(2)然后比较其它两个物体的长短、按顺序放在中间,并说出:我是按照最短的、短的、长的、最长的顺序给物体排队的。
请幼儿观看课件:3-1比较概念
(3)让幼儿在正排序的基础上进行逆排序。
3、引导幼儿讨论:两种排序的方法为什么不一样?
(1)正排序是从短到长,一个比一个长。
(2)逆排序是从长到短,一个比一个短。
(3)鼓励儿大胆用语言表述。
三、结束
1、请幼儿自由排序,教师进行个别辅导。
2、教师小结,自然结束。
排序小班数学教案 篇6
设计理念:
数的组成在幼儿园数学教育中有着极其重要的教育意义。对于数的概念,我发现小班幼儿对数概念的获得需要大量的操作和游戏活动来完成。在平常的教学活动当中我发现我们班的幼儿对小动物十分喜欢,他们对小动物赋予了人性化的情感。所以本次活动我抓住幼儿这一特性,以动物为载体,设计了"数一数、排一排、送一送"的数学游戏,让幼儿在有趣的游戏中、探索中感知5以内的数量,并学会从少到多的顺序排序。
活动目标:
1、感知5以内数量,能手口一致地点数,并说出总数。
2、学习按从少到多的顺序排序,并匹配相应的点卡。
3、喜欢参加操作活动,并能按要求完成,体验数学游戏的乐趣。
活动准备:
房子5座 动物(5种) 若干糖 点卡
活动过程:
一、数一数,感知5以内的数量。
1、去做客,激发活动兴趣。
"今天森林里的小动物们请我们去做客玩一玩,可是我们不能空着手去,让我们带些糖果给他们一起分享,好吗?"
2、取糖果,感知数量。
"这么多的糖果,小动物们有口福了。可是小动物吃糖果的数量是不一样,所以请小朋友根据点卡上点子的数量来取糖果,好吗?"
(幼儿取糖果,边拿边说:"几个点我拿几个糖果")
"现在就让我们拿着糖果,开着汽车去小动物家坐客吧,出发啦!"
二、排一排,按量排序并匹配。
1、练习点数。
"我们来看一看先到谁的家,敲敲门。"(一一出示)
"每一种动物有几只,请你数一数。"
2、按量排序。
"哇,这么多的小动物要和我们玩游戏,但是要有顺序才能进行。"
"请小朋友先数一数篓子里的动物各有多少,在红旗标记图上用从少到多的顺序帮他们排排队,然后送上相应数量的点卡。"
3、归纳小结
"我们一起来看一看小朋友是怎么排的?几只小动物送几个点子?"
三、送一送,体验数学游戏的乐趣。
"小朋友们真能干,一下子帮小动物们排好了队,那我们也要把糖果拿出来送给他们啦!"
"你带了几颗糖果请你再数一数。"
"小动物们说了,他们每个人只吃一颗糖果,所以有几只小动物就送几颗糖果,明白吗?"
"小动物收到了你们的礼物真高兴,现在让我们一起去玩游戏吧!"
活动反思:
本次活动尝试打破了传统教学的模式,把数学活动和游戏活动进行了整合,从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣,对数学活动的要求,教师为幼儿创设了一个有准备的环境,把抽象、枯燥的数学内容变成有趣的生活活动,让幼儿在轻松、自由的环境中主动地去探索学习。
排序小班数学教案 篇7
活动目标:
1.区分红、黄、蓝三种颜色,按颜色的标记分类。
2.能用语言表述分类的结果。
3.初步学习把相同颜色的不同物体放在一起。
4.发展目测力、判断力。
5.引导幼儿积极与材料互动,体验数学活动的乐趣。
活动重难点:
会按颜色的标记来分类。
活动准备:
1.经验准备:幼儿在美工活动及日常工作中已经认识红、黄、蓝三种颜色。
2.物质准备:红、黄、蓝颜色标记若干,小兔子玩偶三个。花片
3.环境创设:创设"小兔的家"环境。 (桌上放有红、黄、蓝色的东西)
活动预设:
一、以"参观小兔家"的游戏形式引入,复习对红色、黄色、蓝色的认识。
提问:小兔的桌上有什么?是什么颜色的?
二、游戏"给小兔送花"
1.认识颜色标记。提问:这三只小兔子都有自己喜欢的颜色,它们穿着自己喜欢的颜色的裙子,(.来源快思老师)看看它们穿了什么颜色的裙子?
2.游戏
引导语:喜欢红色的小兔子,要送给它什么颜色的花呢?请你把花送给它。然后再分别给喜欢黄色的小兔和喜欢蓝色的小兔送花。
三、游戏:相同颜色在一起。
游戏规则:幼儿自由选取红、黄、蓝颜色标记一个,教师引导幼儿按标记的颜色站在一起。再交换颜色标记,再次游戏。
引导语:每个小朋友都有一个颜色标记,请手那相同颜色标记的小朋友站在一起。
四、结束
教学反思:
本次活动符合小班幼儿的年龄和认知特点,主要通过游戏的形式展开活动,活动中,我借用了卡通图片、头饰等辅助教具,极大地吸引了幼儿的注意力,增强了活动的趣味性。活动中,我设计了形式多样的游戏贯穿始终,并引导幼儿紧紧围绕教学目标来开展游戏活动。在整个活动过程中,我为幼儿提供了一个非常宽松而愉悦的环境,让幼儿在看看、玩玩、学学的过程中不知不觉辨别红、黄、绿三种颜色,并进行分类,形成了良好的师生互动、生生互动的学习氛围。有力的激发了幼儿的学习兴趣,使其充分体验到了数学活动的快乐。
排序小班数学教案 篇8
活动过程:
一、小兔的新家。
(1)教师带领幼儿来到布置好的小兔子家院子里。
(2)教师:小兔搬新家了,这两天正忙着装修呢!瞧,院子里的地砖才铺了几块还没铺好,我来帮帮他吧!
二、按规律铺地砖。
(1)师幼观察按一一规律排列不完全的地砖,说出地砖的排列规律:一块红一块绿,一块红一块绿……启发幼儿思考接下去应该怎么铺呢?
(2)引导幼儿从不同的方向观察并尝试接下去铺地砖,分别询问幼儿是如何铺地砖的。
三、按一二规律砌围墙。
(1)师生共同观察砌墙的砖块形状(长方形、半圆形)并讨论围墙的排列形式。
(2)引导幼儿按一块半圆形两块长方形来砌围墙,请个别小朋友先试一试,引导幼儿观察并检查他所砌的围墙是否正确。
(3)师幼再次尝试按规律把小兔喜爱的围墙砌好,师幼共同检查自己所砌的围墙是否按规律排列。
四、游戏《找朋友》。
(1)教师:小兔院里的地砖和围墙都装修好了,小兔可高兴呢,它非常感谢我们,邀请我们和它一块儿跳一个找朋友的舞蹈。
(2)带领幼儿随着音乐,与同伴、教师共同玩游戏――找朋友。在活动区中为幼儿提供各种材料,让步幼儿有规律的排序或装饰花边。
排序小班数学教案 篇9
设计意图与背景:
大小排序是一项很平常的数学活动,但是怎样引导幼儿学习是大家关注的一个问题。在这里,我们尝试以游戏的形式,在简单、轻松的活动中,让幼儿自主地探索,学习。活动的材料,我们采用蒙氏教育材料,通过感觉统合,促进幼儿发展。
活动目标:
1、通过活动,正确获得大小、差异变化的知觉。
2、在活动中能大胆进行尝试。
3、乐于探索、交流与分享。
4、促进幼儿的创新思维与动作协调发展。
活动准备:
各种方体玩具、包装盒
活动过程:
游戏:“搭火车”
(1) 幼儿尝试游戏。
师:“小朋友们瞧,老师带来了好玩的积木宝宝。”
“看看,它们是什么样的?”
“它们一样吗?有什么不一样?”(让幼儿看一看,摸一摸,再想一想,感知立方体及它们的不同。活动中,幼儿说出了“上面有许多正方形”、“它们大小不一样!”“有小的、有大的!”)
“你们想玩吗?”“我们玩一个搭火车的游戏吧!”
“看看哪个宝宝能干,搭的火车漂亮!”;文章出自.快思老师.教,案网'(老师先不提要求,让幼儿自由操作,老师参与幼儿的活动,注意发现是否有幼儿按规律进行排序。)
(2) 讨论小结。
(在幼儿的活动中发现规律,既肯定了幼儿的探索,又激起幼儿的学习兴趣。)
(音乐集中幼儿、观察选择能按大小顺序排列的火车)
师:“**宝宝搭的这列火车真漂亮!我们来看看它是怎么搭的。”
(丁政和蒋佳茜两位小朋友是按大小规律排列的,我们请他(她)说一说他们是怎样搭的,但是小班幼儿的表述能力还不行,所以他们不知道怎样说,于是,老师和小朋友一起边看边说:大大的火车头,身体越来越小。表扬了这两位幼儿,他们非常的开心。)
(3)老师示范。
师:“老师也想玩一玩这个游戏。宝宝们看,老师也来搭火车!”
“看看谁最大?让它做火车头!再找个大的做身体,找哪个?看看,还有谁大?搭上去。再找哪个?
活动反思:
一环又一环的情境创设抓住了幼儿学习的兴趣,使幼儿在兴趣中学会了能按从大到小排序或从小到大排序,真正做到在玩中学。
本节课幼儿操作的材料很多,能力差的幼儿有的操作没能完成,这需要教师课下帮助幼儿完成,使幼儿体验到成功的快乐。
排序小班数学教案 篇10
活动目标:
1、通过活动让幼儿了解基本的排列规律。
2、培养幼儿的初步推理能力,尝试有规律的交替排序,培养幼儿的逻辑推理能力。
活动准备:
课件
活动过程:
一、以游戏"去小兔家玩"导入活动。
小兔做客,引起兴趣。
出示课件:咦,谁来啦?(小兔)。小兔要搬新家了,今天,小兔邀请了小乌龟去它家里玩了。(出示课件)它提着蓝子准备去草地上摘些花把新房装饰的更漂亮。
二、探索、发现规律。
1、小兔来到草地上,看见许多的花,它可高兴了,咦,它看见前面的花特别的漂亮,我们一起来看看都有什么颜色的花?这些花是怎样长的?你发现有什么规律?我们也一起看看这些花是怎么排序的。(引导幼儿看课件观察,并说出排序的规律。)老师小结:这些鲜花是按照一朵红色,一朵白色,一朵红色,一朵白色的规律交替的排列着。所以显得更漂亮。
2、小兔摘好的花往家里走去,哈,一群可爱小鸡拦住了小兔的路,看,小鸡真听话,一个一个的排着队,我们一起看看都有什么颜色的小鸡?你发现这些小鸡是按照什么规律排队的呀?
6、小兔家要经过一条漂亮的石头小路,这条小路是小兔用不同颜色的小石头有规律的铺成的?有什么规律呢?我们跟着一起来看看吧。(是怎样铺的?你发现有什么规律?)小结:哦,这条小路是由红色和蓝色铺成的,而且是按照一个红,一个蓝,有规律的反复交替的排着,所以非常的漂亮。
7、天空突然下雨了,把小兔漂亮的有颜色的路都给淋不见了,小兔伤心的想哭了,小兔觉得小朋友非常聪明,它想请小朋友把门前的小路也按照它们的规律来排一排好吗?(老师提供排的物体)。
三、幼儿操作。
幼儿操作,老师巡视指导。
老师评价幼儿操作情况,活动结束。
四、活动结束
看,小兔的朋友来它家做客了,看见它门口是小朋友完成的路,夸小朋友真的很不错!
盾棍组合教案
今天幼儿教师教育网的编辑将为大家介绍一篇充满智慧的“盾棍组合教案”文章,如果这篇内容对你有帮助请将其收藏起来。学生们有一个生动有趣的课堂也是离不开老师提前备好教案课件,大家可以开始写自己课堂教案课件了。教案是教师为完成教育教学任务而制定的计划书。
盾棍组合教案 篇1
今天,我说课的内容是湘教版七年级上册第五单元《班级演唱组合》。
“兴趣是最好的老师”这是一句至理名言。正是基于这一点,本科围绕学生很喜欢也很熟悉的演唱形式――“组合演唱”来安排本单元教学内容,它包括两大块:一是学唱歌曲《青春舞曲》;二是进行班级演唱组合展示活动。第一部分的教学内容为第二部分展示活动提供演唱素材。当然,也可以让学生选中他们熟悉和喜爱的歌曲,从而充实拓展本课的教学内容。
我设定本课的教学目标之一就是指导学生演唱本课的歌曲。基于有些学生心理素质差,不善于表现自己的特点,而设定第二个教学目标,就是让学生能够根据歌曲的不同特点与风格,采用组合的形式创造性地表现歌曲的情绪和意境,并能自信地、有表情地当中演唱所学歌曲。第三个目标是让学生了解演唱组合的特点,并能在演唱活动中对自己、他人、集体的演唱作出简单的评价。
教学的重点是能让学生充分地参与歌曲表现并获得丰富的个性体验,这点让学生在积极主动的表演中有所体现。
学生的活动时间难把握,所以如何合理安排教学时间,调控好教学活动,激发学生的'主动参与意识是本课的难点。
为了学生更好的体验作品的意境,领略音乐的无穷魅力,充分调动学生积极主动参与的热情,本课我设计了探究式听赏教学法,运用多媒体播放MTV让学生听赏,既能提高学生学习的兴趣,又能拓宽学生思路,为后面的组合演唱大有帮助,同时,老师范唱歌曲,也会给学生一个整体感受。
通过学生的自主互助,我采用了合作学习探究法,进行演唱组合,有利于充分发挥学生的主体地位,合作互助意识,让学生在合作中学习,在合作中成长。
还采用了归纳总结法:让学生在问题情景中设法解决问题,并及时归纳,以达到认知的程度。
根据本课的教学目标,重难点及学生的认知规律,我作了如下教学过程设计。
多媒体播放演唱组合欣赏。
让学生欣赏一组充满现代气息的动感组合片段,让学生组织交流,回答组合的名称。
作简评,同时激发学生学习热情。同学们都喜欢这种充满青春活力的演唱形式,那今天我们也来过把“歌星瘾”,我们也采用组合演唱的形式来演唱歌曲,那我们首先得准备能共同演唱的歌曲,下面我们就来学唱一首节奏感强,充满青春活力的歌曲《青春舞曲》。
由歌曲引出作者。(王洛宾,唱《掀起你的盖头来》、《在那遥远的地方》,学生说歌名.)
激发学生设计舞蹈动作,表现歌曲。(组合演唱的特点是边歌边舞,充满活力,有些同学活泼好动,会现代舞,可以随乐跳,要求人人都动,动作多样,气氛热烈、融洽。)
推荐合适演唱的歌曲。
介绍几种有特色的演唱形式。
播放范例,供学生听赏、模仿。
(3)教师总结。(组合也有便演奏边演唱的,如花儿乐队、唐朝乐队)
1.提出组合演唱的要求。(让学生自由组合,并写好组合名称、歌曲名、人数.)
2.学生尝试组合演唱。(学生讨论、排练,教师用屏示的形式提醒、作必要指导。)
1.激励学生。(电视上,台上一分钟,台下数年功,我们台上一分钟,台下十分钟,为我们出色的表演鼓掌祝贺。)
2.布置作业。(将举行“班级演唱组合比赛”,要求学生认真准备。)
结束:本节课根据新课改理念和初一学生的心理特征,以认知发展为主线,情意发展,交往互动为呈现形式,放手让学生自主合作探索学习,主动参与到知识形成的整个思维过程。力求使学生在积极、愉快的课堂气氛中提高自己的音乐审美能力,从而达到预期的教学效果。我的说课完毕,其中有不成熟的地方,希望大家批评指正,谢谢大家!
盾棍组合教案 篇2
本节课你有哪些收获?
组合图形的面积一节内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,进一步探讨研究图形的面积,也是日常生活中经常需要解决的问题。因此,我设计时主要是让学生自主探索,在具体的情境中领会转化的数学思想,体会并掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法解决实际问题。一是设计了“复习铺垫、激趣引入”的欣赏导入环节,引导学生欣赏组合图形的图案,给学生美的享受,使学生感受到生活中组合图形的存在,并激发学生动手操作的兴趣和欲望。二是设计了“实践操作、探究新知”的新知探究环节在“比一比、说一说”活动中与同学交流,把学生手、口、脑都用起来,体验合作探究的快乐。三是设计了“知识应用、解决问题”的知识巩固环节,学生自己探索出求组合图形面积的方法,处于一种跃跃欲试的状态,巩固了所学的知识。四是设计了“交流小结、深化知识”的知识提升环节,安排学生谈本节课学习收获,让学生在学生的发言和教师的引导中感受转化数学思想的意义,掌握求组合图形面积的方法,体验探究学习的成功。
这节课教学中,我没有教学生怎么样去求组合图形的面积,而是让学生借助学具、课件,自己去动手、去交流、去思考、去归纳,去提炼,从感受到理解,自主解决本节课中的问题,不仅学得了本节课的知识,而且领悟了用转化思想解决数学问题的数学思想,还学得了一些数学学习的方法,为今后更好的学习数学奠定了基础。
盾棍组合教案 篇3
本课的教学遵循了学生自主学习的原则,通过学生合作探究,寻找解决问题的办法,突出了转化思想,能够结合实际,让学生体验生活中的数学,加强了数学的乐趣。
1.组合图形的面积是学生学习了长方形、正方形、平行四边形、三角形和梯形的面积计算的基础上进行教学的,上课的时候我一开始设计了复习基本图形的面积,为下面计算组合图形的面积打下基础。接着让学生用长方形、正方形、平行四边形等基本图形拼出一些美丽的图案,体会组合图形的特点,玮引入组合图形做好了准备,以旧引新顺其自然。又认识了生活中的组合图形,感知数学无处不在,有了这些基础学生很顺利的进入新知识的探究。
2、经历探索过程,在同伴的合作中寻找解决问题的办法,突破本节课的重难点教学。由自己独立探索到小组合作以及全班交流。学生动手操作,自主探究,理解并掌握了组合图形的面积的计算方法。课堂上充分发挥了学生的自主性,调动了学生的学习积极性,在交流多种方法的过程中也培养了学生的发散思维能力。学生了解了用分割法或添补法转化成基本图形计算组合图形的面积,明白了无论分割与添补,图形越简单越好,越简单越便于计算,同时还要考虑到分割或填补的图形与所给的条件的关系。
3 、本节课充分发挥了学生的主体作用,大胆尝试放手,相信学生的能力,鼓励学生主动探索,给足学生时间和思维的空间,尽最大限度地发展学生的观察思考能力和探究能力,增强了学生的'学习兴趣。
4、课堂练习紧扣生活实际,并注重教学难点的进一步实践。
随后出现的课堂练习,均从实际生活情境中来。首先队旗的面积计算,这是学生比较感兴趣的话题,能够引起他们的计算热情。同时中队旗这个组合图形可以用分割法或者添补法转化成不同的基本图形,使学生进一步体验组合图形计算的多样性。接着计算的零件的面积,则是学生体会根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。练习的第三题则设置了哪个公司的报价划算的情境,增强学生解决实际问题的能力,体验数学的实用性。其后跟着的两道练习,都是不断加强本节课的学习要点,注重学生的实际问题的解答能力。
盾棍组合教案 篇4
儿童思维发展的一般规律是从具体形象开始的,在此基础上再逐步形成抽象的思维特点。在了解了什么是组合图形的基础之上,我提出:“这样的组合图形面积该如何计算呢?”这一问题,学生带着这个问题先进行自主探究,充分利用老师下发的题单和图形学具,通过画、拼、摆等方式,把组合图形转化成以前所学习过的几个简单图形,再通过把这几个简单图形的面积相加得到组合图形的面积,在对组合图形进行“分分合合”的过程中展现的非常充分。那么计算组合图形面积到底有哪些方法呢?同学们在组内进行合作交流,根据各种组合图形的条件总结出不同的有效的计算方法。(出示课件):
① 分割法② 填补法③ 割补法
前两种方法学生掌握的非常好,但在试讲中并没有出现割补法,要知道这也是解决组合图形面积的方法,于是我及时调整预设,在后面“做一做”中进行弥补。这个练习很生动形象的展现出割补法的作用和优势,学生会很自然的往这个方向去思考。通过这样的讲练结合的方式这样由学生自己先独立思考,到合作研究,到全体汇报,再到练习补充的形式体现了探究知识的过程,既培养了学生自主学习、独立思考的能力、又让学生在有效的学习活动中掌握了计算组合图形面积的方法,使教学重点得以突出。
盾棍组合教案 篇5
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的`问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.
从n个不同元素中任取(≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取(≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.
要特别注意,不加特殊说明,本章不研究重复排列问题.
③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
教学设计示例
排列
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
教学重点难点
重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。
难点是解有关排列的应用题。
教学过程设计
一、 复习引入
上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):
1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.
(1)从中任取1本,有多少种取法?
(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?
2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=20xx.
第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.
二、 讲授新课
学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并回答.
(1)用加法原理设计方案.
首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.
(2)用乘法原理设计方案.
首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.
根据以上分析由学生(板演)写出所有种飞机票
再看一个实例.
在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?
找学生谈自己对这个问题的想法.
事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.
首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.
根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).
根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)
第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.
由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.
根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).
请板演的学生谈谈怎样想的?
第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.
第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.
第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.
根据乘法原理,所以共有4×3×2=24种.
下面由教师提问,学生回答下列问题
(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
都是从一些研究的对象之中取出某些研究的对象.
(2)取出的这些研究对象又做些什么?
实质上按着顺序排成一排,交换不同的位置就是不同的情况.
(3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.
上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.
第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.
第三个问题呢?
从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.
给出排列定义
请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取(≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出个元素的一个排列.
下面由教师提问,学生回答下列问题
(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?
从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.
如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.
再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.
(2)还需要搞清楚一个问题,“一个排列”是不是一个数?
生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.
三、 课堂练习
大家思考,下面的排列问题怎样解?
有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)
分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.
解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.
第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.
第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.
第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:
所以,共有9种放法.
四、作业
课本:P232练习1,2,3,4,5,6,7.
数学教案-排列教学目标
盾棍组合教案 篇6
教学目标:
1、引导幼儿感受图形与生活的密切关系。
2、培养幼儿动手操作能力,感受图形组合创新的乐趣。
3、让幼儿尽可能的说出与图形想象的物体,初步学习从一点向多点发散的'思维方法,培养初步的想象力与发展思维能力。
教学准备:
收集不同形状的物体若干、制作课件、请家长多让幼儿见识一些带有明显特征的物品,了解图形特征。
情景游戏师:小朋友,你们闻到了什么香味?(一间食品超市、一间面包房、一家点心店),我们一起去看看都有什么好吃的美味食品吧!
说一说你们手中拿的都是什么食品?什么形状?(互相说、个别说)你们看老师手中拿的面包是什么形状的?展示几种食品,引导幼儿说出不同形状的图形特征。
(出示多种形状的物品)师:咱们生活中有很多形状的物品,如果不小心把这些物品混在一起,那可怎么办?
(引导幼儿区分整理物品,并提示幼儿用贴标签的形式记录自己的劳动成果,并验收区分整理的物品对不对。)
1、师:刚才我们认识了这么多不同形状的物品,你还能说出几种不同形状的物品吗?(个别幼儿回答)
2、课件展示。
师:图形在地上打了个滚变成圆圆的皮球,还会变成什么?(课件演示圆形又变成了自行车的车轮,又变成了圆圆的小汽车,依次利用课件展示长方形的信封变成电话机,又变成了长方形的手机,三角形的风筝变成降落伞,又变成航模飞机。)引导幼儿想象还有什么物品是根据自身的特征变化一下就能应用于人们生活中的。
3、教师继续提问,师:你还想在未来发明创造什么形状的物品,他对人们生活有什么好处?
随着疑问的设置,引导幼儿大胆想象,并用语言表达出来,充分激发幼儿的创新想象力。
小朋友们,图形娃娃很喜欢和你们一起玩,现在请你们和他们一起玩吧!鼓励幼儿自由添画、拼贴、剪纸、捏泥,体验创作的乐趣。
(七)结束活动展示幼儿作品,肯定幼儿的表现,在评价中提高幼儿的想象力和创新能力。
鼓励幼儿下课后,到区角把自己想象到的在未来会发明的物体画下来。
教学反思:
老师能紧紧围绕教学目标展示活动,以层层递进的设问形式激发了幼儿创新思维的兴趣。在活动中,利用动静结合的方式,围绕“有趣的图形”开展创新思维活动和动手操作活动,亦能积极调动幼儿的兴趣,使之创新思维能力得到提高。老师只以一名引导者、支持者、参与活动,引导幼儿从不同的角度进行发散思维,从中体验到发散思维的乐趣。
盾棍组合教案 篇7
1.(福州三中月考)某研究性学习小组有4名男生和4名女生,一次问卷调查活动需 要挑选3名同学参加,其中至少一名女生,则不同的选法种数为
2.(成都模拟)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()
甲在周二,共有A23种排法;
甲在周三,共有A22种排法;
A24+A23+A22=20.
3.(沧州模拟)10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2个站前排,其他人的相对顺序不变,则不同调整方法的种数为()
[解析] 从后排抽2人的方法种数是C27;前排的排列方法种数是A25,由分步计数原理知不同调整方法种数是C27A25.
4.(广东揭阳模拟)一个汽车牌照号码共有五位,某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D中选择, 其他四个号码可以从0~9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有()
[解析] 按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位各有4种选法,因此该车主的车牌号码可选的所有可能情况共有A15A13A14A14A14=960种,故选D.
5.(柳州模拟)如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有()
[解析] 先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13C12C11C12=3 212=12种不同的涂法.
6.(菏泽模拟)从集合{1,2,3,,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()
[解析] 当公比为2时,等比数列可为1、2、4,2、4、8.
当公比为3时,等比数列可为1、3、9.
当公比为32时,等比数列可为4、6、9.
同时,4、2、1,8、4、2,9、3、1和9、6、4也是等比数列,共8个.
7.(昆明模拟)将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案有________.
[解析] 将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排一名学生有C24A33种分配方案,其中甲同学分配到A班共有C23A22+C13A22种方案.因此满足条件的不同方案共有C24A33-C23A22-C13A22=24(种).
8.有6个大小不同的 数按如图的形式随机排列,设第一行的数为M1,第二、三行中的最大数分别为M2、M3,则满足M1
[解析] 设6个 数按从小到大顺序依次为a1、a2、a3、a4、a5、a6.
据题设条件知M3=a6,
可依第二行最大数M2分类讨论.
①若M2=a5,有排法C14C13A22A33=144种.
②若M2=a4,则a5必在第三行有排法C13C12A22A33=72种.
③若M2=a3,则a4、a5都在第三行有排法C12A22A33=24种,据条件知M2不能小于a3.
满足题设条件的所有不同排列的个数为144+72+24=240个.
9.在空间直角坐标系O-xyz中有8个点:P1(1,1,1)、P2(-1,1,1)、、P7(-1,-1,-1)、P8(1,-1,-1)(每个点的横、纵、竖坐标都是1或-1),以其中4个点为顶点的三棱锥一共有________个(用数字作答).
[解析] 这8个点构成正方体的8个顶点,此题即转 化成以正方体的8个顶点中的4个点为顶点的三棱锥一共有多少个,则共有三棱锥C14C34+(C24C24-24-2)+C34C14=58个.
[点评] 用间接法求解更简便些,从正方体的8个顶点中任取4个,有不同取法C48种,其中这四点共面的(6个对角面、6个表面)共12个,这样的三棱锥有C48-12=58个.
10.(苏州调研)某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?
[解析] 根据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2个项目,然后再分配给4个城市中的2个,共有C 23A24种方案;另一类1个城市1个项目,即把3个元素排在4 个不同位置中的3个,共有A34种方案.由分类加法计数原理可知共有C23A24+A34=60(种)方案.
11.(广东广州综合测试)将18个参加青少年科技创新大赛的名额分配给3个学校,要求每校至少有一个名额且各校分配的名额互不相等,则不同的分配方法种数为()
[解析] 若某一学校的最少人数是1,2,3,4,5,则各有7,5,4,2,1种不同的分组方案.故不同的分配方法种数是(7+5+4+2+1)A33=196=114.
12.(甘肃兰州高手诊断)某位高三学生要参加高校自主招生考试,现从6所高校中选择3所报考,其中两所学校的考试时间相同.则该学生不同的报名方法种数是()
[解析] 若该考生不选择两所考试时间相同的学校,有C34=4种报名方法;若该考生选择两所考试时间相同的学校之一,有C24C12=12种报名方法,故共有4+12=16种不同的报名方法.
13.(天津理)如图,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()
[解析] 当涂四色时,先排A、E、D为A34,再从B、F、C三点选一个涂第四种颜色,如B,再F,若F与C同色,则涂C有2种方法,若F与C异色则只有一种方法,故A34A13(2+1)=216种.
当涂三色时,先排A、E、D为C34A33,再排B有2种,F、C各为一种,故C34A332=48,
故共有216+48=264种,故选B.
14.(2010洛阳模拟)一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有()
[解析] 如图所示,三个区域 按参观的先后次序共有A23种参观方法,对于每一种参观次序,每一个植物园都有2类参观路径,共有不同参观路线222A23=48种.
盾棍组合教案 篇8
教学目标:
1.通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数
3.初步培养有顺序地、全面地思考问题的意识。使学生在数学活动中养成与人合作的良好习惯。
教学难点:初步理解简单事物排列与组合的不同,怎样有序的进行排列组合。
教学准备:多媒体课件、数字卡片、1角、2角、5角的人民币。
师:同学们老师今天想带大家一起去数学王国玩,你们想去吗?同学看数学王国到了,可是门是锁着的,只有输入正确的密码门才可以打开,可是密码是多少呢?提示密码是由1和2这两个数字摆成的两位数。那么这个密码是多少呢?
师:经过同学们的努力数学王国的大门打开了,你们高兴吗?让我们一起进入数学王国,怎么进不去,同学我们又遇到了障碍,数学王国的门上还上了一把超级数码锁哦,这把锁的密码是由1、2、3这三个数字其中的两个摆成的两位数,那么这个密码可能是多少呢,你们能猜出来吗?
师:指一名同学猜。师:同学们你们有没有什么好办法可以使排列出的数字既不重复也不漏掉。
师:请同学们用数字卡片摆一摆、试一试,并记录下来。
师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律进行。
师:明明没有参加今天的活动,老师想打个电话通知他,可是老师忘记了明明家的电话号码后三位了,只记得后三位是1、3、9的组合,你能帮老师想想看明明家的电话号码的后三位都可能是多少吗?
师:你太聪明了,老师很感激你和大家分享你的好办法(教师不自主的一边走一边伸手和同学握手)。提到握手,老师又有一个问题想请大家帮忙,愿意吗?问题是:如果三个人握手,每两个人握一次,三人一共要握多少次呢?
师:到底几次,小组为单位,看看每两个人握一次手,三个人一共要握手多少次?(学生活动)
师:两个人握一次手,三人一共要握3次手。老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?
摆数可以交换位置,而握手交换位置没用。
师:数学王国要举行时装表演,这四件衣服有几种不同的穿法呢?书上连一连,画一画。(学生操作) 看看有几种不同的穿法呢?
师:如果你是模特,你最喜欢穿那套衣服,为什么?
师:小敏也想通知小兵今天数学王国有活动,从小敏家到小兵家有这么多条路,你能数出来由几种走法吗?
师:数学王国准备买一些练习本做奖品,每个练习本5角钱,我们现在有这么多不同面值的钱币,可以怎么付钱?
同学们我们今天学习的是生活中的简单的排列与组合的问题。生活中有很多数学问题,只要小朋友细心观察,就能发现更多有趣的数学问题,掌握了这些数学知识,我们就可以把生活装点的更加美丽!
[简单组合小学数学课件]
盾棍组合教案 篇9
组合图形的面积需在学生在已有的知识基础上进行计算,所以开始设计了复习已学过的一些图形面积的计算方法,为新授内容做好知识铺垫。
2、创设情境,自主体验。
在新课开始,教师多媒体出示漂亮的组合图形让学生观察后说一说感受,这样学生就自然而然地认识了组合图形,再让学生寻找生活中物体表面的组合图形,体现数学生活化;后自己动手拼摆组合图形,使学生在头脑中再次对组合图形的产生感性认识,而且也下面计算组合图形的面积作了铺垫。
3、突出重点,自主探索。
本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到求组合图形的方法。对于例题的教学,先让每个学生拿出学具通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让每个学生都参与数学活动,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。当学生汇报出许多方法时,体现了解题方法的个性化。然后引导学生进行比较,进行方法的优化,选择最好的方法解决问题, “你喜欢哪种方法?为什么?”
设计空方形砖的练习,是为了总结出求组合图形面积的另一种方法。
学生经历了自主探究与汇报交流总结出了求组合图形面积的方法,这样突出了本节课的重点和难点,知识落到了实处。真正作到了感悟与知识的生成相辅相成。
让学生求做一面中队旗需要多少布,让他们在合作交流中感受和体现如何用数学知识解决生活中的实际问题,让他们在合作交流,展示成果中产生乐趣,锻炼能力。从而激发学生学数学,用数学的兴趣,培养学生的应用意识。
今后要继续做到。
1、教学过程中,在指导学生学习方面,教师要全面关注全体学生,特别是学困生的学习与活动。
2、学生学习之间的互动还需进一步加强。
排排队中班教案5篇
以下是编辑为您推荐的“排排队中班教案”,请接着阅读本文的相关内容。为了上好课,每位老师都需要撰写精心设计的教案和课件,因此每份教案课件都需要认真编写。提高教案课件的质量将有效提高教学效益。
排排队中班教案 篇1
中班体育游戏:蚂蚁蚂蚁排队走
设计意图:中班幼儿的动作发展已经到了具有一定的平衡能力的阶段,他们具有良好的动作协调能力,并具有一定的力量和耐力。这一阶段的幼儿,身体技能快速发展,教师通过组织“蚂蚁蚂蚁排队走”这一体育游戏,训练幼儿的平衡能力和动作协调能力,并可以让幼儿的反应能力达到训练,目的在于适应于幼儿发展规律、满足幼儿发展需要。
教学重点:本活动重点关注于重点关注与幼儿平衡能力、动作协调能力和反应能力的发展,希望可以通过本游戏活动的开展,训练幼儿的平衡能力、动作协调能力以及反应能力,并引导幼儿学会团队协作精神,感受到合作的力量。
活动目标:
一、认知目标:让幼儿理解游戏规则,熟悉游戏内容
二、能力目标:
1.幼儿在游戏活动中能够控制身体,能够以平衡的字条保持蚂蚁的姿势,使得平衡能力得到训练。
2.幼儿能在固定蚂蚁的姿势下,协作将食物运向终点,让幼儿的动作协调能力得到训练。
3.幼儿在游戏过程中,在听到指令后,和到达终点后就能够迅速的反应并开始进行游戏,让幼儿的反应能力得到训练。
三.情感目标:
1.通过游戏活动的进行,让幼儿能够体会游戏的乐趣
2.在游戏过程中,让幼儿感受到合作的意义所在,并让他们学会与他人合作。
活动准备:揉成球状的报纸团、皮球、口哨、蚂蚁运食物的挂图一张、小蚂蚁面具若干
活动过程:
一.游戏导入
1、教师组织幼儿来到操场上,说:“小朋友们,你们见过蚂蚁是怎么运食物的吗?”幼儿进行回答。教师接下来就引出,“今天啊,老师就要给大家讲一个小蚂蚁嘟嘟的故事哟!”并展开挂图,指出图上的小蚂蚁嘟嘟,并开始讲故事。
故事“一天,小蚂蚁嘟嘟肚子饿了,就来了草地上找食物,它在草地上转来转去,还东嗅嗅、西嗅嗅,终于在草地上找到了一粒米饭。嘟嘟高兴极了,立马就向那粒白米饭,嘟嘟一边跑还一边想,今天有好吃的了!真是高兴。嘟嘟走进了才发现,这粒白米饭真是太大了,比自己大了好几倍呢!自己一定不能搬回家去,得请大家一起来帮我搬走。于是,聪明的嘟嘟就挥动着可爱的小触角向蚂蚁家族里面的传递员报道了,请大家一起来搬走这粒白米饭。不一会儿,嘟嘟的好朋友们就都来了,大家排好队,一起把这粒大大的白米饭搬了起来,运回了家里。晚餐的时候,大家都吃到了白米饭,还剩下一大块。嘟嘟也挺着吃得饱饱的肚子,安心的睡觉了。”
在故事讲完后,老师提问“小朋友们,你们说嘟嘟找到的那一粒白米饭对他来说太大了,那么他们是怎么搬回家的呢?”(幼儿回答)。
幼儿回答之后,老师引出“你看小蚂蚁们一起合作,将嘟嘟一个人不能够搬走那一粒白米饭搬回了家,说明合作的力量真是很大的。今天,我们要玩的游戏就叫做蚂蚁蚂蚁排队走!小朋友们都会变成可爱的小蚂蚁,一起排队把事物运回家哟!”
二.游戏过程
1、引出游戏:
教师组织幼儿进行游戏前的准备活动,教师说“小朋友们,在玩游戏之前,我们就一起做一下准备运动吧!”说完后,教师一边唱“抖抖我的小手,动动小脚,扭扭我的脖子,转转我的脑袋”一边示范动作。
在准备活动完毕后,教师说“为了待会我们玩游戏更加方便,现在请小朋友们站好了,老师要将小朋友们分为五个小组哟。”教师将幼儿分成五个小组,请组内的幼儿两人一组,进行蚂蚁扮演。教会幼儿蚂蚁的组合姿势为第一个幼儿站立,两手作触角;第二个幼儿弯腰,双手抱住前面一个孩子的腰。并请小朋友进行示范。
2、交代游戏规则:
教师引出:小蚂蚁们今天来到了草地上,发现了好多食物(将手指向已经摆好的事物(球状的报纸和皮球)),大家的肚子都已经饿了,都迫不及待的想要把食物运回家里。但是呢,小蚂蚁是爱护食物,他们都是非常有规则的。蚂蚁大王就悄悄的告诉老师,说“小蚂蚁们看见这么多事物,一定都很急切吧!但是为了让我们蚂蚁家族更加快乐和谐,我们不如来进行一个运食物比赛吧,但是要请小蚂蚁们在把事物搬回家的路上每次只能搬走一个食物,在奔跑的时候,小蚂蚁也要注意安全哟!”
教师在说完之后,就告诉小朋友,一组小朋友中一共由三只小蚂蚁,第一组小蚂蚁到终点拿到食物之后,就回到起点,再请另一只小蚂蚁去拿食物,这样的方式循环进行,在规定时间内,拿到食物最多的小组,就为优胜小组。游戏过程中,幼儿之间要相互配合,不能摔跤和踩到别人,要是摔跤了,当时所运送的食物作废。游戏一共进行两轮,在第二轮的时候,小蚂蚁将会由三个小朋友来组成。而在第三轮的时候,教师要请小朋友走更长的路线,并保证食物不掉下来。
3、进行游戏教师交代完游戏规则之后,请几位小朋友在其的指导下进行游戏示范,让幼儿能够在直观的示范中,进一步熟悉游戏规则。
教师在示范完后,请小朋友站好,询问幼儿“小朋友们,你们知道小蚂蚁是怎么做的了吗?你们来摆一摆小蚂蚁好不好?”幼儿进行小蚂蚁动作摆放。这样可以帮助幼儿强化对小蚂蚁动作的记忆。
在动作摆放完毕之后,教师说“小朋友们,我们的游戏马上就要开始了,请小朋友把小蚂蚁头饰带上吧,赶紧在自己队伍中排好队吧!游戏的时间是2分钟哟,让我们来看一看哪一组的小朋友运送的事物是最多!”
游戏开始,教师吹响口哨声,表示游戏正式开始,幼儿在游戏中一起搬运食物,教师需要在游戏过程中组织幼儿的游戏秩序,对能力相对较弱的幼儿进行指导。在游戏第一轮进行完后,点清小组运送的事物数量,并评出优胜小组。
进行游戏第二轮,请每个小组内的幼儿,三人一组变成可爱的小蚂蚁第一个幼儿站立,两手作触角;第二、第三个幼儿分别弯腰,双手抱住前面一个孩子的腰。请小朋友再次在2分钟的时间内,比一比那一组的小朋友运送的食物是最多的。教师在时间到了的时候,以口哨声告诉幼儿时间已到,并点清小组运送的事物数量,并评出优胜小组。
游戏第二轮结束之后,教师说“小朋友们,其实蚂蚁们在运送食物的时候,有时候的路途是非常遥远的。所以,在这轮游戏中,老师请小朋友们去更远的地方运送食物。”教师在说完后,为幼儿指出新的路线长度,请幼儿排好队,游戏按照之前的游戏规则进行,只是路线变成了蛇形路线的。在规定的两分钟内,比一比哪一组幼儿运动的食物最多,并点清小组运送食物的数量,评出优胜小组。
4、游戏结束游戏结束后,教师进行总结评价。教师说“今天小朋友们的表现都是非常不错的,大家学会了变成小蚂蚁怎么运送食物,很多小组的小朋友还在一起的配合中运送了很多的食物哟,看来团结的力量真是很伟大的,所以啊,小朋友在做事情的时候,一定要学会和别人合作,这样很多事情就很快就可以解决了。
排排队中班教案 篇2
中班数学《水果排排队》
活动名称:《水果排排队》
活动目标:
1.引导幼儿找出排序规律。
2.学习将两种物体按交替重复的规律排序。
3.愿意参加操作活动,体验数学活动的乐趣。
4.培养幼儿相互合作,有序操作的良好操作习惯。
5.了解数字在日常生活中的应用,初步理解数字与人们生活的关系。
活动准备:游戏、PPT、图片(苹果、梨),音乐、幼儿操作卡。
活动过程:1.导入活动,师幼问好。
4.游戏环节《红灯绿灯》。
5.挂灯游戏,PPT演示到小猪家,小猪请小朋友帮助它把灯挂在房子前,引导幼儿发现ABAB规律,并学习排序。
6.集体活动:水果排排队,教师出示图片苹果和梨,示范2组排序“苹果 梨 苹果 梨”,请几位小朋友完成2组。
7.幼儿操作环节,一人一份操作材料排序:葡萄 草莓 葡萄 草莓。
8.交流分享。
9.活动结束,开车离开小猪家。
活动反思:
今天上的中班科学活动《给蔬果排队》,在这个活动中主要让幼儿按一定的规律给蔬果排队,并能进一步感知蔬果的外部特征。活动的重点是感知规律,增强观察力,难点是能按照一定的规律进行排序。对于中班上学期的孩子来说,他们在操作摆弄物品时,已逐渐认识了一些事物的属性,如:大小、长短、颜色、形状等,能了解不同物体的属性、发现其明显的差异性,也能感受到有关规律的经验。通过排序可以促进幼儿分析、比较能力的发展。
排排队中班教案 篇3
目标:
1、理解儿歌内容,学习按数字大小排队和边点数边朗诵的方法。
2、感受儿歌带来的趣味性。
准备:小鸡图片、17数字卡片。
关键点:学习边点数边朗诵的方法。
环节:
一、教具导入,引起兴趣。
1、出示小鸡图片,引导幼儿观察:图片上有谁?它们在干什么?
2、交代学习儿歌的要求。
二、欣赏儿歌,理解掌握。
1、教师完整朗诵儿歌
2、提问,帮助幼儿理解儿歌内容:
(1)儿歌名称叫什么?
(2)妈妈买了几只鸡?我给小鸡起了什么名字?
(3)你们会数吗?请幼儿边点图片边数数。
(4)啊呀,小鸡走散了,怎么办?
(5)你能用不同的方法来数数吗?
三、学习儿歌,帮助记忆。
1、带领幼儿轻声学念儿歌。
2、以多种形式练习儿歌。
三、组织游戏,体验情趣。
1、介绍游戏的玩法和要求。
2、请幼儿八人一组进行游戏,一人扮演鸡妈妈,其他幼儿扮演小鸡,体验儿歌带来的乐趣。
3、小结:表扬遵守游戏规则的小朋友。
附儿歌:《七只小鸡排队走》
一二三四五六七,
妈妈买了七只鸡。
我给小鸡取名字,
小一、小二、小三、小四、小五、小六、小七,
它们一下都走散。
一个东来一个西,
于是再也认不出,
谁是小七、小六、小五、小四、小三、小二、小一。
排排队中班教案 篇4
活动目标:
一、认知目标:让幼儿理解游戏规则,熟悉游戏内容
二、能力目标:
1.幼儿在游戏活动中能够控制身体,能够以平衡的字条保持蚂蚁的姿势,使得平衡能力得到训练。
2.幼儿能在固定蚂蚁的姿势下,协作将食物运向终点,让幼儿的动作协调能力得到训练。
3.幼儿在游戏过程中,在听到指令后,和到达终点后就能够迅速的反应并开始进行游戏,让幼儿的反应能力得到训练。
三.情感目标:
1.通过游戏活动的进行,让幼儿能够体会游戏的乐趣
2.在游戏过程中,让幼儿感受到合作的意义所在,并让他们学会与他人合作。
活动准备:揉成球状的报纸团、皮球、口哨、蚂蚁运食物的挂图一张、小蚂蚁面具若干
活动过程:
一.游戏导入
1、教师组织幼儿来到操场上,说:“小朋友们,你们见过蚂蚁是怎么运食物的吗?”幼儿进行回答。教师接下来就引出,“今天啊,老师就要给大家讲一个小蚂蚁嘟嘟的故事哟!”并展开挂图,指出图上的小蚂蚁嘟嘟,并开始讲故事。
故事“一天,小蚂蚁嘟嘟肚子饿了,就来了草地上找食物,它在草地上转来转去,还东嗅嗅、西嗅嗅,终于在草地上找到了一粒米饭。嘟嘟高兴极了,立马就向那粒白米饭,嘟嘟一边跑还一边想,今天有好吃的了!真是高兴。嘟嘟走进了才发现,这粒白米饭真是太大了,比自己大了好几倍呢!自己一定不能搬回家去,得请大家一起来帮我搬走。于是,聪明的嘟嘟就挥动着可爱的小触角向蚂蚁家族里面的传递员报道了,请大家一起来搬走这粒白米饭。不一会儿,嘟嘟的好朋友们就都来了,大家排好队,一起把这粒大大的白米饭搬了起来,运回了家里。晚餐的时候,大家都吃到了白米饭,还剩下一大块。嘟嘟也挺着吃得饱饱的肚子,安心的睡觉了。”
在故事讲完后,老师提问“小朋友们,你们说嘟嘟找到的那一粒白米饭对他来说太大了,那么他们是怎么搬回家的呢?”(幼儿回答)。
幼儿回答之后,老师引出“你看小蚂蚁们一起合作,将嘟嘟一个人不能够搬走那一粒白米饭搬回了家,说明合作的力量真是很大的。今天,我们要玩的游戏就叫做蚂蚁蚂蚁排队走!小朋友们都会变成可爱的小蚂蚁,一起排队把事物运回家哟!”
二.游戏过程
1、引出游戏:
教师组织幼儿进行游戏前的准备活动,教师说“小朋友们,在玩游戏之前,我们就一起做一下准备运动吧!”说完后,教师一边唱“抖抖我的小手,动动小脚,扭扭我的脖子,转转我的脑袋”一边示范动作。
在准备活动完毕后,教师说“为了待会我们玩游戏更加方便,现在请小朋友们站好了,老师要将小朋友们分为五个小组哟。”教师将幼儿分成五个小组,请组内的幼儿两人一组,进行蚂蚁扮演。教会幼儿蚂蚁的组合姿势为第一个幼儿站立,两手作触角;第二个幼儿弯腰,双手抱住前面一个孩子的腰。并请小朋友进行示范。
2、交代游戏规则:
教师引出:小蚂蚁们今天来到了草地上,发现了好多食物(将手指向已经摆好的事物(球状的报纸和皮球)),大家的肚子都已经饿了,都迫不及待的想要把食物运回家里。但是呢,小蚂蚁是爱护食物,他们都是非常有规则的。蚂蚁大王就悄悄的告诉老师,说“小蚂蚁们看见这么多事物,一定都很急切吧!但是为了让我们蚂蚁家族更加快乐和谐,我们不如来进行一个运食物比赛吧,但是要请小蚂蚁们在把事物搬回家的路上每次只能搬走一个食物,在奔跑的时候,小蚂蚁也要注意安全哟!”
教师在说完之后,就告诉小朋友,一组小朋友中一共由三只小蚂蚁,第一组小蚂蚁到终点拿到食物之后,就回到起点,再请另一只小蚂蚁去拿食物,这样的方式循环进行,在规定时间内,拿到食物最多的小组,就为优胜小组。游戏过程中,幼儿之间要相互配合,不能摔跤和踩到别人,要是摔跤了,当时所运送的食物作废。游戏一共进行两轮,在第二轮的时候,小蚂蚁将会由三个小朋友来组成。而在第三轮的时候,教师要请小朋友走更长的路线,并保证食物不掉下来。
3、进行游戏教师交代完游戏规则之后,请几位小朋友在其的指导下进行游戏示范,让幼儿能够在直观的示范中,进一步熟悉游戏规则。
教师在示范完后,请小朋友站好,询问幼儿“小朋友们,你们知道小蚂蚁是怎么做的了吗?你们来摆一摆小蚂蚁好不好?”幼儿进行小蚂蚁动作摆放。这样可以帮助幼儿强化对小蚂蚁动作的记忆。
在动作摆放完毕之后,教师说“小朋友们,我们的游戏马上就要开始了,请小朋友把小蚂蚁头饰带上吧,赶紧在自己队伍中排好队吧!游戏的时间是2分钟哟,让我们来看一看哪一组的小朋友运送的事物是最多!”
游戏开始,教师吹响口哨声,表示游戏正式开始,幼儿在游戏中一起搬运食物,教师需要在游戏过程中组织幼儿的游戏秩序,对能力相对较弱的幼儿进行指导。在游戏第一轮进行完后,点清小组运送的事物数量,并评出优胜小组。
进行游戏第二轮,请每个小组内的幼儿,三人一组变成可爱的小蚂蚁第一个幼儿站立,两手作触角;第二、第三个幼儿分别弯腰,双手抱住前面一个孩子的腰。请小朋友再次在2分钟的时间内,比一比那一组的小朋友运送的食物是最多的。教师在时间到了的时候,以口哨声告诉幼儿时间已到,并点清小组运送的事物数量,并评出优胜小组。
游戏第二轮结束之后,教师说“小朋友们,其实蚂蚁们在运送食物的时候,有时候的路途是非常遥远的。所以,在这轮游戏中,老师请小朋友们去更远的地方运送食物。”教师在说完后,为幼儿指出新的路线长度,请幼儿排好队,游戏按照之前的游戏规则进行,只是路线变成了蛇形路线的。在规定的两分钟内,比一比哪一组幼儿运动的食物最多,并点清小组运送食物的数量,评出优胜小组。
4、游戏结束游戏结束后,教师进行总结评价。教师说“今天小朋友们的表现都是非常不错的,大家学会了变成小蚂蚁怎么运送食物,很多小组的小朋友还在一起的配合中运送了很多的食物哟,看来团结的力量真是很伟大的,所以啊,小朋友在做事情的时候,一定要学会和别人合作,这样很多事情就很快就可以解决了。
排排队中班教案 篇5
活动目标:
1、在游戏中,学习按从左到右,从下到上的方向确认物体的排列次序,并能用叙述词表示物体的排列次序。
2、喜欢参加操作活动,能积极探索。
活动准备:
1、PPT
2、数字卡片
活动过程:
一、给小动物排队,学习从左到右的方向确认物体的排列次序。
1、今天,班上来了几个小动物来做客,看,一共有几个动物?它们是怎么排队的?从左往右数,谁排第一个?调皮的小动物又变换了排队的位置,这下,它们是怎么排队的?
2、小动物去郊游
天亮了,小动物们要一块坐火车出去玩。老师给每个动物都发了一张火车票。火车票是用来干什么的呢?(对号入座)教师出示火车,“呜,火车进站了,小动物们高高兴兴地准备上火车啦!小朋友请注意,这列火车有几节车厢呢?
“小动物们要按老师给他们发的火车票去坐第几节车厢,可火车上没有号码,怎么办呢?”(请小朋友给火车编上号码,你是怎么编号码的)“请小朋友把小动物送上车厢”。送完后,不按小动物的排列顺序及车厢顺序提问:“第一节车厢坐着谁?小鸟在第几节车厢?……”(幼儿个别回答或集体回答)“小动物们都坐上火车了。呜——火车开了,小朋友跟小动物再见。”
二、送小动物回家,学习从上到下的方向确认物体的排列次序。
1、工人叔叔给小动物们盖了漂亮的小房子。天黑了,小动物要回家了,我们送它们回家吧。边说边出示一幢6层的房子,让幼儿数一数是几层,小动物依次从下到上回家。
2、把动物放进层高楼里,谁住在第几层?
三、延伸活动
给小朋友发数字卡片排队。