幼儿教师教育网,为您提供优质的幼儿相关资讯

数学二次根式教案

发布时间:2024-08-16 数学二次根式教案 二次根式教案 根式教案

数学二次根式教案。

小编为您准备了一本“数学二次根式教案”供您参考,感谢您花时间阅读希望你受益。每个老师都需要在课前有一份完整教案课件,相信老师对要写的教案课件不会陌生。 学生的反应可以反映教学质量。

数学二次根式教案(篇1)

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所满足的条件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

例1计算:

分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

例2把下列非负数写成一个数的平方的.形式:

(1)5;(2)11;(3)1。6;(4)0。35.

例3把下列各式写成平方差的形式,再分解因式:

(1)4x2―1;(2)a4―9;

(3)3a2―10;(4)a4―6a2+9.

1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

2.关于公式的应用。

(1)经常用于乘法的运算中.

(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

注意第(4)题需有2m≥0,m≥0,又需有―3m≥0,即m≤0,故m=0.

2.实数a、b在数轴上对应点的位置如下图所示:

分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

教材P.172习题11.1;A组2、3;B组2.

补充作业:

下列各式中的字母满足什么条件时,才能使该式成为二次根式?

分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

(1)由―|a―2b|≥0,得a―2b≤0,

但根据绝对值的性质,有|a―2b|≥0,

∴|a―2b|=0,即a―2b=0,得a=2b.

(2)由(―m2―1)(m―n)≥0,―(m2+1)(m―n)≥0

∴(m2+1)(m―n)≤0,又m2+1>0,

∴ m―n≤0,即m≤n.

说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

数学二次根式教案(篇2)

初中数学题目精选之二次根式题,相信朋友们的回答都很轻松吧。接下来会为大家继续带来更全更精的`初中数学题精选,同学们准备好答题了吗。

9.把下列各式分解因式:

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

5.已知9x2-6xy+k是完全平方式,则k的值是________.

7.-4x2+4xy+(_______)=-(_______).

8.已知a2+14a+49=25,则a的值是_________.

答案:

5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12

数学二次根式教案(篇3)

1、我们学校的校医非常关心我们同学的身体健康,经常要了解我们同学的体重,身高等,(出示座位图)

如果老师想要了解三(5)班第一组6位同学的身高的情况,你有什么办法能让老师一眼就看明白?

3、出示几个空白的条形统计图,让学生根据统计表尝试完成条形统计图。

4、如果用条形统计图表示这个小组学生的身高,每格表示多少个单位比较合适?

5、出示教材上的统计图,让学生观察,讨论。

你能说说破这个统计图跟我们以前学过的.统计图有什么不同吗?

用折线表示的起始格代表多少个单位?其他格代表多少个单位?这样画有什么好处?

6、小组合作学习,学生汇报。

在统计图的纵轴上,起始格和其他格表示的单位量是不同的(第一个图中起始格表示137厘米,其他每格表示1厘米。)

7、让学生按照例子把其他两个同学的条形补充完整。

8、学生讨论:什么情形下应该使用这样的统计图?这种统计图的优点是什么?

9、观察体重统计图,看看这个图中的起始格表示多少个单位?其他每格表示多少个单位?

9、这个统计图跟我们刚才学习的学生身高统计图有什么不同?

10、独立完成书上的统计图。小组进行学习小结。

11、通过完成这一份统计图。你得到了哪些信息?进一步体会统计的作用。

12、你想对这些同学说些什么?

出示“中国10岁儿童身高、体重的正常值”,引导学生把学生的身高、体重与正常值进行对比,找出哪些学生的身高在正常值以下,哪些学生的体重超出了正常值,并提出合理化建议。

(实践作业)让学生从报纸、书籍上找到更多形式的统计图表,并找出相应的信息,可以培养学生从各种渠道收集信息的能力。

全课小结。

教学反思:

数学二次根式教案(篇4)

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.菱形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.菱形在现实中的实例较多,在讲解菱形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5. 由于菱形和菱形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在菱形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

1.掌握菱形概念,知道菱形与平行四边形的关系.

2.掌握菱形的性质.

3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

4.通过教具的演示培养学生的学习兴趣.

5.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

6.通过菱形性质的学习,体会菱形的图形美.

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

数学二次根式教案(篇5)

初中数学《二次根式的运算》教案

一、教学目标

【知识与技能】掌握二次根式的运算法则,并能熟练进行二次根式的混合运算。

【过程与方法】通过引导,在多解中进行比较,寻求有效快捷的计算方法。

【情感态度与价值观】通过独立思考与小组合作讨论,培养良好的学习态度,并且注重培养类比思想。

二、教学重难点

【重点】混合运算的法则,明确三级运算的顺序。

【难点】灵活运用因式分解,约分等技巧使计算简便。

三、教学过程

(四)总结提高

这节课的学习过后,你收获了哪些?

二次根式的混合运算应注意什么?

作业:阅读与思考,海伦秦九韶公式,下节课分享感受。

四、板书设计

数学二次根式教案(篇6)

1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

1、重点:准确理解二次根式的概念,并能进行简单的计算。

学生在家中认真阅读理解课本中相关内容的知识,并根据自己的'理解完成预习学案。

(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2. 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

反思:

数学二次根式教案(篇7)

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃, ,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

让学生先进行思考,解答。然后同学说出怎样进行二次根式的混合运算。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的`互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

=; =.

2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

(a+b)(m+n)=am+an+bm+bn,

; 。

在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算。引入新课。

在进行二次根式的混合运算时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出 ,等等.

1.掌握二次根式的混合运算.

2.掌握乘法公式在混合运算的应用.

3.通过二次根式的混合运算,培养学生的运算能力.

数学二次根式教案(篇8)

1.复习,运算律及乘法分式,引导学生口答,并强调数的运算律在根式运算中的适用,引入例题.

2.通过例题由浅入深,层层深入,既提高学生学习的兴趣又激发学生求知的欲望;从例题的讲解中帮助寻找解题的方法,规律及注意点.

3.通过大量的练习,以期形成自己所掌握的'知识.

前面学过二次根式的加减法的简单运算,但二次根式未必全是加减混合运算,它同样会出现二次根式的加、减、乘、除方等混合运算那么二次根式的混合运算的法则是什么?又将怎样运用它进行化简计算,这就是本节课所要研究的问题―二次根式的混合运算.

二次根式的混合运算中,应注意运算的次序.这是进行二次根式混合运算的前提条件;通过适当地复习乘法分式,分母有理化知识,然后再进行二次根式的混合运算的教学工作,将有助于更好地学习它;同样为了更好地理解二次根式的混合运算还可以将它与数的运算律和运算方法进行对比,以帮助学生更好地理解并准确地掌握好该知识,达到事半功倍的作用.

运算律在二次根式混合运算中仍适用.

各种整式乘法的法则.

提问:加法的交换律、结合律各是怎样的?乘法的交换律、结合律、分配津各是什么?

强调数的运算律在根式运算中仍适用后,可引入例题.

注:①加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于学生理解和掌握.②在运算过程中,对于各个根式不一定要先化简,而是先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如 ,没有对 先进行化简的必要,使计算繁琐,而是应先进行乘法运算 ,通过约分达到化简的目的.

(2) ;

注:①由学生观察算式,找出特征:两个数的和与这两个数差的积;两个数的和或差的平方,联想乘法公式,与多项式的乘法相类似,二次根式的和相乘,适用乘法公式时,运用乘法公式.

②复习乘法公式,可选做几个小题.如 , 等.

(2) .

例如, 与 , 与 .

注:互为有理化因式是指两个代数式,其乘积不再含有二次根式.

可适当再举例说明,如 与 , 与 、 与 ,但 与 就不是互为有理化因式.

(3) ; (4) ;

(5) ; (6) ;

(7) ; (8) ;

对二次根式的混合运算与整式的混合运算及数的混合运算比较,要注意运算的顺序及运算律在计算过程中的作用.

有理化因式的概念需强调乘积的结果不再含有二次根式.

例2……

数学二次根式教案(篇9)

一、教学过程

(一)复习提问

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所满足的条件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

(二)二次根式的简单性质

上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

请分析:引导学生答如时才成立。

时才成立,即a取任意实数时都成立。

我们知道

如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

例1计算:

分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

例2把下列非负数写成一个数的平方的形式:

(1)5;(2)11;(3)1。6;(4)0。35.

例3把下列各式写成平方差的形式,再分解因式:

(1)4x2—1;(2)a4—9;

(3)3a2—10;(4)a4—6a2+9.

解:(1)4x2—1

=(2x)2—12

=(2x+1)(2x—1).

(2)a4—9

=(a2)2—32

=(a2+3)(a2—3)

(3)3a2—10

(4)a4—6a2+32

=(a2)2—6a2+32

=(a2—3)2

(三)小结

1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

2.关于公式的应用。

(1)经常用于乘法的运算中.

(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

(四)练习和作业

练习:

1.填空

注意第(4)题需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.

2.实数a、b在数轴上对应点的位置如下图所示:

分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

3.计算

二、作业

教材P.172习题11.1;A组2、3;B组2.

补充作业:

下列各式中的字母满足什么条件时,才能使该式成为二次根式?

分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

(1)由—|a—2b|≥0,得a—2b≤0,

但根据绝对值的性质,有|a—2b|≥0,

∴|a—2b|=0,即a—2b=0,得a=2b.

(2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0

∴(m2+1)(m—n)≤0,又m2+1>0,

∴ m—n≤0,即m≤n.

说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

三、板书设计

数学二次根式教案(篇10)

本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃, ,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

让学生先进行思考,解答。然后同学说出怎样进行。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

=; =.

2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

(a+b)(m+n)=am+an+bm+bn,

; 。

在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行。引入新课。

在进行时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出 ,等等.

yjs21.cOm更多幼儿园教案编辑推荐

二次根式教案十一篇


教案是教师在上课前需要准备好的教学材料,每位教师都需要仔细策划教案。教案和课件的设计质量对教学效果起着关键作用。如果您对“二次根式教案”感到好奇,请阅读下面精心准备的资料,需要的同学请认真阅读!

二次根式教案【篇1】

一、引入新课:

上节数学课我们学习了二次根式的乘法计算,那么该怎样进行二次根式的除法运算呢?本节课我们一起学习。

二、展示目标,自主学习:

自学指导:认真阅读课本第8页——10页内容,完成下列任务:

1、先自主完成8页“探究”,再和同伴交流,你们得到的结论是: 。尝试用文字语言表述这个法则 。

2、认真看例4、例5、例6和例7的每一步计算和化简,有疑问随即和同伴交流或向老师请教;

3、 最简二次根式满足的两个条件是:

①( )

② ( )

4、仿照例题格式 完成10页练习并和同伴互相找毛病。

三、检测反馈

1、师生共同解决“自学指导”中的问题。

2、找同学演板10页练习1、2、3

四、课堂小结:

本节课你有哪些收获?

(1)二次根式的除法法则是什么?请写在下面。

(2)在进行二次根式的除法计算和化简时你有觉得应该注意些什么?请告诉大家。

五、布置作业:

作业:课本第10页 习题16.2 第2题;第3题的(3)、(4)小题

二次根式教案【篇2】

教学目标

1、使学生理解最简二次根式的概念;

2、掌握把二次根式化为最简二次根式的方法。

教学重点和难点

重点:化二次根式为最简二次根式的方法。

难点:最简二次根式概念的理解。

一、导入新课

计算:

我们再看下面的问题:

简,得到

从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便。

二、新课

答:

1、被开方数的因数是整数或整式;

2、被开方数中不含能开得尽方的因数或因式。

满足上面两个条件的二次根式叫做最简二次根式。

例1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?

(1)不是最简二次根式。因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式。整数。

(3)是最简二次根式。因为被开方数的因式x2+y2开不尽方,而且是整式。

(4)是最简二次根式。因为被开方数的因式a-b开不尽方,而且是整式。

(5)是最简二次根式。因为被开方数的因式5x开不尽方,而且是整式。

(6)不是最简二次根式。因为被开方数中的因数8=22·2,含有开得尽的因数22。

指出:从(1),(2),(6)题可以看到如下两个结论。

1、在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;

2、在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

例2 把下列各式化为最简二次根式:

分析:把被开方数分解因式或因数,再利用积的算术平方根的性质

例3 把下列各式化成最简二次根式:

分析:题(1)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式。

题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式。

通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法。

答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简。

如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简。

三、课堂练习

1、在下列各式中,是最简二次根式的式子为 [ ]的二次根式的式子有_____个。 [ ]

A、2 B、3

C、1 D、0

3、把下列各式化成最简二次根式:

答案:

1、B

2、B

四、小结

1、最简二次根式必须满足两个条件:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽方的因数或因式。

2、把一个式子化为最简二次根式的方法是:

(1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;

(2)如果被开方数含有分母,应去掉分母的根号。

五、作业

1、把下列各式化成最简二次根式:

2、把下列各式化成最简二次根式:

二次根式教案【篇3】

一、内容和内容解析

1.内容

二次根式的除法法则及其逆用,最简二次根式的概念。

2.内容解析

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.

二、目标和目标解析

1.教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3) 理解最简二次根式的概念.

2.目标解析

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.

三、教学问题诊断分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.

四、教学过程设计

1.复习提问,探究规律

问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

五、目标检测设计

二次根式教案【篇4】

教学目标

1.使学生进一步理解最简二次根式的概念;

2.较熟练地掌握把一个式子化为最简二次根式的方法.

教学重点和难点

重点:较熟练地把二次根式化为最简二次根式.

难点:把被开方数是多项式和分式的二次根式化为最简二次根式.

教学过程设计

一、复习

1.把下列各式化为最简二次根式:

请说出第(3),(4)题的解题过程.

答:第(3)题的被开方数是一个多项式,先把它分解因式,再运用积的算术平方根的性质,把根号中的平方式及平方数开出来,运算结果应化为最简二次根式.

理化.

二、新课

例1 把下列各式化成最简二次根式:

请说出各题的`特点和解题思路.

答:(1)题的被开方数及(2)题的被开方数的分子是多项式,应化成因式积的形式,可以先分解因式,再化简.

(3)题的被开方数的分母是两个数的平方差,先利用平方差公式把它化为乘积形式,再根据商的算术平方根和积的算术平方根的性质及分母有理化的方法,使运算结果为最简二次根式.

例2 计算:

分析:依据二次根式的乘除法的法则进行计算,最后要把计算结果化成最简二次根式.

三、课堂练习

1.选择题:

(1)下列二次根式中,最简二次根式是 [ ]

(2)下列二次根式中,最简二次根式是 [ ]

(3)下列二次根式中,最简二次根式是 [ ]

(4)下列二次根式中,最简二次根式是 [ ]

(5)下列二次根式中,最简二次根式是 [ ]

(7)下列化简中,正确的是 [ ]

(8)下列化简中,错误的是 [ ]

2.把下列各式化为最简二次根式:

3.计算:

答案:

四、小结

1.把一个式子化为最简二次根式时,如果被开方数是多项式,应把它化成积的形式,一般可考虑先分解因式,然后再化简.

2.如果一个式子的被开方数的分母是一个多项式,而这个多项式又不能分解因式(如课堂练习2(2)),在分母有理化时,把分子分母同乘以这个多项式.

3.二次根式的乘除法运算,运算结果一定要化为最简二次根式.

五、作业

1.把下列各式化成最简二次根式:

2.计算:

答案:

课堂教学设计说明

最简二次根式教学分二课时进行.教学设计中首先安排讨论二次根式的被开方数是单项式以及被开方数的分母是单项式的情况,然后再讨论被开方数是多项式和分母是多项式的情况.通过5个例题及课堂练习,最后达到使学生比较深刻地理解最简二次根式的概念,达到熟练地掌握把二次根式化为最简二次根式的教学目标.

的是引导学生能把一个式子化简为最简二次根式应用于有关计算问题中去,把最简二次根式和已学过的二次根式的乘除运算进行联系,促使学生把单个概念和方法纳入认知系统中,启发学生认识到二次根式的乘除运算与最简二次根式是密切关联的.

二次根式教案【篇5】

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

(1)(+6)(3-)(2)(+)(-)

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-()2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、巩固练习

课本P20练习1、2.

四、应用拓展

例3.已知=2-,其中a、b是实数,且a+b≠0,

化简+,并求值.

分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

二次根式教案【篇6】

一、教学目标

1.理解分母有理化与除法的关系.

2.掌握二次根式的分母有理化.

3.通过二次根式的分母有理化,培养学生的运算能力.

4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:分母有理化.

2.教学难点:分母有理化的技巧.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【复习提问】

二次根式混合运算的步骤、运算顺序、互为有理化因式.

例1 说出下列算式的运算步骤和顺序:

(1) (先乘除,后加减).

(2) (有括号,先去括号;不宜先进行括号内的运算).

(3)辨别有理化因式:

有理化因式: 与 , 与 , 与 …

不是有理化因式: 与 , 与 …

化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

引入新课题.

【引入新课】

化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.

例2 把下列各式的分母有理化:

(1) ; (2) ; (3)

解:略.

注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

二次根式教案【篇7】

一、教学目标

1.掌握二次根式的混合运算.

2.掌握混合运算的应用.

3.通过二次根式的混合运算,培养学生的运算能力.

4.通过混合运算知识拓展,培养学生的探索精神

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:二次根式的混合运算.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【例题】

例1 化简:

(1) ; (2) .

解:(1)

(2)

说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如 ,结果为-1,继续运算易出现符号上的差错,而把 先变为 ,这样 则为1,继续运算可避免错误.

例2 解下列方程(组):

(1)

(2)

(3)

解:(1)

(2)①× ,得

②× ,得

③-④,得

把 代入①,得

解得 .

是原方程组的解.

(3)由②,得

①× ,得

③-④,得

把 代入①,得

∴ 是原方程组的解.

例3 已知 , ,求 的值.

解: .

, ,

∴ .

例4 已知 , ,求 的值.

解: , .

(二)随堂练习

1.教材中P206中8.

2.解不等式: .

解:

3.已知 , ,求 的值.

解:3. ,或 .

4.已知 , ,求: 的值.

解 4.

5.已知 ,求 的值.

解 5. .

6.不求方根的值比较 与 的大小.

解 6.∵

(三)总结、扩展

根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.

(四)布置作业

教材中P207B组1、3和补充作业.

补充作业:

1.已知 ,求 的值.

2.已知 , ,求 的值.

(五)板书设计

标 题

1.例题……

3.例题……

2.练习题

4.练习题

八、背景知识与课外阅读

二次根式的混和运算方法和顺序

1.方法 (1)应用二次根式乘法、除法和加减法运算法则.

(2)在实数范围内运算律仍适用.

(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.

2.顺序 先乘方、后乘除,最后加减,有括号的先算括号内的数.

二次根式教案【篇8】

教学目标

1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;

2.熟练地进行二次根式的加、减、乘、除混合运算.

教学重点和难点

重点:含二次根式的式子的混合运算.

难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.

教学过程设计

一、复习

1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.

指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.

2.二次根式 的乘法及除法的法则是什么?用式子表示出来.

指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,

计算结果要把分母有理化.

3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:

4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:

二、例题

例1 x取什么值时,下列各式在实数范围内有意义:

分析:

(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;

(3)题是两个二次根式的.和, x的取值必须使两个二次根式都有意义;

(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.

x-2且x0.

解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以

例3

分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.

解 因为1-a>0,3-a0,所以

a<1,|a-2|=2-a.

(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.

问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?

分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.

注意:

所以在化简过程中,

例6

分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.

a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

三、课堂练习

1.选择题:

A.a2B.a2

C.a2D.a<2

A .x+2 B.-x-2

C.-x+2D.x-2

A.2x B.2a

C.-2x D.-2a

2.填空题:

4.计算:

四、小结

1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.

2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.

3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.

4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.

五、作业

1.x是什么值时,下列各式在实数范围内有意义?

2.把下列各式化成最简二次根式:

二次根式教案【篇9】

1教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3) 理解最简二次根式的概念

2学情分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

3重点难点

重点:二次根式的乘法法则与积的算术平方根的性质.

难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

4教学过程

4。1 第一学时

教学活动

活动1【导入】复习提问,探究规律

问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动 学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

2.观察思考,理解法则

问题2 教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4 对例题的运算你有什么看法?是如何进行的?

师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即 。利用该性质可以进行二次根式的化简。

活动2【讲授】观察思考,理解法则

问题2 教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4 对例题的运算你有什么看法?是如何进行的?

师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即 。利用该性质可以进行二次根式的化简。

活动3【活动】例题示范,学会应用

例1 计算: (1) ; (2) ; (3) 。

师生活动 提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?

【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,

问题5 你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动 学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。

问题6 课件展示一组二次根式的计算、化简题。

【设计意图】让学生用总结出的结论进行二次根式的运算。

活动4【练习】巩固概念,学以致用

例2 教材第9页例7。

师生活动 提问 本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?

再提问 章引言中的问题现在能解决了吗?

【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

活动5【测试】目标检测设计

1.在 、 、 中,最简二次根式为 。

【设计意图】考查对最简二次根式的概念的理解。

2.化简下列各式为最简二次根式: ; 。

【设计意图】复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。

3.化简:(1) ; (2) 。

【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算。

活动6【作业】布置作业

教科书第10页练习第1,2,3题;

教科书习题16。2第10,11题。

二次根式教案【篇10】

课题:二次根式

教学目标 1、知识与技能

理解a(a≥0)是一个非负数, (a≥0)

2、过程与方法

(1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想

方法

(2) 问题解决:能够利用性质进行二次根式的化简计算,能够互助

交流合作,分析问题,总结反思

3、情感、态度与价值观

体验成功的乐趣,锻炼克服困难的意志,培养严谨

求实的科学态度

教学重难点 教学重点:二次根式的概念

教学难点:二次根式中根号下必须为非负数

教学过程

一、课前回顾

(2分钟)

学生与老师共同回顾上节课所学内容,温故而知新。 什么是二次根式?

二次根式中字母的取值范围:

①被开方数大于等于零;

②分母中有字母时,要保证分母不为零。

③多个条件组合时,应用不等式组求解

一、情境引入(3分钟)

由生活中的实例引入投影的概念,引起学生的学习兴趣

已知下列各正方形的面积,求其边长。

二、探究1(10分钟)

练习1:

计算下列各式:

三、探究2(10分钟)

可以发现它们有如下规律:

一般的,二次根式有下列性质:

练习2:

典型例题 例1:计算:

例2:计算:

达标测试(5分钟)

课堂测试,检验学习结果

1、判断题

2、若 ,则x的取值范围为 ( A )

(A) x≤1 (B) x≥1

(C) 0≤x≤1 (D)一切有理数

3、计算

4、化简

5、已知a,b,c为△ABC的三边长,化简:

这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

应用提高(5分钟)

能力提升,学有余力的同学可以仔细研究 如图,P是直角坐标系中一点。

(1)用二次根式表示点P到原点O的距离;

(2)如果 求点P到原点O的距离

体验收获 今天我们学习了哪些知识

二次根式的两条性质。

布置作业 教材8页习题第3、4题。

二次根式教案【篇11】

1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。

2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。

教学重点:二次根式混合运算算理的理解。

教学难点:类比整式运算准确快速的进行二次根式的混合运算。

教学过程:

一、情境诱导

《二次根式混合运算习题课》教学设计-杨桂花

二、练习指导

(学生完成练习提纲,可以讨论,老师做必要的板书准备,然后巡回指导,了解情况、)

练习提纲:《二次根式混合运算习题课》教学设计-杨桂花

三、展示归纳

1、学生汇报解题过程,生说师写;

2、发动其他学生评价补充完善;

3、师画龙点睛强调:

(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。

(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。

四、变式练习

(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)

《二次根式混合运算习题课》教学设计-杨桂花

五、小结

本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)

六、布置作业

《二次根式混合运算习题课》教学设计-杨桂花

《二次根式》教案(合集6篇)


每个老师需要在上课前弄好自己的教案课件,所以在写的时候老师们就要花点时间咯。尤其是新入职老师,教案课件写好了才会课堂更加生动,什么样的教案课件才是好课件呢?幼儿教师教育网小编出于你的需要,为你整理了《二次根式》教案,请收藏好,以便下次再读!

《二次根式》教案 篇1

1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。

2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。

教学重点:二次根式混合运算算理的理解。

教学难点:类比整式运算准确快速的进行二次根式的混合运算。

教学过程:

一、情境诱导

《二次根式混合运算习题课》教学设计-杨桂花

二、练习指导

(学生完成练习提纲,可以讨论,老师做必要的板书准备,然后巡回指导,了解情况、)

练习提纲:《二次根式混合运算习题课》教学设计-杨桂花

三、展示归纳

1、学生汇报解题过程,生说师写;

2、发动其他学生评价补充完善;

3、师画龙点睛强调:

(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。

(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。

四、变式练习

(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)

《二次根式混合运算习题课》教学设计-杨桂花

五、小结

本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)

六、布置作业

《二次根式混合运算习题课》教学设计-杨桂花

《二次根式》教案 篇2

一、内容解析

本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

二、目标和目标解析

1.教学目标

(1)经历探索二次根式的性质的过程,并理解其意义;

(2)会运用二次根式的性质进行二次根式的化简;

(3)了解代数式的概念.

2.目标解析

(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

(2)学生能灵活运用二次根式的性质进行二次根式的化简;

(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

三、教学问题诊断分析

二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

本节课的教学难点为:二次根式性质的灵活运用.

四、教学过程设计

1.探究性质1

问题1 你能解释下列式子的含义吗?

师生活动:教师引导学生说出每一个式子的含义.

【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

问题2 根据算术平方根的意义填空,并说出得到结论的依据.

师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

例2 计算

(1)

(2)

师生活动:学生独立完成,集体订正.

【设计意图】巩固二次根式的性质1,学会灵活运用.

2.探究性质2

问题4 你能解释下列式子的含义吗?

师生活动:教师引导学生说出每一个式子的含义.

【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

问题5 根据算术平方根的意义填空,并说出得到结论的依据.

师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

例3 计算

(1)

(2)

师生活动:学生独立完成,集体订正.

【设计意图】巩固二次根式的性质2,学会灵活运用.

3.归纳代数式的概念

问题7 回顾我们学过的式子,如 ___________ ( ≥0),这些式子有哪些共同特征?

师生活动:学生概括式子的共同特征,得得出代数式的概念.

【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

4.综合运用

(1)算一算:

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

(2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

(3)谈一谈你对 与 的认识.

【设计意图】加深学生对二次根式性质的理解.

5.总结反思

(1)你知道了二次根式的哪些性质?

(2)运用二次根式性质进行化简需要注意什么?

(3)请谈谈发现二次根式性质的思考过程?

(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

6.布置作业:教科书习题16.1第2,4题.

《二次根式》教案 篇3

一、教学目标

1.掌握二次根式的混合运算.

2.掌握混合运算的应用.

3.通过二次根式的混合运算,培养学生的运算能力.

4.通过混合运算知识拓展,培养学生的探索精神

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:二次根式的混合运算.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【例题】

例1 化简:

(1) ; (2) .

解:(1)

(2)

说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如 ,结果为-1,继续运算易出现符号上的差错,而把 先变为 ,这样 则为1,继续运算可避免错误.

例2 解下列方程(组):

(1)

(2)

(3)

解:(1)

(2)①× ,得

②× ,得

③-④,得

把 代入①,得

解得 .

是原方程组的解.

(3)由②,得

①× ,得

③-④,得

把 代入①,得

∴ 是原方程组的解.

例3 已知 , ,求 的值.

解: .

, ,

∴ .

例4 已知 , ,求 的值.

解: , .

(二)随堂练习

1.教材中P206中8.

2.解不等式: .

解:

3.已知 , ,求 的值.

解:3. ,或 .

4.已知 , ,求: 的值.

解 4.

5.已知 ,求 的值.

解 5. .

6.不求方根的值比较 与 的大小.

解 6.∵

(三)总结、扩展

根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.

(四)布置作业

教材中P207B组1、3和补充作业.

补充作业:

1.已知 ,求 的值.

2.已知 , ,求 的值.

(五)板书设计

标 题

1.例题……

3.例题……

2.练习题

4.练习题

八、背景知识与课外阅读

二次根式的混和运算方法和顺序

1.方法 (1)应用二次根式乘法、除法和加减法运算法则.

(2)在实数范围内运算律仍适用.

(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.

2.顺序 先乘方、后乘除,最后加减,有括号的先算括号内的数.

《二次根式》教案 篇4

一、教学目标

知识与技能:

1、理解二次根式的概念。

2、理解二次根式的基本性质。

过程与方法:

能运用二次根式的概念解决有关问题、

情感态度与价值观:

经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。

二、学情分析

学生已经学习了“整式”、“平方根”、“算术平方根”等知识,已经具备了学习二次根式的知识基础和心理基础,但学生刚认识二次根式,学习将有一定难度。学生知识障碍点是二次根式的概念及运算,如果学生在此不能很好地理解和正确的认知,将对今后学习产生很大影响,所以要求学生积极探究、思考,及时加以巩固,克服学习困难,真正“学会”。

三、重点难点

1、教学重点为了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.

2、教学难点为:理解二次根式的双重非负性、

四、教学过程

活动1【导入】活动一

问题1你能用带有根号的的式子填空吗?

(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.

(2)一个长方形围栏,长是宽的2倍,面积为130m?,则它的宽为______m.

(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t?,如果用含有h的式子表示t,则t= _____.

师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。

问题2上面得到的式子√3,√s,

√h5分别表示什么意义?它们有什么共同特征?

活动2【活动】讲授

问题3你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如√a(a≥0)的式子叫做二次根式,“√ ”称为二次根号.

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

活动3【讲授】辨析概念

例1当x是怎样的实数时,√x2在实数范围内有意义?

师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.

例2当x是怎样的实数时,√x2在实数范围内有意义?√x3呢?

师生活动:先让学生独立思考,再追问.

问题4你能比较√a与0的大小吗?

师生活动:通过分a> 0和a= 0这两种情况的讨论,比较√a与0的大小,引导学生得出√a ≥0的结论,强化学生对二次根式本身为非负数的理解,

活动4【练习】练习

练习当x是什么实数时,下列各式有意义、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

练习1完成教科书第3页的练习、

练习2当x是什么实数时,下列各式有意义、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

练习1完成教科书第3页的练习、

练习2当x是什么实数时,下列各式有意义、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

练习1完成教科书第3页的练习、

练习2当x是什么实数时,下列各式有意义、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

活动5【活动】小结

小结:

1、二次根式的意义:√a(a≥0)

2、二次根式的性质:

性质1 √a2 = a(a≥0)

活动6【测试】目标检测

1、下列各式中,一定是二次根式的是()

A、√a B√3 、 C√x2+1 、 D、3√5

2、当x取什么时,二次根式√3x无意义.

3、当x取何值时,二次根式√x+3有最小值,其最小值是.

4、对于√3a1a3,小红根据被开方数是非负数,得出a的取值范围是a ≥ 13.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出a的取值范围.

活动7【作业】布置作业

教科书习题16、1第1,3,5,7,10题.

《二次根式》教案 篇5

活动1、提出问题

一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?

问题:10+20是什么运算?

活动2、探究活动

下列3个小题怎样计算?

问题:1)-还能继续往下合并吗?

2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?

二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。

活动3

练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)

创设问题情景,引起学生思考。

学生回答:这个运动场要准备(10+20)平方米的草皮。

教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

教师引导验证:

①设=,类比合并同类项或面积法;

②学生思考,得出先化简,再合并的解题思路

③先化简,再合并

学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

教师巡视、指导,学生完成、交流,师生评价。

提醒学生注意先化简成最简二次根式后再判断。

《二次根式》教案 篇6

教学设计思想

新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

教学目标

知识与技能

1.知道什么是二次根式,并会用二次根式的意义解题;

2.熟记二次根式的性质,并能灵活应用;

过程与方法

通过二次根式的概念和性质的学习,培养逻辑思维能力;

情感态度价值观

1.经历将现实问题符号化的过程,发展应用的意识;

2.通过二次根式性质的介绍渗透对称性、规律性的数学美。

教学重点和难点

重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;

难点:确定二次根式中字母的取值范围。

教学方法

启发式、讲练结合

教学媒体

多媒体

课时安排

1课时

最新二次根式的乘法课件(分享4篇)


教案课件是每个老师在开学前需要准备的东西,每个老师都要认真写教案课件。教案是激发学生求知欲的有效方式。看见必读的“二次根式的乘法课件”相关精品文章分享给您,强烈建议您将此页面收藏以备不时之需!

二次根式的乘法课件 篇1


数学是一门需要严密推理和深入理解的学科。在高中数学课程中,二次根式的乘法是一个重要的概念,它需要学生熟练掌握相关的乘法法则和技巧。为了帮助学生更好地理解和掌握这一概念,我为大家准备了一份生动详细的二次根式的乘法课件。本文将具体介绍这份课件的内容,并提供一些习题和解析,希望能够对学生的学习和理解有所帮助。


第一部分:二次根式的基础知识


在开始介绍二次根式的乘法之前,我们首先需要了解二次根式的基础知识。在课件的第一部分,我会通过图文并茂的方式,详细介绍二次根式的定义、性质和简化方法。通过生动的例子和实际问题,我将帮助学生们理解什么是二次根式以及它们在实际生活中的应用。我还会提供一些练习题,让学生们通过实际操作巩固他们的理解。


第二部分:二次根式的乘法法则


在第一部分,学生们已经对二次根式有了一定的了解。在课件的第二部分,我会具体讲解二次根式的乘法法则。我会通过图表和示意图的方式,演示二次根式的乘法过程,帮助学生们理解乘法的原理。我还会分析不同情况下的乘法规则,并提供一些实例来帮助学生们巩固理解。


第三部分:习题解析与拓展


在课件的第三部分,我将提供一些习题,让学生们亲自动手进行练习。这些习题将涵盖二次根式的乘法运算,包括简单的乘法、合并同类项的乘法和与整数的乘法等。我将详细解答每个习题,并提供一些常见错误的解析,帮助学生们避免犯同样的错误。在最后的部分,我还将提供一些拓展题,让学生们通过解答更加复杂的问题,将所学的知识应用到更高层次的领域。


结尾:


通过这份生动详细的二次根式的乘法课件,我希望能够帮助学生们更好地理解和掌握这一概念。通过对二次根式基础知识的介绍、乘法法则的讲解以及习题的提供和解析,我相信学生们在这个课程中会有更加深入和全面的理解。希望这份课件能够对学生们的学习和提高有所帮助,并且能够激发学生们对数学的兴趣和热爱。让我们一起探索数学的美妙世界吧!

二次根式的乘法课件 篇2

引言:

数学中,二次根式是一种常见的数学表达式,在代数学、几何学和物理学等学科中都有广泛的应用。了解并掌握二次根式的乘法运算是学习这一知识点的重要一步。本课件将详细介绍二次根式的乘法,并通过生动的示例和实践演练帮助学生理解和掌握这一概念。

第一节:二次根式的乘法概念

1.1 什么是二次根式

二次根式是含有根号且指数为2的代数式,例如√3、2√5等。我们需要根据乘法法则去计算和简化这些表达式。

1.2 二次根式的乘法法则

根据二次根式的乘法法则,两个二次根式相乘时,可以直接相乘根号下的数,并将根号外的系数进行乘法运算。例如,(a√m)(b√n) = ab√(mn)。

第二节:简化二次根式的乘法

2.1 系数的乘法

当两个二次根式相乘时,首先需要将系数进行乘法运算。例如,2√3 × 3√2 = 6√6。

2.2 根号下数的乘法

其次,需要将根号下的数相乘。例如,√3 × √2 = √6。

2.3 总结

综合乘法法则的步骤,将系数和根号下的数相乘,得到最终的结果。例如,2√3 × 3√2 = 6√6。

第三节:生动示例与实践演练

3.1 生动示例

通过一个具体的生动示例引导学生理解二次根式的乘法。例如,计算(5√2)(7√3):

首先,计算系数的乘法:5 × 7 = 35。

其次,计算根号下数的乘法:√2 × √3 = √(2 × 3) = √6。

最后,将系数和根号下数相乘得到结果:35√6。

3.2 实践演练

为了帮助学生巩固所学知识,课件将提供一系列实践演练题,供学生课后练习。例如:

1) 计算√5 × √7。

2) 计算(2√3)(4√2)。

3) 计算(√6)^2。

第四节:应用案例

4.1 几何学中的应用

介绍二次根式的乘法在几何学中的应用,例如计算平方根的面积或周长等。

4.2 物理学中的应用

介绍二次根式的乘法在物理学中的应用,例如计算物体的速度、加速度等。

结语:

通过本课件的学习,学生们可以全面了解二次根式的乘法运算,并能够熟练运用乘法法则进行计算和简化。同时,通过生动的示例和实践演练,学生们可以更好地理解和掌握这一知识点,为进一步学习相关知识奠定基础。

二次根式的乘法课件 篇3

《二次根式乘法》教案

一、教学目标

【知识与技能】掌握二次根式的乘法运算法则,能利用法则进行正确的运算。

【过程与方法】通过计算、观察、猜想的过程得到二次根式的乘法运算法则,并用逆向思维写出逆向等式及利用它们进行计算和化简。

【情感态度与价值观】通过二次根式乘法法则的探究过程,增强学数学、用数学的兴趣,创设探究式与合作交流的学习气氛。

二、教学重难点

【重点】会进行简单的二次根式的乘法运算。

【难点】二次根式的乘法与积的算术平方根的关系及应用。

三、教学过程

(一)导入新课

计算下列各式,观察计算结果,你能发现什么规律?

学生活动:计算、观察,分小组讨论。全班交流,体会结果的特点。

(指几名学生回答,其余学生补充)

(二)自主探索

(三)巩固应用,深化提升

(四)小结作业

本节课你学到了什么知识?你又什么认识?

四、板书设计

二次根式的乘法课件 篇4


二次根式的乘法是数学中重要的概念之一,也是我们学习数学的基础。掌握了二次根式的乘法,我们不仅可以更好地理解和应用数学知识,还能在解决实际问题中发挥重要作用。本文将为大家介绍二次根式的乘法,并提供一份精美的课件,帮助大家更好地理解和掌握这一知识。


一、二次根式的定义


在数学中,二次根式指的是形如√a的根式,其中a为非负实数。二次根式有着广泛的应用,比如在几何、物理等领域的问题中经常会出现。掌握二次根式的乘法是非常重要的。


二、二次根式的乘法规则


1. 同底的二次根式乘法


当两个二次根式具有相同的底数时,可以通过将它们的指数相加,得出它们的乘积。


例如,√2 × √3 = √(2 × 3) = √6。


2. 不同底的二次根式乘法


当两个二次根式具有不同的底数时,可以通过将它们化为最简形式,再进行乘法运算。


例如,√2 × √8 = √(2 × 8) = √16 = 4。


3. 含有多个二次根式的乘法


当一个乘法式中含有多个二次根式时,我们可以将其分解为多个乘法式,再进行计算。


例如,(√2 + √3) × (√2 + √3) = √2 × √2 + √2 × √3 + √3 × √2 + √3 × √3 = 2 + √6 + √6 + 3 = 5 + 2√6。


三、二次根式的乘法课件设计


为了将二次根式的乘法教学内容更加生动、具体和易于理解,我们设计了一份课件,内容包括以下几个部分:


1. 二次根式的定义:通过举例和图示,详细介绍二次根式的概念和特点,让学生能够直观地理解。


2. 同底的二次根式乘法:通过具体例子演示,引导学生掌握同底二次根式乘法的规则。同时,设计了互动环节,供学生进行实际操作和练习。


3. 不同底的二次根式乘法:通过多个实例的讲解,展示不同底二次根式乘法的步骤和技巧,让学生能够熟练运用。


4. 含有多个二次根式的乘法:以图形形式展示多个二次根式的乘法,帮助学生更好地理解乘法过程。同时,设计了拆解和组合的练习题,提供给学生巩固知识和提高能力的机会。


课件还应包括复习和总结环节,帮助学生对所学内容进行回顾和梳理。同时,为了增加趣味性和吸引学生的注意力,可以加入一些游戏和小测试,并设立奖励机制,调动学生的积极性。


结语


通过对二次根式的乘法进行深入研究和讲解,我们可以更好地理解和应用这一知识。二次根式的乘法不仅是数学学科的基础,也对我们解决实际问题具有重要作用。我们需要通过课件等教学手段,以生动、具体的方式向学生传授这一知识。希望本文所提供的课件能够帮助大家更好地理解和掌握二次根式的乘法。

二次函数教案汇总


对学生来说,又是学生智力的开发者和个性的塑造者,教案的选择要适合教材和学生特点和教学方法。教案是激发教师潜能的有效途径。是否在寻找好的教案模板呢?下面是幼儿教师教育网编辑为大家整理的“二次函数教案”,欢迎学习和参考,希望对你有帮助。

二次函数教案 篇1

一、由实际问题探索二次函数

某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.

(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量

(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?

(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.

果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产 量

y=(100+z)(6005x)=-5x2+100x+ 60000.

二、想一想

在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?

我们可以列表 表示橙子的总产量随橙子树的增加而变化情况.你能根据 表格中的数据作出猜测吗 ?自己试一试.

x/棵

y/个

三.做一做

银行的储蓄利率是随时间的变化而变化的。也就是说,利率是一个变量.在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利 息自动按一年定期储蓄转存. 如 果存款额是100元,那么请你写出两年后的本息和y(元)的表 达式(不考虑利息税).

四、二次函数的定义

一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)

注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为 零。

例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数.我们以前学过的正方形面积A与边长a的关系A=a2, 圆面积s与半径r的 关系s=Try2等也都是二次函数的例子.

随堂练习

1.下列函数中(x,t是自变量),哪些是二次 函数?

y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t

2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.

(1)写出y与x之间的关系表达式;

(2)当圆的半径分别增加lcm、 ㎝、2㎝时,圆的面积增加多少?

五、课时小结

1. 经历探索和表 示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。

2.用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多。

六、活动与探究

若 是二次函数,求m的值.

七、作业

习题2.1

1.物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t , 填 表表示物体在前5s下落的高度:

t/s 1 2 3 4 5

h/m

⒉某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m。

(1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示?

(2) 如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y的表达式是什么?

二次函数教案 篇2

教学目标:

利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:

运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:

(一)引入:

分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

可引导学生从几个方面进行讨论:

(1)如何画图

(2)顶点、图象与坐标轴的交点

(3)所形成的三角形以及四边形的面积

(4)对称轴

从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:

1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。

再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。

再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。

(三)提高练习

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)

(五)作业布置

1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

(1)求二次函数的解析式;

(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。

2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。

3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

二次函数教案 篇3

一、教学内容的分析

(一)地位与作用:

二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受,故而在这儿作专题讲座。目的在于让学生通过掌握求面积、利润最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积、利润最大、运动中的二次函数、综合应用三课时,本节是第一课时。

(二)学情及学法分析

对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

二、教学目标、重点、难点的确定

对于函数知识来说它是从生活中广泛的实际问题中抽象出来的数学知识,所以它是解决实际问题中被广泛应用的工具。这部分知识的学习无论对提高学生在生活中应用函数知识的意识,还是对掌握运用函数知识的方法,都具有重要意义。

而二次函数的知识是九年级数学学习的重要内容之一。同样它也是从生活实际问题中抽象出的知识,又是在解决实际问题时广泛应用的数学工具。课程标准强调学生的应用意识的培养,让学生面对实际问题时,能尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。

本节课是学生在学习了二次函数的概念、图像和性质后进一步学习二次函数的应用。学生有了一定的二次函数的知识,并且在前两节课已经接触到运用二次函数的知识解决函数的最值问题,而本节课需要利用建模的思想,将实际问题转化为二次函数的问题,从而使问题得到解决。建立二次函数关系对学生而言比较困难,尤其是关注实际问题中自变量的取值范围,需要学生经历分析、讨论、对比等过程,进而得出结论。本节课的问题均来自学生的日常生活,学生会感到很有兴趣,愿意去探究。但学生基础比较薄弱,对学习数学还是有一些畏难的情绪,因此需要教师进行适当引导、分散难点。

根据上述教学背景分析,特制订如下教学目标:

1.知识与技能:学会将实际问转化为数学问题;学会用二次函数的知识解决有关的实际问题.

2.过程与方法:经历实际问题转化成数学问题利用二次函数知识解决问题利用求解的结果解释问题的过程体会数学建模的思想,体会到数学来源于生活,又服务于生活。

3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。

利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题,就是本节课的教学重点;由于学生理解问题的能力和知识储备情况的不同,那么从现实问题中建立二次函数模型。就是本节课的一个难点。

新课程标准强调动手实践、自主探索与合作交流应该是学生学习数学的重要方式。教师应该是学生数学学习的组织者、引导者、合作者。同时,我认为教学方法与学习方法应该是相辅相成的不应该是割裂开来的,而且在一节课中教学方法和学习方法不可能是单一的而是多种方式方法并存的,因此根据本节课的内容和学生的实际情况,同时也为了突出本节课的重点并突破学习难点我确定本节课的教法与学法有启发法、探究法、试验法、课堂讨论法、练习法等。

三、教学方法与手段的选择

本节课我采用的是导学案的教法,

创设情境、引入问题------二人小组、复习回顾------自主探究、小组合作-------板演展示、别组纠错---------教师点评、总结归纳--------课堂测评

四、教学设计分析

首先创设问题情境,激发学生的学习兴趣。数学课程的内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、验证、推理与交流。而20世纪下半叶数学的一个最大进展是它的广泛应用,数学的价值观因此发生了深刻的变化。最直接的一个结论就是数学教育要重视应用意识和应用能力的培养。数学应用意识的孕育数学建模能力的培养联系学生的日常生活并解决相关的问题等方面的要求越来越处于突出的地位。所以我以养鸡场问题、商品销售利润问题为例,提出问题,引起学生的兴趣,同时也让学生切实体会到数学来源于生活。针对学生基础比较薄弱,解题能力较差的现状,我紧接着先给出几道关于二次函数的练习题,巩固二次函数最值的求法,为后面解决实际问题扫清障碍。

接下来就是解决最开始提出的商品何时利润最大问题,在解决商品利润问题时我先让学生做了几道关于利润的计算题,回忆一下有关利润的公式。

由于有了前面例子的认知基础,因此引导学生考虑能否利用二次函数的知识来解决,这时学生能想到要列出函数关系式。由于获得最大利润的方式有很两种,因此采用小组合作探究的方式分组讨论实施。这是为了给学生提供充分从事数学活动的机会,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。由于学生的基础比较薄弱,因此教师作为引导者与合作者参与到学生的讨论中。这里要给学生充分的时间进行探究。在各小组充分讨论后进行全班交流,归纳出全班哪种办法求解起来最简便,作出优劣的判断。接着由所得到的结论继续提出新问题,再次体会数学来源于生活又服务于生活。

最后是归纳总结、加深印象环节。在小结中,引导学生总结出从数学的角度解决实际问题的过程:有实际问题抽象转化成数学问题,然后运用所学的数学知识得到问题的解,再由结论反过来解释或解决新的实际问题。

最后是课堂测评。

对于作业的处理,针对学生的实际情况,作业分为必做题与选做题。对于基础比较薄弱的学生只需完成课堂中的巩固练习即可;对于学有余力的学生补充两道选做题。

以上就是我对本节课的设计。提出的问题都是学生亲身的经历的情境,学生能感受到数学来源于生活,又服务于生活。而且新课标也提出为学生提供的素材应该具有现实性和趣味性,要密切联系生活实际,让学生体会到数学在生活中的作用

二次函数教案 篇4

一、教材分析

1 说地位:二次函数是在一次函数,反比例函数的基础上,对函数的认识的完善与提高;也是对方程的理解的补充。而本节课的内容,是对二次函数y=ax2+bx+c中系数,a,b,c功能的探究,意在深化学生对二次函数图象及其性质的进一步理解,在每年中考中,此内容都占有一定的分量,不可小视。

2 说联系:通过对y=ax2+bx+c中a,b,c功能的探究,进一步巩固前面所学的图象及其性质,为后面学习二次函数的应用作基础,激发学生学习数学的热情。

3 说课标:结合前后知识,我把这节课的教学目标定为两点,一是熟练掌握y=ax2+bx+c中系数a,b,c的作用,二是进一步体会函数里数形结合的思想。

4 说内容:本节课首先通过学生对前面所学知识的掌握,归纳总结出y=ax2+bx+c中a,b,c不同的取值对其图象位置的影响,然后通过4个例题,从不同角度,刻画出a,b,c的取值对函数图象位置的影响,每种例题都配有1-2个练习,供巩固提高,最后小结。

二、教材处理

本节课书上没有独立成节,是我根据多年教学经验,积累沉淀下来的。本节课的例题是我在前几年的中考试题中捡拾出来,有些题目还做过删减,或者改动,最终还剩下4个例题6个配套练习。学习内容基本上按先易后难的原则,螺旋上升,循序渐进。

说教学目标:根据课标要求,结合各地中考试题类型,以及学生认知特点,我把这节课的教学目标定为(1)认知目标:根据a,b,c不同的取值范围,确定抛物线的大致位置,反过来,根据抛物线的大致位置,确定a,b,c的取值范围。(2)通过探究,培养学生数形结合的数学思想,掌握学函数的基本方法。

说重、难点:根据这节课的内容,结合学生特点,我把这节课的教学重点定为:弄清y=ax2+bx+c中a,b,c的取值对函数图象的影响。教学难点定为:体会函数中数形结合的思想。通过图象求取值,根据取值找大致的图象。

二、教法,学法

1 说教法:本节课通过师生互动探究式教学,以课标为依据,渗透新的教学理念,遵循教师为主导,学生为主体的原则,结合九年级学生的求知心理和已有的认知水平开展教学,形成学生自动,生生互助,师生互动。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高,思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2 说学法:就课标明确提出要培养可持续发展的学生,因此教师有组织,有目的,有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方法。培养学生动手,动脑,动口的习惯与能力,使学生真正成为学习的主人。

四、教学程序

本节课我设为四个模块,第一块是温故引标,先复习抛物线在不同位置情形下时,它的一般解析式,然后引出这节课的内容,探讨二次函数中a,b,c的功能。第二块是合作交流,归纳总结。分组活动,归纳总结出a,b,c的作用。第三块是例题剖析,巩固提高,第一个例题配套1-2个练习,增强学生的解题能力。第四块是小结,反思。让学生对本节课所学内容有一个清晰的认知。

五、说板书设计,课后反思

1 说板书设计:根据学生的认知规律,我把这节课的内容设为两大块,第一块归纳总结,第二块分4个例题。中间2个,右边2个,相互衔接,浑然一体。

2 说反思:本节课既可以说是上新课,也可以说是一节复习课,因而所教内容,一部分同学都有能力独自完成,还有一部分同学需要老师引导才能完成。设计的内容比较单一,训练的题目能否多一点,力争大容量,快节奏,高效益。

二次函数教案 篇5

一、教材分析

1.地位和作用

(1)二次函数是初中数学教学的重点和难点之一。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届上海市中考试题中,二次函数都是不可缺少的内容。

(2)二次函数的图象和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

2.教学目标

知识目标

1、通过复习,掌握各类形式的二次函数解析式的求解方法和思路,能够一题多解,发散学生的思维,提高学生的创造思维能力;

2、能运用数学思想解决有关二次函数的综合问题,帮助学生提高解决综合题的能力。

能力目标

提高学生对知识的整合能力和分析能力

情感目标

用powerpoint制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

3.教学重点与难点

学习重点:各类形式的二次函数解析式的求解方法和思路

学习难点:1、运用数学思想解决有关二次函数的综合问题

2、运用数形结合思想,选用恰当的数学关系式解决几何问题。

二、教学方法

1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

三、学法指导

授人以鱼,不如授人以渔。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

相关推荐

  • 二次根式教案十一篇 教案是教师在上课前需要准备好的教学材料,每位教师都需要仔细策划教案。教案和课件的设计质量对教学效果起着关键作用。如果您对“二次根式教案”感到好奇,请阅读下面精心准备的资料,需要的同学请认真阅读!...
    2023-11-28 阅读全文
  • 《二次根式》教案(合集6篇) 每个老师需要在上课前弄好自己的教案课件,所以在写的时候老师们就要花点时间咯。尤其是新入职老师,教案课件写好了才会课堂更加生动,什么样的教案课件才是好课件呢?幼儿教师教育网小编出于你的需要,为你整理了《二次根式》教案,请收藏好,以便下次再读!...
    2023-04-01 阅读全文
  • 二次根式课件十一篇 幼儿教师教育网的编辑筛选出来的这篇“二次根式课件”文章绝对值得你一看,我们提供这些信息希望能够为您提供一些参考和指导。老师工作中的一部分是写教案课件,但教案课件不是随便写写就可以的。做出好的教案是教师工作的基本素质之一。...
    2024-05-17 阅读全文
  • 二次根式说课稿(精选11篇) 作为一名优秀的幼儿园老师,课堂离不开我们准备的说课稿,为了激发孩子们学习的欲望,我们会准备一份生动有趣的说课稿,说课稿有利于老师提前熟悉所教学的内容,提供效率。优秀有创意的幼儿园说课稿要怎样写呢?你可以读一下小编整理的二次根式说课稿,更多相关信息请继续关注本网站。一、教学目标:知识与技能:1.了解二...
    2023-05-16 阅读全文
  • 最新二次根式的乘法课件(分享4篇) 教案课件是每个老师在开学前需要准备的东西,每个老师都要认真写教案课件。教案是激发学生求知欲的有效方式。看见必读的“二次根式的乘法课件”相关精品文章分享给您,强烈建议您将此页面收藏以备不时之需!...
    2024-07-21 阅读全文

教案是教师在上课前需要准备好的教学材料,每位教师都需要仔细策划教案。教案和课件的设计质量对教学效果起着关键作用。如果您对“二次根式教案”感到好奇,请阅读下面精心准备的资料,需要的同学请认真阅读!...

2023-11-28 阅读全文

每个老师需要在上课前弄好自己的教案课件,所以在写的时候老师们就要花点时间咯。尤其是新入职老师,教案课件写好了才会课堂更加生动,什么样的教案课件才是好课件呢?幼儿教师教育网小编出于你的需要,为你整理了《二次根式》教案,请收藏好,以便下次再读!...

2023-04-01 阅读全文

幼儿教师教育网的编辑筛选出来的这篇“二次根式课件”文章绝对值得你一看,我们提供这些信息希望能够为您提供一些参考和指导。老师工作中的一部分是写教案课件,但教案课件不是随便写写就可以的。做出好的教案是教师工作的基本素质之一。...

2024-05-17 阅读全文

作为一名优秀的幼儿园老师,课堂离不开我们准备的说课稿,为了激发孩子们学习的欲望,我们会准备一份生动有趣的说课稿,说课稿有利于老师提前熟悉所教学的内容,提供效率。优秀有创意的幼儿园说课稿要怎样写呢?你可以读一下小编整理的二次根式说课稿,更多相关信息请继续关注本网站。一、教学目标:知识与技能:1.了解二...

2023-05-16 阅读全文

教案课件是每个老师在开学前需要准备的东西,每个老师都要认真写教案课件。教案是激发学生求知欲的有效方式。看见必读的“二次根式的乘法课件”相关精品文章分享给您,强烈建议您将此页面收藏以备不时之需!...

2024-07-21 阅读全文
Baidu
map