幼儿教师教育网,为您提供优质的幼儿相关资讯

圆锥的课件

发布时间:2024-08-25 圆锥课件

圆锥的课件(精选五篇)。

教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师应该设计好自己的教案课件。编写好教案需要教师有较为广泛的背景知识和教学经验,你是否在为不会写教案课件而烦恼呢?以下是幼儿教师教育网编辑整理的“圆锥的课件”类希望对大家有所帮助,分享就是关爱快把这个给你的朋友们看看吧!

圆锥的课件 篇1

人教版小学六年级数学说课稿《倒数的认识》

一、说教材

本课的内容是九年义务教育数学第十一册第一单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念,教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

基于以上的认识,遵循“知识与技能的学习必须以有利于其它目标(数学思考、解决问题、情感态度)的实现为前提”的重要理念,确定本课的教学目标:

1、让学生在具体情境中理解倒数的意义,并掌握求一个数倒数的方法,会求一个数的倒数。

2、让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的'过程。

3、培养学生良好的合作意识,具有回顾与分析解决问题过程的意识。

4、感受数学的趣味性和挑战性,获得良好的情感体验。

重点:倒数的求法。

难点:带分数、小数的倒数求法。

关键:理解倒数的意义。

二、说教法

本课我采用了发现式教学法、小组讨论式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,特别是注重情境的创设,如创设 “取名称”、“找朋友”、“我来试试看”、“我来当名医”、“火眼金睛”等情境,以平等宽容的态度激起学生的探究热情,让学生在互动和活动过程中充分地运用自己的能力器官。

三、说学法

“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生尝试发现,体验到创造的过程;另一方面,也可以增强学生的合作意识,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,在互动中迸发出智慧的火花。

四、教学程序设计

在课前准备阶段,我抓住“互为”二字作文章,先安排这样一个课前活动。

1、联系语文中的反义词的知识,举倒如:“黑”的反义词是什么?(白)“正”的反义词是什么?(反、倒)

2、用“互为”造句。举倒如:“黑和白互为反义词”,这句话还可以怎样表达?(黑是白的反义词或白是黑的反义词)

3、思考:能否说“黑是反义词,白是反义词”?为什么?

通过以上的活动帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍,

并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

(一)激趣引入,导入新课

1、请说出结果是1的算式(微机显示),如:3/8×8/3=1

5-4=19÷9=1等等。

2、观察、分类:学生可能会以加、减、乘、除或和、差、积、商是1为标准进行分类。

3、思考:结果是1的两个数有何特点?你能根据它们的特点给它们取个名称吗?可能会有以下回答:

①加法中两个数的和是1,名称:补数…

②减法中两个数相差1,名称:邻数…

③除法中的两个数是同一个数,名称:镜数…

④乘法中的两个数(微机只演示积为1的一组数,让学生再观察),名称非常好听,又很符合它们的特点:数学上把乘积是1的两个数叫做互为倒数。

4、顺势揭题:我们今天就来研究倒数(出示课题),以上让学生自己提供教学材料,能迅速激发学生的探索兴趣,为探求新知作好心理上的准备。在取名称的过程中,学生需要观察两个数存在的特点,这样就有效地激发学生的观察兴趣。

(二)举例辨析,理解意义。

分三步进行:

一是微机出示:(1)什么是倒数?满足什么条件的两个数互为倒数?

(2)你能找出互为倒数的两个数吗?请举例。

让学生按“读、思、划”三步阅读课本,即一边读书P19,一边思考,并把重点知识或不明白的地方勾画出来。结合例子说明:3/8和8/3互为倒数,也就是说3/8的倒数是8/3,8/3的倒数是3/8。

二是同桌互说,举例说出互为倒数的两个数,并说理由,充分感知。

三是让学生回答,进行交流:怎样理解“互为”的含义?能说某数是倒数吗?(举例如:“小明和小华是好朋友”,能说成“小明是好朋友”或“小华是好朋友吗”?)

此处在学生自学的基础上,让学生举例说明倒数,积累感性材料。引导学生重点理解“乘积是1”而不是“和(差、商)是1”,理解“互为”是指两数的依存关系。

(三)观察比较,归纳方法

该环节让学生寻找求倒数的方法,注意先独立思考,再合作交流。具体分为三个层次:

第一层次:创设问题情境:“找朋友—好朋友,手拉手”,请把互为倒数的两个数用线连起来。微机显示:

7/911/662/39/7、6/11、1/6练习后,质疑“为什么2/3孤零零地站在哪里?”

学生回答后,再激趣:“大家有勇气探索求倒数的方法吗?

第二层次----我来试试看:我能行

写出11/6、1/5、9和15/8的倒数(微机显示)

提示:如有困难,可先自学课本,或请教你的好朋友,找不同层次的学生回答。

第三层次----回顾、交流

1、小组交流:(1)你是怎样求一个数的倒数的?

(2)互为倒数的两个数相等吗?怎样表示它的结果?

2、全班交流,突出重点:(1)互为倒数的两个数有何特点?

圆锥的课件 篇2

首先说一说这节课的内容。圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。(播放课件)圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。(播放体积公式课件)

通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。绝大多数学生的动手实践能力比较强,但学生的空间想像能力因年龄特点,还有待进一步加强训练。

根据以上所述我制定了这节课的教学目标:

知识与技能目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

过程与方法目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

根据学生学情和教学目标,我确立了以下教学重难点。

教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。

多媒体教学软件、空心圆柱、圆锥容器、装有水的水桶。

《数学课程标准》明确指出,教师应激发学生的学习积极性,给学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、思想和方法,获得广泛的数学活动经验。本节课我主要采用引导发现法、实验操作法,同时借助多媒体等教学手段,增大教学容量,提高教学质量。

波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课堂上设计的实验,让学生动手操作,推导出圆锥的体积公式,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。

有句话说的非常好“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究。因此我在讲求教法的同时,更重视对学生学法的指导。

有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

利用复习圆柱、圆锥的认识和圆柱的体积公式的推导及其应用,为新知识的迁移做好铺垫。通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切,从而产生学习新知的欲望。

2、谈话激趣,导入新课。

很多同学都喜欢吃冰淇淋,你们看,冰淇淋蛋筒的形状是什么样的?你们有没有想过一个圆锥形蛋筒能装多少冰淇淋呢?(板书课题)怎样求它的体积?能不能把它转化成我们已经学过的图形的体积来求?转化成什么图形最合适?猜猜看?下面我们就来探讨这个问题。(通过一系列问题聊天,激发兴趣,活跃气氛引出课题)

3、实验操作,探究新知。

学生通过刚才的谈话已经迫切希望通过实验来证实自己的猜想,所以学习兴趣盎然,注意力高度集中,积极投入到实验中。

1、我准备出一个圆柱和一个圆锥容器,先让学生们自己观察两个物体的联系,引导他们说出等底等高。(此过程我会拿着两个容器到学生中去让他们不仅仅能看到还能摸一摸,从而更直观的感受等底等高。)

我会抛出问题:同学们你们说如果把圆锥倒满水然后往圆柱里放,几次能把圆柱也放满水?(让学生根据自己的认知大胆猜测)

带着疑问、猜测做实验。请两组学生进行操作,其他学生一起帮他们做记录。实验结果就是三次能装满。(播放课件演示实验过程)

是不是所有的圆锥都是正好用三次就倒满这个圆柱呢?(强化对等底等高的理解,小组讨论各抒己见)这时拿一个小一点的圆锥容器继续做一次实验。实验证明只有等底等高的圆锥装满水往圆柱里倒需要三次。

1、讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流。最终达成共识圆柱的体积是等底等高圆锥体积的3倍,即圆锥体积是等底等高圆柱体积的。这时我利用多媒体演示圆柱容器里的水体积的分解,再次肯定学生自己的观点的准确性。

2、圆锥的体积怎样计算?计算公式是什么?根据学生的回答板书:(出示课件)V锥=1/3 SH本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,突出教学重点。

4、尝试练习,巩固提高。

以上两道题,指名学生板书解题过程,集体订正。及时把探索到的新知应用于实践,教师从中得到教学信息反馈以便调整教学内容,学生体验到“再创造”与“成功”的喜悦,进一步激发他们学习的自主性。

工地上有一个近似于圆锥的沙堆。你能想办法算出它的体积吗?说说测量和计算的方法。

练习设计从基本题入手,过渡到变式题,发展到综合题,引伸到思考题,符合由浅入深、循序渐进的教学原则。练习过程中训练了学生的解题能力和技巧,运用所学知识解决实际问题的能力。

课末,我通过聊天形式引导学生通过反思、评价,梳理本课知识点,形成系统的知识结构,进一步巩固本课教学内容。以下就是我进行的话题。

①这节课你学会了什么?这里用提问的方式引导学生回顾归纳所学知识内容、学习方法,能强化知识的理解和记忆,促进学生掌握学法。

②对自己和别人你有什么话要说?让学生对自己和别人的学习过程及学习效果进行评价,能强化自信、自立、自强意识,激发自主发展的内在动力。

③布置作业:练习四的有关练习。适量的作业可及时反馈学生学习情况,培养学生良好的学习习惯和品质。

根据本课重难点和学生认知特点,我设计了简洁明了而又形象直观的板书。这样的板书设计体现了新知的形成过程,又显示了具体的解题方法,突出教学重点,形象直观。

1.要联系生活学数学。在教学中我深切的体会到要让学生学好数学就一定要让他们明白:数学来源于生活,最终又应用于生活.要让学生爱数学就先让他们爱生活.这就需要我们在备课时不局限于教材,要结合生活实际去备课.2.教师一定要敢于给学生大量的时间与空间,让学生经历“发现问题——大胆猜想——实验验证——解决问题”的全过程,让他们的才能与智慧得以施展,以学生为主体的观念贯穿始终,充分发挥学生的自主性,生成和构建自己的知识体系。

3.学生课后反馈上来的问题是计算问题很大,公式会用但是计算出现问题了,以后要多锻炼学生的计算能力。

(强两点我简单的概括了这节课我的理论支撑和设计构想,第三点是课后学生反映出来的问题。)本节课我的设计体现了数学核心素养中的数感、空间观念几何直观、数据分析、运算能力及推理能力等几方面。初步探究中,效果还需有待观察。

圆锥的课件 篇3

本小节的教学内容包括圆锥的认识和圆锥的体积,它是在学生掌握了圆的周长、面积和圆柱的表面积、体积的基础上进行教学的.它是小学阶段几何知识的最后部分.通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分名称;理解求圆锥体积的计算公式,会运用公式计算圆锥的体积.

圆锥体是人们生产、生活中经常遇到的形体.教学这一部分内容即能发展学生空间观念,为今后的学习打下基础,又可以帮助学生掌握解决实际圆锥问题的方法.

教材通过直观引导学生观察、实验、判断推理得出圆锥体积的计算公式.这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.

根据对过去学生试卷的分析,在计算等底等高圆柱、圆锥体积的变形题中,错误率比较高,主要原因是对等底等高的圆柱、圆锥的体积之间的关系不清,因此教学中对于算理的推导要特别注意.

本小节的教学内容包括圆锥的认识和圆锥的体积,它是在学生掌握了圆的周长、面积和圆柱的表面积、体积的基础上进行教学的.通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分名称;理解求圆锥体积的计算公式,会运用公式计算圆锥的体积.

教学圆锥的认识,重点是掌握圆锥的特征及各部分名称.教学时首先需要复习已学的圆柱体的特征,然后结合实物,通过对比,使学生掌握圆锥的特征.教学圆锥的高的测量方法是教学的难点,教师可引导学生猜测、动手实测操作,利用课件演示测量过程,使学生顺利突破难点.教学时要充分的为学生提供自主探索空间.

教学圆锥的体积,重点是体积公式的推导过程.教学时可以按照“演示:利用课件演示圆锥体的形成;猜想:你觉得圆锥的体积和什么立体图形有关系?有什么关系?操作:通过实验(包括等底等高和不具备等底等高条件的多个实验)引导学生推导圆锥体的体积公式;验证:进行基本计算”四个步骤组织学生创造性学习.教学中通过学生大胆的猜想尝试与创新,自主探究,推导圆锥体的体积公式.教学时要充分的为学生提供创造空间.

使学生认识圆锥,掌握圆锥的特征及各部分名称.

1、出示圆柱体,引导学生说出圆柱体的特征.

2、什么叫圆柱的高,并在实物或几何图形中指出.

1、大家在生活中见过圆锥体吗?

2、一个长方形通过旋转,可以形成一个圆柱体,那么你们知道圆锥体是怎样形成的吗?(课件演示:圆锥的形成) 下载

3、圆锥的认识(课件演示:圆锥体的认识) 1、圆锥有一个顶点,底面是一个圆

2、圆锥周围的面是一个曲面(侧面).

(2)用直尺和三角板如何测量圆柱的高.

1、说出圆锥的特征.

2、说出圆锥各部分名称.

今天这节课你学到了哪些知识?圆锥体和圆柱体有什么区别?

学生明确:

圆锥的课件 篇4

教学目标: 1、通过实验推导出圆锥体积的计算公式。2、理解并掌握圆锥体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。3、培养学生的观察、分析的综合能力。 教学重点: 圆锥的体积计算。 教学难点: 圆锥的体积公式的推导。     教学过程:   一、创设情景,引出问题 师:大家看,这些容器里的水是什么形状? 师:长方体形状的水体积怎样求? 生:长×宽×高。 师:圆柱体形状的水体积怎么求? 生回答后师问“要求圆柱的底面积,需要测量出什么? 师:大家以前的知识掌握的真牢固!那圆锥体形状的水的体积呢? 师:哦,看来还不会,那么回想我们推导圆柱的体积公式时把圆柱转化成了(长方体),求圆锥的体积,能不能也用一下转化的方法?同学们看,水是可以流动的,有没有什么好的方法把圆锥形的水转化成其它形状的? 生回答后,师边说边把圆锥里面的水倒进圆柱里面 师:现在它的体积你会求了吗? 师:好,(出示圆锥形实物)那它还能像水一样转化成圆柱吗? 师:不能了,那看来我们需要探究计算圆锥体积的一般的方法,这节课我们就来学习“圆锥的体积”。(板书课题) 二、进入实验,探究新知 师:大家观察这两种几何形体,你认为圆锥的体积和哪个物体的体积联系最大? 生:我认为圆锥的体积可能和圆柱的体积联系最大,因为它们的底面都是一个圆,侧面都是曲面。 师:你说的真完整,表扬他!圆锥和圆柱的联系很大,那么它们的体积之间有什么样的联系呢?让我们来做实验探究一下。 出示一组圆柱和圆锥比较它们的底面积和高(实验之前,我们先来看这是圆柱的底面,这是圆锥的'底面,把它们扣在一起,大小相等,我们在数学上把它叫做等底(板书等底)比较它们的高,相等,我们在数学上把它叫做等高(板书等高)也就是说这组圆柱和圆锥等底等高),之后,问:像这样依据底面积和高之间的关系可以把圆柱和圆锥分为哪几种情况? 生:等底等高,等底不等高,等高不等底,不等底不等高。 ① 等底等高 ② 等底不等高 ③ 等高不等底 ④ 不 等 高 不 等 底 生回答后用课件出示统计表并说明为了方便,我给这四组情况标上序号①②③④,如图         师:好,我们就用这四组容器做实验,老师先给同学们说明三点:①我们用圆锥容器装满水,往圆柱里面倒,请同学们观察几次能把圆柱倒满?②同学们就来比一比,赛一赛,看谁看的最认真,观察的最仔细!③由于水具有流动性,容易洒,所以在实验的过程中可能会有一点误差,我们可以忽略。 师:我们先用这一组做(等底等高的)做实验,先把圆锥装满水,往圆柱里面倒,一次,两次,三次,怎么样了? 生:满了。 师:一共倒了几次? 生:三次。 师:你发现了什么? 生1:我发现用装满水的圆锥往圆柱里面倒水,三次可以把圆柱倒满。 生2:我发现了圆锥的体积是圆柱体积的 。 师:圆锥的体积是圆柱体积的 ,还可以说:圆柱的体积是圆锥的(3)倍。 进行第二次实验(等底不等高),老师边做边说,仍然先把圆锥装满水,往圆柱里倒,大家观察,不到两次就倒满了。 进行第三次实验,用一个小点的圆锥往圆柱里面倒水(不等底不等高),倒了很多次没倒满。 进行第四次实验,等高不等底的。 师:回头看这四种情况,哪种情况的规律最明显?有什么规律?圆锥和圆柱有什么样的关系?(多名回答) 生:第一种情况,圆锥的体积是圆柱体积的 ,圆锥和圆柱等底等高。 师:那是不是等底等高的条件下圆锥的体积都是圆柱体积的 呢?我们再做一个实验验证一下。 进行第五次实验,换一组等底等高的圆柱和圆锥,把圆锥装满水,往圆柱里倒,观察几次可以倒满? 生:三次 师:那说明了什么? 生:说明等底等高时圆锥的体积是圆柱体积的 。 师:同学们很聪明,其实,数学家已经证明了只要在等底等高的条件下,圆锥的体积就是圆柱体积的 。 师:现在我们把这个规律写下来: 板书:(等底等高时,)圆锥的体积是圆柱体积的 。齐读两遍 师:那我们能不能换个说法呢?你来说一说。 生:等底等高时,圆柱的体积是圆锥体积的3倍。 师:好,现在我们用等式来表示这句话,体积用字母V表示,为了把圆柱的体积和圆锥的体积区分开来,用 来表示圆锥的体积, 表示圆柱的体积,那这句话就可以写成: 。圆柱的体积等于底面积×高,同样是为了区分圆柱和圆锥我们用 来表示圆柱的底面积, 表示圆柱的高,那这个等式就可以写成 ,由于圆锥和圆柱等的等高,所以我们还可以写成 师:这样我们就得到了圆锥体积的计算公式,也就是 的底面积×高。那回顾探索圆锥体积的整个过程,你有没有什么问题要问或者是不懂的地方? 三、应用新知。 师:好,看来是大家都明白了,根据这个公式,要求圆锥的体积,需要知道哪些条件? 生1:与它等底等高的圆柱的体积。 生2:只要知道底面积和高就行了。 师:那大家能根据给出的条件求出圆锥的体积吗?我们来看例题 出示例一:一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少立方分米? 拿出你们的练习本,做一做,后找个同学汇报。说明不要漏乘 ,为了避免漏乘 ,我们可以先写上 。 师:如果知道圆锥的底面半径和高,能不能求出圆锥的体积? (出示试一试:一个圆锥的底面半径是 3厘米,高是6厘米。它的体积是多少?) 拿出你们的练习本,在上面做一做。指名一名学生演板。 师:你还能根据什么条件求出圆锥的体积? 生:已知底面周长和高,已知底面直径和高。 四、思考判断,巩固新知。 看来同学们都掌握的很好,现在老师就再来考考你们。(课件出示)1 2、判断对错,并说明理由。     3、计算:   五、全课小结 通过本节的学习,你学到了什么知识?    

圆锥的课件 篇5

教材地位:

本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的,是小学阶段学习几何知识的最后一部分内容。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。

学情分析:

小学生的思维正在由形象思维向抽象思维转变,本单元立体图形的学习利于发展学生的空间观念。教学中要充分利用直观学具,让学生观察、动手、动脑,丰富其表象,训练形象思维,而本节的复习课又便于培养学生自主获取知识的能力和整理、分析、综合概括的能力。

教学目标:

(1)知识目标:引导学生通过回忆、整理、拓展等实践活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。

(2)能力目标:通过让学生对知道的整理提高学生的自主获取知识与概括知识能力。在练习、讨论、合作中发展学生的空间观念,并进一步提高运用知识解决实际问题的能力。

(3)情感目标:通过整理、交流、合作、探究、体验探究的乐趣,感受数学的价值,培养学生“学数学、用数学”的意识和创新的精神。

教学重点、难点:

重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。

难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能力。

教学准备:

课件

教学过程:

(一)明确复习目标

同学们,我们在《圆柱和圆锥》这一单元中学习了有关圆柱、圆锥的相关知识,今天这节课我们来对这些知识做一个系统的整理并运用它们来解决一些生活中的实际问题。

(二)学生自主作业

让同学们自主整理本章知识。

(三):两两交流、解疑(兵教兵)

同桌之间交流整理成果、相互解答各自的疑惑。

(四)组内帮教、组间交流、解疑

小组内合作,复习巩固本单元学习的主要计算公式;组间交流,提出自己学习中的疑惑并相互给予解答。

(五)小组展示,讨论、完善,形成基本的知识网络。

各组选派代表,展示、完善整理成果。

圆柱和圆锥

基本特征 基本公式

圆柱 两个底面, 侧面积=底面周长×高

一个侧面 表面积=侧面积+底面积×2

体积=底面积×高

圆锥 一个底面,

一个侧面 体积=底面积×高÷3

〔教师点拨:〕

(1)圆柱的侧面怎样剪展开图是平行四边形?

(2)圆柱展开图与圆柱有什么关系?

(3)说出圆柱体积公式的推导过程。(迁移运用圆面积推导的转化思想)

(4)回忆说出圆锥体积公式推导的实验过程。

〔设计意图:〕通过对知识的整理,提高学生自主获取知识与分析、综合、概括知识的能力,在小组交流中,培养合作、质疑、辩论的能力。

(六)巩固应用、互练互测(兵练兵)

1.屏幕呈现:一个圆柱体木料,底面直径20厘米,高30厘米。

(1)根据已知条件,结合已学圆柱、圆锥的知识,提出问题,看谁的更有创意?(2)学生思考后提出问题。

〔预设问题:〕

①木料的侧面积是多少?表面积是多少?

②木料的体积是多少?

③把木料削成一个的圆锥,它的体积是多少?

④……

〔设计意图:〕通过观察、思考,让同学们根据所学知识,提出有价值的数学问题,培养学生的问题意识和联系实际解决问题的能力。

2.“刷”出表面积有关的知识。

〔教师引导:〕针对这一圆木,生活中在什么情况下需要求表面积?

〔预设回答:〕给圆木涂油漆求涂漆面积的时候需要用表面积的知识。

〔教师追问:〕给圆木涂油漆有几种情况?都发生在什么条件下?

〔预设回答:〕①如果是柱子时,只刷侧面。

②如果是个木桩,只涂一个侧面和一个上面。

③如果是个圆木料,可涂整个表面。

〔设计意图:〕一个“刷”,刷出了与表面积有关的符合实际的有价值的问题,培养了学生灵活运用所学知识解决实际问题的能力。

3.“切”出新的表面,求增加的表面积。

〔教师引导:〕有同学说可以把圆木切开,求表面积增加了多少平方厘米,那同学们说说可以怎样来切?

〔预设回答:〕

①可以横切,分两段切一刀,增加两个底面大小的面,分三段切两刀,增加4个底面大小的面,以此类推。

②还可以沿直径纵切,增加两个长方形的面,长和圆柱的高相等,宽和直径相等。

〔课件演示:〕横切和纵切

〔设计意图:〕横切、纵切两种不同的切法探究,加上课件的演示,能进一步发展学生的空间观念。

4.“削”出圆锥,讨论圆柱与对应圆锥的关系。

〔教师引导:〕除了对圆木“涂”“切”以外,有同学说还可以“削”成一个的圆锥。那怎样“削”才算是呢?你能用四句话说出它们之间的关系吗?

〔预设回答:〕等底等高的圆柱和圆锥:圆柱体积是圆锥体积的3倍,圆锥体积是圆柱体积的三分之一,圆柱体积比圆锥体积多2倍,圆锥体积比圆柱体积少三分之二。

〔教师引导:〕如果圆柱和圆锥等底等积,那你能说出它们之间的关系吗?

〔预设回答:〕圆柱和圆锥等底等积:圆柱高是圆锥高的三分之一,圆锥高是圆柱高的3倍。

〔教师引导:〕如果圆柱和圆锥等高等积,那你能说出它们之间的关系吗?

〔预设回答:〕圆柱和圆锥等高等积:圆柱底是圆锥底的三分之一,圆锥底是圆柱底的3倍。

〔设计意图:〕将圆柱削成一个圆锥,让同学们讨论分析两者之间的关系,便于进一步理解两者的内在联系,从而进一步发展学生的空间观念。

5.“挖”出容积。

〔教师引导:〕我们还可以对圆木如何加工呢?

〔预设回答:〕可以挖成一个木桶,求求它的容积,内外涂清漆,求涂漆的面积是多少。

〔教师追问:〕容积和体积有何联系和区别?

〔设计意图:〕“挖”出容积,将容积和体积加以何联系和区别,木桶的内外都涂上清漆,与前面的涂漆问题加以联系和区分,学生的空间观念得以进一步的发展。

(七)联系实际,解决实际问题。

学校要修建一个圆形水池,池内安装喷泉,水池直径5米,深1.5米。你能提出哪些数学问题?

〔预设问题:〕

①水池的占地面积是多少平方米?

②挖这个水池要挖出多少立方米的土?

③如果给水池贴瓷砖,贴瓷砖的面积是多少?

④水池装满水,能装多少立方米?

〔教师提问:〕

⑤如果给水池接一圈水管,并4米安装一个喷头,需要按几个?

⑥池内如果注入1.2米深的水,那将有多少立方米的水?

〔教师追问:〕每一个问题都涉及哪些方面的知识?

〔设计意图:〕一个水池问题,让同学们再一次将所学的知识应用到问题解决中,可以充分培养学生灵活运用知识解决实际问题的能力。

(八)课堂小结:同学们畅所欲言,谈收获和感受。

附:板书设计

圆柱和圆锥

基本特征 基本公式

圆柱 两个底面, 侧面积=底面周长×高

一个侧面 表面积=侧面积+底面积×2

体积=底面积×高

圆锥 一个底面,

一个侧面 体积=底面积×高÷3

Yjs21.Com更多幼儿园教案扩展阅读

圆锥课件教案合集


根据您的要求,幼儿教师教育网编辑为您搜索整理了圆锥课件教案。教案课件是老师上课做的提前准备,撰写教案课件是每位老师都要做的事。写好教案,完整课堂教学可期。欢迎大家阅读,希望对大家有所帮助!

圆锥课件教案【篇1】

教学目标:

1、使学生理解圆锥体积计算的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算。

2、培养学生初步的空间观念、逻辑思维能力、动手操作能力、创新能力。

3、渗透知识“相互转化”的辨证唯物主义思想和猜想、验证等数学思想方法。

教学重点:

掌握圆锥体积计算的方法并运用圆锥的体积计算方法解决实际问题。

教学难点:

理解圆锥体积公式的推导过程,渗透猜想、验证等数学思想方法,培养学生的实践能力。

教具准备:

一对等底等高的空心圆柱、圆锥和一桶水为一份教具,准备6份。一桶沙子。

教学过程:

( 一)复习旧知,课前铺垫

1。怎样计算圆柱的体积?

指名回答,教师板书:圆柱体的体积=底面积×高。

2。一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

指两名板演,全班齐练,集体订正。

(二)提出质疑,引入新课

圆锥有什么特征? 它的体积如何计算呢?

今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)

(三)动手操作 ,获得新知

1。 探讨圆锥的体积公式

教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

学生回答,教师板书:

圆柱——(转化)——长方体

圆柱体积公式——(推导)——长方体体积公式

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

(学生得出:底面积相等,高也相等。)

底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底 等高)

(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?

教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3) 学生分组做实验。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的三分之一。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了沙子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

在等底等高的情况下。

(老师在体积公式与“等底等高”四个字上连线。)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?

得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3。

小结:今后我们求圆锥体体积就用这种方法来计算。

(5)应用巩固

1。出示例题学生读题,理解题意,自己解决问题。

例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

学生完成后,进行小组交流。

你是怎样想的和怎样解决问题。(提问学生多人)

教师板书:

1/3 ×19×12=76(立方厘米)

答:它的体积是76立方米

2、 练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

3。出示例2:要求学生自己读题,理解题意思。

有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1。5米。你能计算出这堆小麦的体积吗?

(1)提问:从题目中你知道什么?

(2)学生独立完成后教师提问。并回答同学的质疑:3。14×()×1。5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思? 4。比较:例1和例2有什么地方不同?

1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。

(四)综合练习,发展思维

1、一个圆锥形沙堆,高是1。5米,底面半径是2米,每立方米沙重1。8吨。这堆沙约重多少吨?

2。选择题。

每道题下面有3个答案,你认为哪个答案正确就用手指数表示。

(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )

⑴ a立方米 ②3a立方米 ③ 9立方米

(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米

(1)6立方米 (2)3立方米 (3)2立方米

四、小结:

这节课同学们有什么收获?你是怎样学习的?

五、开放性作业:

要使等底等高的圆柱与圆锥体积相等,你有什么办法?(生讲师课件演示)

教学反思 :

1、这节课,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然。特别是用不同的方法推到出计算公式,开阔学生思维,提高学生学习积极性。

2、通过验证猜想这一实践活动,让学生运用学具操作探究、体验活动中,去参与知识的生成过程、发展过程,主动地发现知识,体会数学知识的来龙去脉,培养学生主动获取知识的能力。组织学生主动探索,在此教师成功地转换了自己在课堂教学中的角色和作用,能根据学生已有的认知基础组织和展开教学活动,充分发挥了课堂教学中学生的主体作用。

3、小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,本课主要采取让学生做实验的方法主动获取知识。主要引导学生做了三次实验。第一次是比较圆柱和圆锥的底和高,强调等底等高的圆柱和圆锥才有一定的倍数关系;第二次,让学生将圆锥中的水倒入与其等底等高的圆柱之中,直至三次倒完,让学生感受到“圆锥的体积是与它等底等高的圆柱体积的1/3,圆柱的体积是与它等底等高的圆锥体积的三倍”;第三次,用沙子实验验证“不是任何一个圆锥体的体积都是任何一个圆柱体体积的三分之一”。搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。

4、本课在基础知识教学的基础上进行呈现方式和解题策略的适当开放,较恰当地处理好了继承和创新的关系。

只是,这节课学生是在教师预设引导中探究。为什么要学的疑念,怎样学的策略,可能还不够突显,有待于探究。"

圆锥课件教案【篇2】

教学内容:

九年义务教育六年制小学数学第十二册第48-50页。

教学目的:

1.使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

2.培养学生初步的空间观念、逻辑思维能力、动手操作能力。

3.向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

教学重点:

圆锥的体积计算。

教学难点:

圆锥的体积公式推导。

教学关键:

圆锥的体积是与它等底等高的圆柱体积的二分之一。

教具准备:

投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。

学具准备:

等底等高的圆柱和圆锥空心实物各一个

教学过程:

一、复习

1.圆柱的体积公式是什么?

2.底面积是19平方厘米,高是20厘米,求圆柱的体积是多少立方厘米?

[说明:圆锥的体积,是与它等底等高的圆柱体积的1/3。因此,先复习圆柱的体积计算方法,抓住所学知识间的内在联系,为学习圆锥的体积计算方法作了很好的铺垫。]

师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

板书:圆锥的体积

[说明:设疑激趣,激发学生探求新知识的欲望。l

二、新课教学

师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)

投影出示下图:

师:圆锥的底面是什么形状?

生:圆锥的底面是圆形的。

师:对。什么是圆锥的高呢?

生:从圆锥的顶点到底面圆心的距离是圆锥的高。

师:你能上来指出这个圆锥的高吗?

师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

师演示:将刚才出示的圆锥图上的高往外移,标上字母h,如图所示:

师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?

生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。

师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)

师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的部分等等。谁上来指一指这支铅笔圆锥型部分?(略)

师:对圆锥我们已经有了一个初步的认识。现在,我们一起来看一组圈,请你判断这些图中哪些是圆锥?哪些不是?为什么?

投影出示下列图形:

生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。

师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?

生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。

师:说得有道理。你能不能将这个圆锥摆正。

(一名学生到前面旋转投影片,将圆锥图形一一摆正)

师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。

[说明:圆锥的认识,教师是让学生通过看书自学去获得的。教师通过不断设疑,层层深入,帮助学生对书上内容逐步深化;然后,以生活中的圆锥形物体,进一步帮助学生加深认识;最后,用一组判断题要学生鉴别哪些是圆锥,哪些不是圆锥,符合学生的认知规律,从而达到知识的强化目的。]

师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积(出示教具)。这是一个空心圆锥,这是一个空心圆柱。它们之间有什么关系呢?我们先来比较它们的底面。(师演示:将圆锥和圆柱的底面合在一起,完全重合。)

生:它们的底面是相等的。

师:我们再来比较它们的高。(师演示:用一把直尺架在两者之间,然后分别量一量它们的高。)

生:它们的高也是相等的。

师:那也就是说,这两个圆柱和圆锥是等底等高的。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,注意大拇指不要伸进去,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

出示小黑板:

1.实验器材中,圆锥的底面和圆柱的底面有什么关系?官们的高有什么关系?

2.圆锥的体积和同它等底等高的圆柱的体积有什么关系?

3.圆锥的体积怎么算?体职公式是怎样的?

学生分组做实验,老师巡回指导。

师:我们先来回答第一个问题。在你们做实验用的

器材中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?

生:在实验器材中,圆锥的底面和圆柱的底面是相等的,它们的高也是相等的。

师:我们再来讨论第2个问题。圆锥的体积和同它等底等高的圆柱的体积有什么关系?

生:圆柱的体积是圆锥体积的3倍。

生:圆锥的体积是同它等底等高的圆柱体权的1/3。

板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

生:我们先在圆锥内装满水,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

师:说得很好。那么圆锥的体积怎么算呢?

生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

师:谁能说说圆锥的体积公式。

生:圆锥的体积公式是V=1/3Sh。

师:请大家把书翻到第49页,将你认为重要的字、词、句圈圈划划,并说说理由。

生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。这两个是等底不等高的圆锥和圆柱,边两个是等高不等底的圆锥和圆柱,我请两个同学上来用刚才做实验的方法试试看。

(请两名学生上讲台示范实验)

师:现在大家看清楚了吗?等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。

生齐答:不是。

[说明:变教具为学具,让学生亲自动手实验,使听党、视觉、触觉等各种感官一起参与活动,通过自己亲自动手操作,努力去探索圆锥体积的计算方法,这样的学习,学得活,记得牢,既发挥了教师的主导作用,又充分体现了学生的主体地位。]

师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系,口答三道题目。师:出示小黑板,口算。

求与下面圆柱等底等高的圆锥体的体积。

1.圆柱体的体积是3立方厘米;

2.圆柱体的体积是2.4立方分米;

3.圆柱体的体积是1/2立方米;"

生答略。

师:大家回答得很好。接下来,请大家用圆锥的体积计算公式来解答一道应用题。师出示第50页例1。

例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

(两名学生板演,老师巡视)

师:这位同学做的对不对?

生:对!

师:和他做的一-样的同学请举手。(绝大多数同学举手)

师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

师:对了。刚才我们通过实验4知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3Sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

三、巩固练习

师:现在我们一起来做填表练习。

出示小黑板:

1. 填表:

底面积S (平方米) 高h(米) 圆锥的体积(立方米)

15 9 ()

16 0.6 ()

师:两题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

2.求下面各圆锥的体积。

(1)半径是3米,高是2米。

(2)直径是4分米,高是6分米。

(3)周长是6,28厘米,高是3厘米。

3.有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

[说明:练习有层次,形式多样。最后一个层次的练习,又回到动手实验上,而且强化的仍然是本节课最基本、最关键的内容。]

师:这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用V=1/3Sh这个公式算圆锥体积时,要特别注意什么。

圆锥课件教案【篇3】

设计意图:

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。

教学目标:

1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。

2、会应用公式计算圆锥的体积并解决一些实际问题。

3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。

教学重点:

使学生初步掌握圆锥体积的计算方法并解决一些实际问题

教学难点:

圆锥体积计算方法和推导过程。

教学过程:

一、复习铺垫:

1、揭示课题:今天我们一起来探究如何计算圆锥的体积。

2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?

二、实验操作:

1、请看接下来的2个实验:

2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。

3、播放视频:

实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。

实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。

4、通过实验你们发现了什么?

三、公式推导:

1、通过两次的实验我们可以得出结论:

圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。

2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。

3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。

4、在应用圆锥体积公式时不要忘记乘!

四、知识应用

1、接下来我们应用公式解决实际问题。

题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1。2m。这堆沙子大约有多少立方米?(得数保留两位小数)

2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。

3、列式解答。(分步与综合)

五、知识小结:

今天我们学习了圆锥的体积计算:V= Sh= πr2h。

在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!

六、结束。

【课堂教学设想】

1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的实验操作做了铺垫。

2、课堂上组织学生分小组实验:

圆柱与圆锥等底不等高时,实验结果会怎样?

圆柱与圆锥等高不等底时,实验结果会怎样?

“圆锥的体积是圆柱体积的”这一关系存在的条件是什么?

圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?

3、课堂检测,促进知识内化。

【教学反思】

本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,所以设计时力求每个环节都为教学目标服务。

课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的,让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。

课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。

圆锥课件教案【篇4】

圆锥的体积

教学内容:第25~26页,例2、例3及练习四的第3~8题。

教学目的:

1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:掌握圆锥体积的计算公式。

教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

教学准备:圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。

教学过程:

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

(2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)还可以怎么说?

板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:V=1/3Sh

拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?

强调:“等底等高”。

问:Sh表示什么?为什么要乘1/3?

练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

说明:不要漏乘1/3,计算时能约分的要先约分。

3、巩固练习:完成练习四第4题。

4、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

① 这道题已知什么?求什么?

② 求圆锥的体积必须知道什么?

③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

①圆柱的侧面积等于多少?

②圆柱的表面积的含义是什么?怎样计算?

③圆柱体积的计算公式是什么?

④圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

第七课时教学反思

课件演示

俗话说“眼见为实”,所以相对于课件演示而言,教师在全班演示会更直观,结论也更具信服性。

俗话又说“纸上得来终觉浅,绝知此事要躬行”,所以相对于看教师演示与自己亲自动手实验,亲身经历探究印象会更深刻。

课堂如果以4——6人小组为单位进行实验,全班至少得有9套以上教具。可我校现有教具数量不够。如果要求学生课前自制教具,他们暂时无法制作出与圆柱等底等高的圆锥。所以只好改为教师演示,学生观察。

仅用一次实验就得出结论是不严谨的,所以课堂上必须让学生历经多次不同实验后才能得到正确结论。根据学校现有教具,今天我准备了两套不同大小的等底等高圆柱、圆锥作为器材。在实验中,我不仅让学生清晰地看到将圆锥内的水倒3次可以注满与它等底等高的圆柱,同时,还让他们看到圆柱内的水再反倒回等底等高的圆锥时要倒3次。不仅自己示范演示,也让学生参与演示实验。最后,我还用不等底等高的圆柱与圆锥做实验,强调实验结果只有在“等底等高”的条件下才能成立。因为实验环节落实较好,全班作业正确率高。

圆锥课件教案【篇5】

基本信息

课题圆锥的体积

作者及工作单位殷兴均达州市宣汉县南坝镇第二中心小学

教材分析

《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

学情分析

六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

教学目标

1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

教学重点和难点

重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

教学过程

教学环节

教师活动 预设学生行为 设计意图

一、复习准备

1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?

2、圆锥有什么特点?(同时出示幻灯)

3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3.学生手势出示

4.想

复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

二、创设情境

出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)

引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。 联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。

三、学习新课

1、猜想体积大小

实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。

圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。

2、理解等底等高

我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?

底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础

3、猜想关系、实验验证

同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。

学生汇报

用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。

4、总结公式

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

V锥=V柱×1/3=sh×1/3

“sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。

5、全面验证

是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?

(课件演示)等底不等高、等高不等底

为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)

在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。

6、圆锥体积公式的实际应用

(1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?

(2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)

(3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?

(4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?

圆锥课件教案【篇6】

指导思想与理论依据:

本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。

教学背景分析:

(一)教学内容分析:

1、教材内容:

本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

2、研读完教材后,自己的几个问题:

(1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?

(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。

(3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?

(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?

3、自己的创新认识:

首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。

其次,是要提供给同学们一个可操作的空间。

(二)学情分析:

1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。

2、自己的认识:(结合自己在讲课时发现的问题而谈)

学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。

(三)教学方式与教学手段分析:

根据本节课的教学内容及特点,在教学设计过程中我选择了 “操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。

(四)技术准备与教学媒体:

在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。

教学目标设计:

(一)教学目标:

1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。

3、培养学生的观察、分析的综合能力。

(二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积

(三)教学难点:通过实验的方法,得到计算圆锥体积的公式。

荷叶圆圆课件教案精选


教案课件是老师工作当中的一部分,老师在写教案课件的时候不能敷衍了事。做足了教案课件的前期准备,这样才能达到预期的教学目标,我们需要从哪些角度来写教案课件呢?幼儿教师教育网小编经过搜集和处理,为你提供荷叶圆圆课件教案,欢迎阅读,希望你能阅读并收藏!

荷叶圆圆课件教案 篇1

一、激趣导入,创设情境

同学们,瞧这是个美丽的荷花池,你看到了什么?这是怎样的荷叶?荷叶——的,———的。你还会照样子说一说吗?苹果——的,——的。香蕉——的,——的。

同学们说的真好,现在请同学们把书打开翻到70页。

二、探究方法、自主识字

1、借助拼音,自由读读,注意读准字音,圈出生字以及它所在的词语。

2、给课文标上自然段。

3、出示带拼音的词语,借助拼音吧词语多读几遍。

4、请小老师领读。

5、齐读——开火车读。去掉拼音读。

6、出示摇篮、停机坪图片认识词语。

7、去掉拼音朗读词语,说一说ABB式的词语还有哪些?

8、老师吧这些词语变了变,你们还认识这些生字宝宝吗?珠、摇、躺、晶、停、 机、 展、翅、膀

9、都会认了吗?来,咱们来读一读:

齐读──指名读──开火车读。

指名说说读准“珠”、“翅”、“是”、“停”、“晶”、“坪”要注意些什么?

指名带读。

10、仔细看看,哪些字在你的生活中经常见到,对它比较熟悉?

(学生提到的字,大家都比较熟悉,隐去那个字)

小结:只要在生活中主动地观察,主动地发现,就能认识好多好多的字啊!

11、剩下的这些字,也许你不太熟悉,怎样认识它们呢?来,动动脑筋,想想办法,记住它们的模样吧。自己试一试 7、和同桌的小伙伴商量商量:

老师巡视指导。

12、怎样记住这些生字,你有什么好办法?

指名汇报说说。

13、小朋友们一定还有许多识字的好方法,来,咱们每个同学选择自己记得最好的一个字在四人小组里交流交流,展示展示。

14、相信大家已经记住了它们的样子(屏幕上消失的字又回来了)来,咱们一起来读一读。

15、读给同桌听听:

互相考考,还有不会的生字,请同桌帮助帮助。

16、我的火车要开了,开哪里?开这里。

请2、3小组的同学开火车。其他的同学,当好小听众,读对了,请你跟着读;读错了,请你帮帮他。

17、挑战,谁能摘到荷叶?读对词语就可以摘到荷叶。

三、美读美诵,体验童趣

1、现在这些生字娃娃要跳回原来的位置去了。

2、(屏幕出现全文)让我们一起读一读课文吧!说一说荷叶圆圆的都吸引了那些小伙伴?它们吧荷叶当做什么?

3、最喜欢谁?自由读读写它的哪一段。

四、学写生字亮、机、朵

1、观察它们有什么共同点?

2、怎么写好它们?

3、师范写,生书空。

4、描红并范写两个。

5、扩词,并能用词语说一句话。

五、板书设计

14、荷叶圆圆

小水珠──摇篮

小蜻蜓──停机坪

小青蛙──歌台

小鱼儿──凉伞

荷叶圆圆课件教案 篇2

【教学目标】

1、能用自身喜欢的方法,自主认识本课12个生字,激发主动识字的兴趣。

2、会正确书写“是”、“朵”等6个生字。

3、能正确、流利、有感情地朗读、背诵课文;

4、感受、体验生活的童真、童趣;激发对大自然的喜爱之情。

【教学重点】

识字、正确书写生字、感情朗读课文。

【教学难点】

初步感受汉字的形体美,感受、体验生活的童真童趣。

【教学准备】

生字卡片、课件、头饰。

【教学时间】 两课时。

【教学过程】

第一课时

一、激趣导入,创设情境

1、小朋友,你们喜欢猜谜语吗?老师这儿就给大家准备了一个有意思的谜语,听好了:

“圆圆大绿盘,浮在水面上,水珠拿它当摇篮,小鱼拿它当凉伞。”猜一猜,这是什么?

(荷叶)

2、今天,我们就来学习一篇关于荷叶的课文。

揭题──《荷叶圆圆》。

齐读课题:

要求把题目读得美美的。

3、导语:

夏天到了,池塘里长满了荷叶,圆圆的、绿绿的,可美啦!

瞧!这三个小朋友都乐呵呵的,是什么把它们吸引住了?

(出示课件)

二、探究方法、自主识字

1、借助拼音,自由读读,注意读准字音,特别要注意读准课文中那些生字娃娃的读音。

2、(屏幕出现全文)请几个小朋友来读一读。

评价(这几个小朋友不只把课文读通顺,就连躲藏在课文里的12个生字娃娃都读准了)。

3、(出现12个生字)瞧!生字娃娃来了,跟他们打打招呼吧。赶快借助文中拼音,把它们读一读、认一认。自由读读也可以同桌互读。

4、都会认了吗?来,咱们来读一读:

齐读──指名读──开火车读。

指名说说读准“珠”、“翅”、“是”、“停”、“晶”、“坪”要注意些什么?

指名带读。

5、仔细看看,哪些字在你的生活中经常见到,对它比较熟悉?

(同学提到的字,大家都比较熟悉,隐去那个字)

小结:只要在生活中主动地观察,主动地发现,就能认识好多好多的字啊!

6、剩下的这些字,也许你不太熟悉,怎样认识它们呢?来,动动脑筋,想想方法,记住它们的模样吧。自身试一试。

7、和同桌的小伙伴商量商量:

老师巡视指导。

8、怎样记住这些生字,你有什么好方法?

指名汇报说说。

9、小朋友们一定还有许多识字的好方法,来,咱们每个同学选择自身记得最好的一个字在四人小组里交流交流,展示展示。

10、相信大家已经记住了它们的样子(屏幕上消失的字又回来了)来,咱们一起来读一读。

11、读给同桌听听:

互相考考,还有不会的生字,请同桌协助协助。

12、我的火车要开了,开哪里?开这里。

请2、3小组的同学开火车。其他的同学,当好小听众,读对了,请你跟着读;读错了,请你帮帮他。

(开火车)

三、美读美诵,体验童趣

1、现在这些生字娃娃要跳回原来的位置去了。

2、(屏幕出现全文)让我们一起读一读课文吧!边读边想象,看你都能看到些什么有趣的景物?

(同学反馈)

3、最喜欢谁?自由读读写它的哪一段。

四、学习课文第一段

1、看课文插图,说说荷叶是什么样子的?

2、出示句子:

荷叶圆圆的,绿绿的。

全班齐读。

3、(出示荷叶课件)看到这些荷叶,你觉得荷叶美吗?我们该用怎么样的语气来读好这句话呢?自身试试。

4、指名读──评价──集体读。

五、作业安排

1、认认生字朋友。

2、好好地读读课文,自身喜欢的段落可以多读几遍。

第二课时

一、巩固认字

1、认读带有本课生字的词语和句子。

2、齐读全文。

二、美读课文

1、美读小水珠:

⑴ 抽读,评价。

⑵ 来,咱们一起再来体会体会。

(齐读)

⑶ 来,咱们轻轻闭上眼睛,想像一下躺在摇篮里是什么感受呢?理解词语“摇篮”。

(指名说说)

⑷ 让我们舒舒服服地再来体会一下读。

⑸ (课件)大家看,小水珠正舒舒服服地躺在荷叶上,眨着亮晶晶的眼睛,一起再读一读这段话。

2、朗读小结:

只要大家用心体会,就一定能读好课文。

3、美读:

小蜻蜓、小青蛙、小鱼。

4、小鱼游得可高兴啦,谁愿意做这可爱的小鱼,读读课文。我们一起来做这快乐的小鱼吧。

一边读,一边做做动作。

5、四个小伙伴我们都认识了,小朋友,小声告诉老师:你最喜欢谁?好好读读写它的一段,读的时候可以做做动作,能够背下来最好,待会请同学上台扮演。

6、抽同学上台扮演。

(佩带上相应的头饰)

(课件出示全图)看着图,我们一起试着美美地背一背。

三、开心写字,写对写好

1、开心写字时间到了!(出示6个字),来,和字娃娃打打招呼!

2、仔细看看,哪些字最容易写错,给大家提个醒儿,好吗?

3、你觉得哪个字最不容易写好?

(师范写,边写边讲)

4、请大家选择自身最喜欢的字和最难写的字练一练,写得好写一个,写得不好,多写几个,直到自身满意为止。

(提醒书写姿势)

5、让我们在优美的音乐中安恬静静地,开开心心地写字吧!

(配乐)

6、展示同学的优秀书写作业。

四、结束语

这节课,我们高高兴兴地学会了12个生字,读懂了一篇有趣的童话,还开开心心地写好了这些生字。现在,让我们高高兴兴地说声再见吧。

荷叶圆圆课件教案 篇3

学习目标:

1. 能借助拼音正确、流利、有感情的朗读课文,背诵课文。

2. 借助插图、联系生活实际了解课文中词语的意思,通过做动作知道 “躺 、展开” 等词语的意思。

3.学习并模仿“ 荷叶圆圆的,绿绿的” 的句式说话。

学习重点:

借助插图、联系生活实际了解课文中词语的意思;模仿 “荷叶圆圆的,绿 绿的”的句式说话。

学习过程:

第一课时

板块一、情境导入,揭示课题。

今天,老师给你们带来一件礼物,你们瞧。 (出示 PPT 图片)

师:这件礼物是什么呀!师:这荷叶是怎样的?

让我们看着池塘里的荷叶,美美地读一读这句话: “ 荷叶圆圆的,绿绿的。 ”

板块二、初读课文,由浅入深

师:这圆圆的荷叶多美啊,看它还引来了许多好朋友,有哪些呢?请小朋 友们自由读课文,读准字音,标出自然段。不熟悉的生字宝宝多读几遍,用学 过的方法记住它们。

一些淘气的字宝宝又跑回课文中了,它们想考考大家,你们可一定要努力 认准它们啊!PPT 出示图和词语。

接下来老师把生字宝宝的拼音帽子去掉,大家能认识它们吗?我们来试试 读一读词语吧!PPT

太阳公公也带着一个个生字宝宝来跟小朋友玩了。我们一起来叫叫它们的 名字吧!

板块三、表演配动作,学写生字。

赶快读读课文,注意把字音读准,把句子读通顺,一边读一边找出荷叶的小伙伴。

读了课文,你最想跟哪个小伙伴交朋友呢?把它读给同桌听。如果能配上 动作就更好了!全班交流,指名表演,提示学生关于动作的词。

配乐朗读课文。全班一起读一读,演一演。

今天我们认识了荷叶的四个小朋友,请你连一连语文书后面的第二题。

全班交流。

师:小水珠把荷叶当成了(摇篮) ,小蜻蜓把荷叶当成了(停机 坪) ,小青蛙把荷叶当成了(歌台) ,小鱼儿把荷叶当成了(凉伞) 。

学习“台、朵、鱼” 。

台:撇折中线起笔,折落在横中线略微向上斜。口要上宽 下窄。

朵:上小下大,横折弯,没有钩。竖出头与几字穿插,撇捺要舒展。

“鱼”:田字上宽下窄,最后一笔长横要长且有力。

第二课时

板块一、复习导入

同学们,我们上节课已经认识了很多好朋友,今天他们又来了,我们来开 火车读一读躺在荷叶上的生字宝宝吧!

小朋友们记性真是太棒了,生字宝宝都记得,词语朋友呢? (开火车认读词 语)大家根据这些词语做一做动作好吗? (“展开” “躺着” “歌唱”)

上节课,大家读了课文,知道荷叶有许多小伙伴,他们之间发生了许多有 趣的事。今天就让我们一起去分享他们的快乐吧!

板块二、感受课文语言的优美

齐读“ 荷叶圆圆的,绿绿的” 。仿写“ 苹果、香蕉、西瓜、月亮、眼睛、 葡萄、头发”等。

学生畅说自己喜欢的小伙伴。

1.小水珠。

(1) 你想当一滴小水珠吗?为什么呢?

(2) 我们一起来读一读这一段。 (生齐读) 说说小水珠躺在荷叶上在干什么。 ( 生:眨着亮晶晶的眼睛。 )

(3) 你们也眨眨自己的眼睛吧! (生:眨眼睛)

(4) 亮晶晶的眼睛,多可爱呀!除了亮晶晶的眼睛,你们还知道什么东西是 亮晶晶的?

(5) 指导朗读:小水珠躺在荷叶上,眨着亮晶晶的眼睛,多舒服、多开心呀 !小水珠躺在荷叶上就像躺在哪儿? (教师出示摇篮图) 就像躺在摇篮里,摇啊 摇,真舒服。( 让学生闭目想象) 谁能把小水珠舒服、快乐的心情读出来? (指名 读、齐读)

2.小蜻蜓。

(1) 哪位同学还有自己喜欢的段落,先读给大家听一听。

(2) 你能说说小蜻蜓为什么会把荷叶当作停机坪吗? “停机坪”是干什么的 地方?

(3) 你平时见过小蜻蜓透明的翅膀吗?给大家说一说。

(4) 你们还见过什么东西是透明的?

(5) 同桌读,比赛读,表演读。

3.小青蛙。

(1) 小青蛙听到了同学们读课文的声音这么动听,他可有些不服气呢,瞧, 他把荷叶当作歌台,想跟大家比试比试呢! (出示课件)

(2)谁喜欢描写“ 小青蛙” 的这一段课文,给大家读读。

4.小鱼儿。

(1) 同学们都有自己喜欢的段落,老师也有。我最喜欢描写小鱼儿的段落, 我觉得小鱼儿特别聪明,把荷叶当成凉伞。我来读一读这一段。

(2) 小鱼儿在荷叶下乘凉时心情如何呢?课文用了什么词语? (笑嘻嘻)

(3) 指名读小鱼儿高兴的样子。

板块三、回归整体,拓展延伸

1.荷叶成了小动物们最好的朋友,他们在一起嬉戏,成了荷塘里最美丽的 一道风景。同学们,让我们再去读一读课文,感受荷叶带给小伙伴们的快乐吧 !

2.读完课文后,把你喜欢的那一段背一背。

3.小伙伴们在荷塘里无忧无虑地生活着,那小朋友们想一想,还有那些伙 伴会来呢?它们又会说些什么呢?看谁的想象力最丰富。说话练习:荷叶是 ________的 ________。

板块四、总结提升,学写生字

荷叶是夏日里一首清凉的小诗,给我们带来无限的凉爽;荷叶是阳光下跳 动的绿色音符,谱写了一首优美的夏日乐章。在美丽的夏天,还有更多的美好 景物等着我们去观察、去发现、去感受、去展现他们的美。小朋友,让我们共 同盼望夏日早日到来吧!

这节课我们还要学写 4 个生字。我们再来认识认识它们,为它们找找伙伴 吧!(组词、观察写法)

机:左窄右宽,几的竖撇从竖中线起笔,与木字旁穿插。

放:左右等宽,反文旁的第一笔和第二笔不要太长,捺要舒展。

亮:中间的口要写得小而扁,横折弯钩不能超过上面的秃宝盖。

美:羊字上方点、撇较小,第三横略长放在横中线上,竖不出头。四横中 第三横最长。

荷叶圆圆课件教案 篇4

【教材分析】

《荷叶圆圆》是一篇讲读课文,语句优美,也是一篇轻快活泼的散文诗。学习这篇课文会让人感受到充溢童趣的夏天,感受到小水珠、小蜻蜓、小青蛙和小鱼儿快乐的心情。

【设计理念】

《语文课程规范》指出:“阅读是同学个性化行为,不应以教师的分析来代替同学的阅读实践。”本课采用个性化教学,以同学原有的知识经验为基础展开教学,通过创设情境,激发同学的阅读兴趣,引领同学自读自悟。设计充沛尊重同学独特的感受、体验和理解,让同学自身对课文内容的领悟取代教材的讲解分析,让同学自身的独立考虑取代统一答案,让同学自身的感性体验取代整齐划一的理解指导,整个过程为张扬同学个性,激发同学灵性服务。

【教学目标】

1、能用自身喜欢的方法,自主认知本课12个生字,激发主动识字的兴趣。

2、会正确书写“是”、“朵”等6个生字。

3、能正确、流利、有感情地朗读、背诵课文;

4、感受、体验生活的童真、童趣;激发对大自然的喜爱之情。

【教学重点】

识字、正确书写生字、感情朗读课文。

【教学难点】

初步感受汉字的形体美,感受、体验生活的童真童趣。

【教学准备】

生字卡片、课件、头饰。

【教学时间】

两课时。

【教学过程】

第一课时

一、激趣导入,创设情境

1、小朋友,你们喜欢猜谜语吗?老师这儿就给大家准备了一个有意思的谜语,听好了:

“圆圆大绿盘,浮在水面上,水珠拿它当摇篮,小鱼拿它当凉伞。”猜一猜,这是什么?

(荷叶)

2、今天,俺们就来学习一篇关于荷叶的课文。

揭题──《荷叶圆圆》。

齐读课题:

要求把题目读得美美的。

3、导语:

夏天到了,池塘里长满了荷叶,圆圆的、绿绿的,可美啦!

瞧!这三个小朋友都乐呵呵的,是什么把它们吸引住了?

(出示课件)

二、探究方法、自主识字

1、借助拼音,自由读读,注意读准字音,特别要注意读准课文中那些生字娃娃的读音。

2、(屏幕出现全文)请几个小朋友来读一读。

评价(这几个小朋友不只把课文读通顺,就连躲藏在课文里的12个生字娃娃都读准了)。

3、(出现12个生字)瞧!生字娃娃来了,跟他们打打招呼吧。赶快借助文中拼音,把它们读一读、认一认。自由读读也可以同桌互读。

4、都会认了吗?来,咱们来读一读:

齐读──指名读──开火车读。

指名说说读准“珠”、“翅”、“是”、“停”、“晶”、“坪”要注意些什么?

指名带读。

5、仔细看看,哪些字在你的生活中经常见到,对它比较熟悉?

(同学提到的字,大家都比较熟悉,隐去那个字)

小结:只要在生活中主动地观察,主动地发现,就能认知好多好多的字啊!

6、剩下的这些字,也许你不太熟悉,怎样认知它们呢?来,动动脑筋,想想方法,记住它们的模样吧。自身试一试。

7、和同桌的小伙伴商量商量:

老师巡视指导。

8、怎样记住这些生字,你有什么好方法?

指名汇报说说。

9、小朋友们一定还有许多识字的好方法,来,咱们每个同学选择自身记得最好的一个字在四人小组里交流交流,展示展示。

10、相信大家已经记住了它们的样子(屏幕上消失的字又回来了)来,咱们一起来读一读。

11、读给同桌听听:

互相考考,还有不会的生字,请同桌协助协助。

12、俺的火车要开了,开哪里?开这里。

请2、3小组的同学开火车。其他的同学,当好小听众,读对了,请你跟着读;读错了,请你帮帮他。

(开火车)

三、美读美诵,体验童趣

1、现在这些生字娃娃要跳回原来的位置去了。

2、(屏幕出现全文)让俺们一起读一读课文吧!边读边想象,看你都能看到些什么有趣的景物?

(同学反馈)

3、最喜欢谁?自由读读写它的哪一段。

四、学习课文第一段

1、看课文插图,说说荷叶是什么样子的?

2、出示句子:

荷叶圆圆的,绿绿的。

全班齐读。

3、(出示荷叶课件)看到这些荷叶,你觉得荷叶美吗?俺们该用怎么样的语气来读好这句话呢?自身试试。

4、指名读──评价──集体读。

五、作业安排

1、认认生字朋友。

2、好好地读读课文,自身喜欢的段落可以多读几遍。

第二课时

一、巩固认字

1、认读带有本课生字的词语和句子。

2、齐读全文。

二、美读课文

1、美读小水珠:

⑴抽读,评价。

⑵来,咱们一起再来体会体会。

(齐读)

⑶来,咱们轻轻闭上眼睛,想像一下躺在摇篮里是什么感受呢?理解词语“摇篮”。

(指名说说)

⑷让俺们舒舒服服地再来体会一下读。

⑸(课件)大家看,小水珠正舒舒服服地躺在荷叶上,眨着亮晶晶的眼睛,一起再读一读这段话。

2、朗读小结:

只要大家用心体会,就一定能读好课文。

3、美读:

小蜻蜓、小青蛙、小鱼。

4、小鱼游得可高兴啦,谁愿意做这可爱的小鱼,读读课文。俺们一起来做这快乐的小鱼吧。

一边读,一边做做动作。

5、四个小伙伴俺们都认知了,小朋友,小声告诉老师:你最喜欢谁?好好读读写它的一段,读的时候可以做做动作,能够背下来最好,待会请同学上台扮演。

6、抽同学上台扮演。

(佩带上相应的头饰)

(课件出示全图)看着图,俺们一起试着美美地背一背。

三、开心写字,写对写好

1、开心写字时间到了!(出示6个字),来,和字娃娃打打招呼!

2、仔细看看,哪些字最容易写错,给大家提个醒儿,好吗?

3、你觉得哪个字最不容易写好?

(师范写,边写边讲)

4、请大家选择自身最喜欢的字和最难写的字练一练,写得好写一个,写得不好,多写几个,直到自身满意为止。

(提醒书写姿势)

5、让俺们在优美的音乐中安恬静静地,开开心心地写字吧!

(配乐)

6、展示同学的优秀书写作业。

四、结束语

这节课,俺们高高兴兴地学会了12个生字,读懂了一篇有趣的童话,还开开心心地写好了这些生字。现在,让俺们高高兴兴地说声再见吧。

五、课后延伸

回家后,把自身眼中的荷叶画下来。俺们进行一次绘画竞赛,看看谁眼中的荷叶最美!

【板书设计】

14、荷叶圆圆

小水珠──摇篮──眨眼睛

小蜻蜓──停机坪──展开翅膀

小青蛙──歌台──放声歌唱

小鱼儿──凉伞──游来游去,捧起水花

荷叶圆圆课件教案 篇5

【指导思想】

根据《语文课程标准》的要求,全面提高学生的语文素养,正确把握语文教育的特点,积极倡导自主、合作、探究的学习方法,努力建设开放而又有活力的语文课程。

【教学目标】

1、感知课文内容,指导学生正确、流利、有感情地朗读课文,感受语言的优美。

2、结合上下文和生活实际了解课文中词语的意思,在阅读中积累词语,在阅读中有自己独特的感受。提高学生的语言表达能力,培养学生的创造思维。

3、理解课文内容,让学生受到美的熏陶,激发学生热爱生活的美好情感。

【教学思路】

1、激发兴趣,调动学生自主学习

开课时讲故事引入,初步感知课文:小动物帮助正音,为正确朗读课文打好基础。

2、理解课文内容,引入探究性的合作学习、讨论,鼓励在阅读中有自己的独特的体会。

⑴ 引导孩子们自由分组(即“蜻蜓组”、“青蛙组”……),合作学习,讨论“为什么各个小伙伴把荷叶比作了不同的事物?”

⑵ 在“小暗号”的帮助下,尝试变成不同的角色,进行朗读。

3、发挥想象力和创造潜能。

⑴ 讲自己的故事。

⑵ 将这里发生的故事变成一幅画,一段小作文等。

【教学过程】

一、整体感知

1、激趣引入:

黑板上,你看见了什么?

2、边听边想:

故事讲了荷叶和哪些小伙伴之间的事?

出示课件,师范读课文。

生回答。(师贴图)

3、生字正音:

故事中的小伙伴要带着我们一起读准字音、读好词语。

⑴ (出示课件)生示范,全班齐读生词

⑵ 齐读生字卡片。

⑶ 开火车读卡片。

二、讲读课文,探究学习

1、看黑板。荷叶是什么样的?

看见这么多圆圆的、绿绿的荷叶,你一定非常喜欢,课文虽然只用了一句话来说这样的景色,但从中,你也可以体会出作者和我们一样的心情。

出示1段。

指导朗读(重点指导“圆圆的”、“绿绿的”)

2、圆圆的、绿绿的荷叶多美呀,小伙伴们都来了……

荷叶圆圆课件教案 篇6

教材简说

荷叶圆圆的,荷叶绿绿的,荷叶是夏天里一首清凉的小诗,荷叶是阳光下跳动的绿色音符。小水珠喜欢荷叶,小蜻蜓喜欢荷叶,小青蛙喜欢荷叶,小鱼儿也喜欢荷叶。让我们一起在这篇轻快活泼的散文诗里,去感受充满童趣的夏天,去触摸生机勃勃的荷叶,去体味小水珠、小蜻蜓、小青蛙和小鱼儿们快乐的心情吧!

学习目标

1 正确、流利、有感情地朗读课文。背诵课文。

2、结合上下文和生活实际了解课文中词语的意思。

教学重点

1、能正确、流利、有感情地朗读课文。

2 让学生受到美的熏陶,激发学生学习语文的兴趣,培养学生积累优美词句的习惯。

教学难点:能正确、流利、有感情地朗读课文。,感受语言的优美。

教学准备:“小荷叶 ”“小水珠”“小蜻蜓”“小鱼儿”“小青蛙”的课件 。

授课类型:新授课

课时:2课时

教学过程:

一、复习导入

师:“小朋友,你们很喜欢看电视,对吧。今天老师和大家一起观看录像,好吗?”

生:好!

(播放荷塘、荷叶、荷花、青蛙、鱼儿、小蜻蜓的画面。)

师:莺歌燕舞、百花齐放的春天刚刚过去,快乐的夏天又笑盈盈地向我们走来了。你们看:樱桃红了,荷花露出了花骨朵,知了在树上唱起了歌,正是出去郊游的好时候。走吧!让我们一起去寻找夏天!谁能在画面上找到夏天?

生:我找到了。荷花开了,有的雪白,有的粉红,漂亮极了!

生:荷叶绿绿的、圆圆的,小青蛙蹲在像个大圆盘的荷叶上呱呱地唱歌!

生:小蜻蜓立在碧绿的荷叶上,展开透明的翅膀,好美丽啊!

生:小鱼儿在荷叶下游来游去,捧起一朵朵水花。

师:你们观察得真仔细,从圆圆的荷叶上找到了夏天。那让我们就从圆圆荷叶中去领略大自然的美吧!

(教师出示课题,学生齐读。)

反思

儿童是借助形象思维的。优美、逼真的画面不仅能调动学生丰富的想象力,激发他们的审美情趣,而且也使课堂教学的气氛变得轻松愉快。《荷叶圆圆》的导入就是把课文内容通过色彩、画面演化成直观形象的审美对象,使学生既见其形,又闻其声,激发起学生的学习兴趣。这种导入方式符合低年级学生的心理特点。

二、初读课文,感知文本(教师出示荷叶圆圆的课件)

1、师 :今天我们这节课学习的课文里有几幅很美很美的插图,而且插图里的小伙伴都是我们课文中荷叶的小伙伴 。现在老师请你们边读课文边对着插图把这几个小伙伴找出来好不好?请同学们带着老师提出的问题在课文里边读边用你喜欢的记号把它们找出来好不好?(学生自由的读课文)

2 大家找出来了吗? 谁愿帮老师找一找?(学生纷纷举手)

、师 :老师发现同学们读得很认真,也找的很仔细,现在 请小朋友们把书打开到第14课自己读一读课文帮老师找一找这四位小伙伴。

生:老师我找到了荷叶的小伙伴是小水珠,小蜻蜓,小青蛙,小鱼儿。

2025棱锥课件


在这篇文章里我们将探讨“棱锥课件”的相关话题,请多留意我们网站的更新以便不会错过任何重要内容。老师提前规划好每节课教学课件是少不了的,每个老师都需要将教案课件设计得更加完善。制定教案是教育教学实践的必要要求。

棱锥课件 篇1


棱锥作为几何学中的一种重要的立体图形,常常在中小学数学教学中出现。它的形状独特,具有多个棱和面,给学生们带来了不少难题。为了帮助学生更好地理解和掌握棱锥的性质和计算方法,教师们设计了一套名为“棱锥课件”的教学辅助工具。


棱锥课件是一种以电子化形式呈现的教学辅助资料,可以在电子白板或计算机上进行展示。它主要包含了棱锥的各个部分的图像和性质介绍,以及相关的计算方法和题目示例。


棱锥课件通过生动的图像展示了棱锥的外观特点。在课件中,学生们可以看到棱锥的基底面和侧面,以及它们之间的关系。通过旋转和放大缩小等操作,学生们可以清晰地了解到棱锥的形状是如何变化的。


棱锥课件详细介绍了棱锥的各个部分的命名和性质。在课件中,学生们可以看到基底面、棱、高、顶点等的名称和标注。通过课件的讲解,学生们可以很容易地理解这些概念及其关联性。例如,学生们可以看到基底面是由多边形组成的,而顶点是棱锥的顶部。


除了基本概念的介绍,棱锥课件还详细讲解了棱锥的性质。例如,它会告诉学生们棱锥的侧面是由三角形组成的,而棱锥的基底面可以是任意形状的多边形。课件还会指导学生们如何判断一个图形是否是棱锥,即判断它是否满足棱锥的基本要素。


对于计算问题来说,棱锥课件也提供了大量的题目示例和解答。通过这些示例,学生们可以掌握如何计算棱锥的体积、表面积以及其他相关的计算问题。课件上的题目还设计了不同难度层次,以满足不同年级和能力的学生需求。


除了图像和文字信息的呈现,棱锥课件还加入了一些互动元素,以增加学生的参与度。例如,课件中可以设置一些棱锥构建的小游戏,让学生们通过拖拽和旋转棱锥的各个部分来探索棱锥的性质。这些互动元素激发了学生们的学习兴趣,使他们更加主动地参与到课堂中。


小编认为,棱锥课件是一种生动具体的教学工具,通过图像展示、概念解释、计算示例以及互动元素的设计,帮助学生们更好地理解和掌握棱锥的性质和计算方法。它的引入丰富了数学教学的形式,提高了学生们的学习效果,是中小学数学教育中不可或缺的一部分。

棱锥课件 篇2

一、说教材

1、 教材的地位和作用

“棱锥”这节教材是《立体几何》的第2.2节,它是在学生学习了直线和平面的基础知识,掌握了棱柱的概念和性质的基础上进一步研究多面体的又一常见几何体。它既是线面关系的具体化,又为以后进一步学习棱台的概念和性质奠定了基础。因此掌握好棱锥的概念和性质尤其是正棱锥的概念和性质意义非常重要,同时,这节课也是进一步培养高一学生的'空间想象能力和逻辑思维能力的重要内容。

2、 教学内容

本节课的主要教学内容是棱锥、正棱锥的概念和性质以及运用正棱锥的性质解决有关计算和证明问题。通过观察具体几何体模型引出棱锥的概念;通过棱柱与棱锥类比引入正棱锥的概念;通过对具体问题的研究,逐步探索和发现正棱锥的性质,从而找到解决正棱锥问题的一般数学思想方法,这样做,学生会感到自然,好接受。对教材的内容则有所增减,处理方式也有适当改变。

3、 教学目标

根据教学大纲的要求,本节教材的特点和高一学生对空间图形的认知特点,我把本节课的教学目标确定为:

(1)知识目标:使学生理解棱锥以及正棱锥的概念,掌握正棱锥的性质,领会应用正棱锥的性质解题的一般方法初步学会应用性质解决相关问题。

(2)能力目标:通过对正棱锥中相关元素的相互转化的研究,培养学生知识迁移的能力及数学表达能力,提高学生的空间想象能力以及空间问题向平面转化的能力。

(3)德育、美育目标:通过教学进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

4、教学重点,难点,关键

对于高一学生来说,空间观念正逐步形成。而实际生活中,遇到的往往是正棱锥,它的性质用处较多。因此,本节课的教学重点是通过对具体问题的分析和探索,自然而然地引出正棱锥的最重要性质及其实质;而如何将空间问题转化为平面问题来解决?本节课则通过抓住正棱锥中的基本图形这一难点实现突破,教学的关键是正确认识正棱锥的线线,线面垂直关系。

二、说教法

由于本节课安排在立体几何学习的中期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最佳时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,在教学中并没有采取把正棱锥性质同时全部讲授给学生的做法,而是通过具体问题的分析与处理,将正棱锥最重要的性质这一知识点发现的全过程逐步展现给学生,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。因此我把本节的教法确定为:类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质的启发式教学。

三、说学法

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据立体几何教学的特点,这节课主要是教给学生“动手做,动脑想;严格证,多训练,勤钻研。”的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要。

四、说教学过程

棱锥课件 篇3

教材分析

教材的地位和作用

棱锥这节教材是《立体几何》的第2.2节它是在学生学习了直线和平面的基础知识,掌握若干基本图形以及棱柱的概念和性质的基础上进一步研究多面体的又一常见几何体。它既是线面关系的具体化,又为以后进一步学习棱台的概念和性质奠定了基础。 因此掌握好棱锥的概念和性质尤其是正棱锥的概念和性质意义非常重要,同时,这节课也是进一步培养高一学生的空间想象能力和逻辑思维能力的重要内容。

教学内容

本节课的主要教学内容是棱锥、正棱锥的概念和性质以及运用正棱锥的性质解决有关计算和证明问题。通过观察具体几何体模型引出棱锥的概念;通过棱柱与棱锥类比引入正棱锥的概念;通过对具体问题的研究,逐步探索和发现正棱锥的性质,从而找到解决正棱锥问题的一般数学思想方法,这样做,学生会感到自然,好接受。对教材的内容则有所增减,处理方式也有适当改变。

教学目的

根据教学大纲的要求,本节教材的特点和高一学生对空间图形的认知特点,我把本节课的教学目的确定为:

通过棱锥,正棱锥概念的教学,培养学生知识迁移的能力及数学表达能力;

领会应用正棱锥的性质解题的一般方法,初步学会应用性质解决相关问题;

通过对正棱锥中相关元素的相互转化的研究,提高学生的空间想象能力以及空间问题向平面转化的能力;

进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

教学重点,难点,关键

对于高一学生来说,空间观念正逐步形成。而实际生活中,遇到的往往是正棱锥,它的性质用处较多。因此,本节课的教学重点是通过对具体问题的分析和探索,自然而然地引出正棱锥的最重要性质及其实质;而如何将空间问题转化为平面问题来解决?本节课则通过抓住正棱锥中的基本图形这一难点实现突破,教学的关键是正确认识正棱锥的线线,线面垂直关系。

教法分析

类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质。

由于本节课安排在立体几何学习的中期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最佳时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,在教学中并没有采取把正棱锥性质同时全部讲授给学生的做法,而是通过具体问题的分析与处理,将正棱锥最重要的性质这一知识点发现的全过程逐步展现给学生,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。

学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据立体几何教学的特点,这节课主要是教给学生动手做,动脑想;严格证,多训练,勤钻研。的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生学有新思,思有所得,练有所获。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养创新型人才的需要。

教学流程

课题引入

上一节课我们学习了棱柱的有关知识,当棱柱的上底面缩为一点时,想一想,其底面,侧棱有何变化?

(可将金字塔,帐篷的图片以及不同棱锥的模型依次出示给学生)

将现实生活的实例抽象成数学模型,获得新的几何体――棱锥。(板书课题)

引导启发

请同学们描述一下棱锥的本质特征?(学生观察模型,提示学生可以从底面,侧面的形状特点加以描述)

结论:(1)有一个面是多边形;(2)其余各面是三角形且有一个公共顶点。

由满足(1)、(2)的面所围成的几何体叫做棱锥。

(设计意图:由观察具体事物,经过积极思维,归纳、抽象出事的本质属性,形成概念,培养学生抽象思维能力,提高学习效果。)

观察图1:依次逐个介绍棱锥各个部分

名称及表示法。表示法:棱锥S-ABCDE

或棱锥S-AC。与棱柱相似,棱锥可以按

底面多边形的边数分为三棱锥,四棱锥、五棱锥,,n棱锥。

(设计意图:从简处理棱锥的表示法,分类等,为后面重点解决正棱锥的性质问题节省时间。)

由于实际生活中,遇到的往往是一种所以下面重点研究正棱锥的概念及性质。

通过对比正棱柱的定义,让学生描述正棱锥。

(拿出各式各样的棱锥模型让学生辨认)

讨论:底面是正多边形的棱锥对吗?联想正棱柱的定义,棱柱补充几点后才是正棱柱?

结论:底面是正多边形,并且顶点在底面射影是底面中心。为什么?

(设计意图:采用观察、联想、类比、猜想、发现的方法引出正棱锥的定义比课本直接给出显得自然,学生好接受)

引导证明

正棱锥的顶点在底面的射影是底面下多边形中心,这是正棱锥的本质特征。它决定了正棱锥的其他性质。下面以正五棱锥为例,请同学们说出其侧棱,各侧面有何性质?(将图2出示给学生)

结论:各棱相等,各侧面是全等的等腰三角形。

为什么?

棱锥课件 篇4

棱锥课件


棱锥是数学几何中经常用到的一个概念。它是由一个多边形底面和一个共享顶点的多个三角形侧面组成的几何体。在学习数学和几何学时,了解和掌握棱锥的性质及相关定理对于提升学生的数学素养非常重要。制作一份生动详细的棱锥课件将有助于学生们更好地理解和掌握相关知识。


可以在课件的开头部分,以一个引人入胜的例子或故事来引发学生的兴趣。比如,通过描述埃及金字塔的形状和结构,引出“棱锥”这个概念。接着,介绍棱锥的定义和特点,包括底面、侧面、顶点等基本要素的概念和属性。通过生动的图片和动画效果,使学生们对棱锥的概念有直观的认识。


可以逐一介绍不同类型的棱锥,如正棱锥、直棱锥和斜棱锥。通过展示各种类型棱锥的图形,解释它们的特点和区别。特别是对于正棱锥,可以介绍其底面为正多边形,且侧面都是等边三角形的特点,以及正棱锥与平行四边形和正四面体的关系。


随后,可以讲解棱锥的体积和表面积计算公式。解释如何根据底面的形状和侧面的长度来计算棱锥的体积。通过数学推导和实例计算,帮助学生们理解计算公式的推导过程和应用方法。同时,对于表面积的计算,可以让学生们自己思考和探索,并通过讨论和思考,找到正确的计算方法。


在课件的后半部分,可以引入一些棱锥的重要性质和定理。比如,棱锥的高和棱锥的侧棱所在平面的夹角是直角,以及棱锥的体积与其底面积和高之间的关系等。通过生动的示意图和实例,帮助学生们理解和应用这些定理,进一步巩固他们对棱锥的认识。


为了检验学生们对棱锥的掌握程度,可以设置一些交互式的题目和练习。这些练习可以包括计算棱锥的体积和表面积、判断给定棱锥的类型和性质等。通过这些练习,学生们可以检验自己的学习成果,并发现自己的不足之处,以便进一步加强巩固。


通过制作一份生动详细的棱锥课件,可以帮助学生们更好地理解和掌握棱锥的性质和相关知识。通过引人入胜的例子、图像和动画效果,可以激发学生的学习兴趣和积极性。同时,通过生动详细的讲解和练习,可以帮助学生们逐步深入理解和运用棱锥的相关知识,提升他们的数学素养和解题能力。棱锥课件的制作不仅可以使学习更加有趣和有效,也有助于培养学生们的创造力和数学思维能力的发展。

棱锥课件 篇5

棱锥课件


在数学几何学的学习中,棱锥是一个非常重要的概念。它是由一个多边形的底面和一个顶点连接而成的一种特殊的多面体。通过学习棱锥的性质和相关定理,不仅可以深入理解数学几何学的基本知识,还可以培养学生的逻辑思维能力和几何问题的解决能力。为了更好地让学生理解和掌握棱锥的概念和性质,老师们常常会使用棱锥课件进行教学。本文将详细介绍关于棱锥课件的设计和使用,以及它对学生学习的影响。



一、棱锥概念的引入


在课件的开头,老师可以通过展示一张图片或动画来引入棱锥的概念。通过实际的物体图像,学生可以直观地了解棱锥的形状和构造,并与其他几何图形进行比较。通过观察和描述,学生逐渐形成对棱锥的初步认识。


二、棱锥的性质和分类


在课件的第二部分,可以介绍棱锥的性质和分类。通过展示不同形状的棱锥,并引导学生发现并总结它们的共同特点和区别。同时,还可以通过动画演示来解释棱锥的分类方式,比如按底面形状分类、按侧面个数分类等。通过课件的展示,学生可以更深入地理解和记忆棱锥的分类方法。


三、棱锥的名称和要素


在课件的第三部分,可以具体介绍棱锥的名称和要素。通过课件的演示,学生可以了解到棱锥有底面、高、侧棱和侧面等要素,并学会用合适的术语来描述棱锥的各个部分。同时,还可以通过展示不同形状的棱锥来让学生形成对不同棱锥的命名规则的理解和记忆。


四、棱锥的投影


在课件的第四部分,可以介绍棱锥的投影。通过展示棱锥在不同位置和角度下的投影图,学生可以发现并分析投影图与棱锥的几何关系。通过课件的演示,学生可以学会绘制棱锥在平面上的正投影、侧投影和俯视图等,并进一步理解和应用投影概念。


五、棱锥的体积和表面积


在课件的最后一部分,可以介绍棱锥的体积和表面积的计算方法。通过展示不同形状的棱锥,并计算其体积和表面积,学生可以进一步理解并运用棱锥的相关公式。同时,还可以通过课件的演示来解释棱锥的体积公式的推导过程,培养学生的数学推理能力。



通过使用棱锥课件来进行教学,可以有效地提高学生的学习效果。棱锥课件通过直观的图片、动画和演示,使学生更深入地了解和掌握了棱锥的概念和性质。同时,课件还通过展示不同形状的棱锥和运用相关公式,培养学生的几何问题解决能力和数学推理能力。通过利用棱锥课件进行教学,可以提高学生成绩,增强学生对数学几何学的兴趣和学习动力。


通过本文的介绍,了解到棱锥课件是一种非常有效的教学工具。它通过图片、动画和演示等形式,帮助学生深入理解和掌握棱锥的概念和性质。同时,课件还能培养学生的几何问题解决能力和数学推理能力。通过使用棱锥课件进行教学,不仅可以提高学生成绩,还能增强学生对数学几何学的兴趣和学习动力。应该积极使用和研发棱锥课件,为学生提供更好的数学几何学习体验。

棱锥课件 篇6

棱锥课件


棱锥,是几何学中的一种特殊形状。它由一个底面和无数个共有一个尖的侧面组成。在数学课堂上,学生们经常会遇到对棱锥进行探讨和学习的情况。为了更好地帮助学生理解和掌握棱锥的性质和应用,教师们通常会准备一些具有生动的课件来呈现这个主题。


我们来看一下棱锥的基本定义和性质。棱锥由一个凸多边形的底面和从底面的每个顶点延伸到一个共同顶点的侧面组成。棱锥的侧面都是三角形,这些侧面的合集被称为棱锥的侧面。棱锥还有一个底面和一个顶点,这个顶点称为棱锥的顶点。通过给学生展示图像和动画,课件可以生动地呈现这些定义和性质,帮助学生更好地理解。


我们可以介绍一些关于棱锥的重要。棱锥的底面是一个凸多边形。棱锥的侧面是一些三角形,它们都有一个公共的顶点。棱锥的所有侧面的边长都可以不同,并且它们的顶角也可以不同。这些对于学生理解棱锥的形状和性质非常重要。通过课件中的示意图和动画,学生们可以直观地看到这些,进一步加深他们对棱锥的认识。


棱锥的体积和表面积也是学生们学习时需要了解和计算的内容。通过课件,我们可以通过使用适当的示意图和数学公式来介绍和计算棱锥的体积和表面积。例如,学生可以看到当棱锥的底面是一个正多边形时,如何通过计算底面面积和高来求解棱锥的体积。又如,学生可以通过在课件中展示棱锥的展开图,然后计算各个三角形的面积和底面的面积来求解棱锥的表面积。这些例子和计算步骤的呈现将帮助学生更好地理解和应用这些概念。


在课件中,我们可以加入一些与棱锥有关的实际应用例子,以激发学生的兴趣和理解。例如,可以展示一个锥形冰淇凌或者锥形帐篷的图像,并说明它们都是棱锥的实际应用。通过这些例子,学生们将更好地理解棱锥在日常生活中的存在和作用。


棱锥课件应该具有详细、具体和生动的特点。它可以通过展示棱锥的定义、性质、重要以及体积和表面积的计算方法,来帮助学生更好地理解和掌握这个几何形状。加入一些实际应用的例子也能够激发学生的兴趣和学习动力。通过精心设计的课件,学生们将能够更好地理解和应用棱锥的知识,并提高他们的数学水平和综合能力。

棱锥课件 篇7


一、背景介绍


棱锥是几何学中重要的一个概念,它是由一个多边形的底面和一个位于不同平面上的点连接而成的。它具有独特的形状和性质,在几何学的学习中扮演着重要的角色。为了更好地教授和学习有关棱锥的知识,学校制作了一份名为"棱锥课件"的教学材料。


二、制作目的


"棱锥课件"的制作目的是为了帮助学生更好地理解和掌握有关棱锥的知识。通过使用图形、动画和实例等多种教学手段,课件旨在生动具体地展示棱锥的形状、性质和相关定理,从而激发学生的学习兴趣,提高他们的学习效果。


三、课件内容


1. 形状特点:课件首先详细介绍了棱锥的形状特点,包括底面、侧面、顶点、高度等概念。通过使用生动的图像和动画,学生可以清晰地看到棱锥的形状,并理解这些概念之间的关系。


2. 棱锥的分类:课件进一步介绍了棱锥的分类,包括正棱锥、斜棱锥和直棱锥等。通过对比不同类型的棱锥,学生可以更好地理解它们之间的差异和共同点。


3. 棱锥的性质:课件具体呈现了棱锥的一些重要性质,如底面的性质、侧面的性质、顶点角的性质等。通过分析和比较,学生可以逐步掌握这些性质,并运用到实际问题中。


4. 棱锥的相关定理:课件详细介绍了与棱锥相关的一些定理,如棱锥的体积公式、棱锥的表面积公式等。通过实际计算和推导的例子,学生可以更好地理解这些定理的原理和应用。


5. 解题技巧与实例:课件进一步提供了一些解题技巧和实例,帮助学生更好地应用所学知识解决实际问题。这些实例包括棱锥的投影、棱锥的旋转等,通过具体的计算步骤和图像演示,学生可以更加深入地了解棱锥相关问题的解决方法。


四、教学效果


通过使用"棱锥课件"进行教学,学生可以充分利用多媒体技术的优势,直观地了解和掌握棱锥的形状、性质和相关定理。课件生动具体地展示了棱锥的形态特点和定理内容,吸引了学生的注意力,提高了他们的学习兴趣。通过解题实例和应用技巧的展示,课件帮助学生更好地理解和应用所学的知识,提高了他们的解题能力和应用能力。


五、结语


"棱锥课件"为学生的几何学习提供了一个全新的教学工具,它通过图形、动画和实例等多种形式直观地展示了棱锥的形状、性质和相关定理,帮助学生更好地掌握和理解相关知识。在今后的教学中,将继续探索和应用先进的教学技术,不断改进和完善"棱锥课件",以提高学生的学习效果和成绩。同时,也希望学生能够积极利用这一资源,主动参与学习,深入理解和应用棱锥的知识,为未来的学习和研究打下坚实的基础。

圆柱和圆锥的教案13篇


笔者以独特角度为您搜集整理了“圆柱和圆锥的教案”,若贵方喜爱此文,请勿遗忘将其珍藏并分享予友人。每位教员上课之前所需准备之物即师案与教件,需倾心耕耘编制师案教件。精心准备的师案有助于教员安排教学任务并评估学生状况。

圆柱和圆锥的教案(篇1)

单元总目标:

1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。

2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。

3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。

4、培养学生观察、比较、归纳的能力,以及空间观念。

5、培养学生逻辑思考能力,有条理性的解决问题的能力。

单元重点:圆柱体体积的计算

单元难点:(1)圆柱体体积公式的推导过。

(2)圆柱体侧面积、表面积的计算。

(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。

突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。

单元难点的剖析:(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。

原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。

解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。

(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知R或D求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。

(3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。

原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。

解决策略:(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。

(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。

(3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。

(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。

单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。

错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的()。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()

分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。

解决问题:(1)一个圆锥形的沙堆,底面直径是2米,高是0.5米,如果每立方米是800千克,这堆沙子一共多少千克?写出基本关系式再解答

(2)有一个礼堂内有8根直径是50厘米、高5米的圆柱形的柱子,用了8千克的红色油漆粉刷,每平方米需用多少油漆?写出基本关系再解答

分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。

有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。

(2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。

(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。

分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。

练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)

课时安排:1、圆柱的认识31页至33页及例1

2、圆柱的表面积33页例2--例3

3、圆柱的体积公式的推导36页例4及补充一道已知R求V的例题。

4、认识圆柱的容积37页例5

5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10

6、圆锥的认识41页

7、圆锥的体积公式的推导42页至43页例1

8、圆锥体积的应用43页例2

第三课时课例教案:天河区华阳小学杨海英

第三课时:计算圆柱体的体积36页例4及补充例题(已知R求V)

目标:1、使学生知道圆柱体体积公式的推导过程,理解圆柱体体积的计算公式,并能正确应用公式计算圆柱体体积。

2、再次培养学生利用转化的思想探索新知的意识。

重点:圆柱体的体积公式的推导。

难点:圆柱体体积公式的推导

教具和学具:教师准备课件一个,投影仪,学生准备圆柱形的橡皮1~2块。

重点包含要素的分析:1、让学生能从知识间或图形的联系的角度想到把圆柱体转化为长方体来研究它的体积。逐渐培养学生科学的猜想能力。

2、体积公式的推导过程是学生重点掌握的内容,并且掌握转化前后两种图形各个量间的关系,也是灵活运用公式的关键。

与其它教学重点的联系:掌握V=SH是解决有关求圆柱体的体积或容积基础,同时也是下一步学习圆锥体体积计算的基础。

突出重点的策略:1、回忆圆形面积的推导过程,利用媒体课件演示把一个个完全一样的圆形堆成圆柱体的过程来启发学生猜想:圆柱体能切拼成我们学过的什么图形呢?激发学生的思维。

2、学生有前面的推测,让学生小组合作用实物(学生自备圆柱体形状的橡皮)操作,验证猜想,探索体积的计算方法。

3、补充一个已知R求V的例题进一步突出求V必须先求S。突出V=SH的基础性。

教学过程:一、复习引入:

1、体积的概念

2、我们学过求哪些几何图形的体积?怎样求?

(为学习圆柱体的体积的意义做迁移,并为学生原有知识结构填充新知做好准备)

3、同学们知道什么是圆柱体的体积吗?

4、想知道怎样计算圆柱体的体积吗?这节课我们一起来探索圆柱体的计算方法。-----出课题

二、新课探索:1、;以前我们所研究过的几何图形面积、体积的计算方法时,使用最多的是什么方法?

如:圆的面积公式是怎样得来的呢?请看多媒体课件演示过程。接着请同学们仔细观察(课件演示把一个个完全一样的圆堆成一个圆柱体)能否也利用转化的思想把圆柱体转化成学过的几何图形?

2、转化成什么图形,小组讨论。(猜想)

3、汇报猜想的结果。

4、动手实践:把圆柱体切拼成近似的长方体。

5、思考讨论:转化后的长方体与原来的圆柱体各个部分有什么联系?

6、汇报,全班交流。

长方体的体积=圆柱体的体积

长方体的高=圆柱体的高

长方体的底面积=圆柱体的底面积

7、根据以上过程请在小组内对照图形讲述圆柱体体积的计算公式。汇报如下:

长方体的体积=底面积高

圆柱体的体积=底面积高

V=Sh

8小结:正方体、长方体、圆柱体的体积的计算方法

V=Sh

三、公式的应用:1、教学例题4:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(1)带领学生画图。(培养学生会画图帮助分析的能力)

(2)让学生讲方法,尝试列式。教师板书过程。

2、补充例题:已知一个圆柱形的茶叶筒,底面半径是5厘米,这个茶叶筒的体积是多少?

学生讨论方法汇报,教师板书解题过程:

3、小结:对比以上两个题的解题过程,你觉得计算圆柱体的体积一定要根据条件先计算什么呢?(明确只要不是直接给出底面积,那就必须先由条件求出底面积。并补充V=лr2h)

四、巩固练习:38页1、2

五、全课总结:今天你学到了什么?

圆柱和圆锥的教案(篇2)

一.教材地位

本单元是在学生掌握了圆、长方体、正方体等有关知识的基础上进行教学的,是小学阶段几何知识学习的最后一部分内容,是以后进一步学习几何知识(立体几何、三视图)的基础。圆柱和圆锥(教材中的圆柱体指的是直圆柱,简称圆柱;圆锥指的也是直圆锥)的侧面是曲面,本单元的学习会使学生对立体图形的认识更深入,更全面,有利于进一步发展学生的空间观念。

二.单元教学目标

1.在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握它们的特征。

2.结合具体情境,通过探索与发现,理解并掌握圆柱的侧面积、表面积和圆柱、圆锥体积的计算方法,并能解决简单的实际问题。

3.经历探索圆柱、圆锥有关知识的过程,进一步发展空间观念。

4.在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解掌握一些数学方法。

三.单元教学内容

信息窗

主题

知识点

信息窗一

冰淇淋盒

圆柱和圆锥的认识

信息窗二

制作圆柱形纸筒

圆柱的侧面积和表面积

信息窗三

冰淇淋包装盒容积

圆柱和圆锥的体积

四.单元编写突出特点

1.打破了传统的知识编排顺序,加强了圆柱和圆锥的对比和联系。

本单元的教材编排了三个信息窗,分别是圆柱、圆锥的认识,圆柱的表面积,圆柱、圆锥的体积。在信息窗1里,同时安排了圆柱和圆锥的认识,学生可以通过对圆柱和圆锥模型的观察、操作和比较,更清晰地了解它们之间的联系和区别,发现并掌握圆柱和圆锥的特征。在信息窗3里,在学习圆锥的体积之后,又以对话的形式展示学生的猜想:圆锥的体积与圆柱有关。引导学生用实验的方法探索圆锥和圆柱体积之间的关系。这样将圆柱和圆锥编排在一起进行教学,打破了传统的逐一学习的格局,加强了圆柱和圆锥的对比,更有利于学生通过发现、探索,理解和掌握圆柱和圆锥的有关知识。

2.体现从猜想到验证的学习过程,渗透研究数学问题的与方法。

本单元教材编写,重视对数学与方法的引领,如:第三个信息窗对圆柱体积计算方法的探索,很好地体现了这一点。教材了这样的思路:由回忆圆的面积公式的推导方法为切入点(化圆为方),实现思维上的迁移,猜想:圆柱的体积公式可能是把圆柱转化成长方体来推导。这样的编写,有利于帮助学生了解研究数学问题的思路与方法,提升学生研究数学问题的能力。

五.单元课时统筹

信息窗一

信息窗二

信息窗三

回顾

圆柱、圆锥认识、练习:1课时

圆柱的表面积探索、基本练习:1课时

圆柱的体积探索、基本练习:1课时

回顾、练习:1课时

巩固练习:2课时

圆柱体积巩固练习:1课时

综合练习:1课时

圆锥体积探索、基本练习:1课时

圆柱和圆锥体积巩固练习:2课时

六.教学建议

信息窗一:冰淇淋盒

1、教学内容:.圆柱和圆锥的特征

2、信息窗的介绍:图中为我们了两种不同形状的冰淇淋包装盒。

例题的设置:

第一个红点:初步认识圆柱和圆锥。

第二个红点:学习圆柱和圆锥的特征。

3、信息窗教学建议:

第一、老师要注重学生已有的生活经验。

圆柱和圆锥对学生来说,并不陌生。如何让高年级学生充分借助已有知识经验,综合自己所掌握的各项技能,对圆柱的特征产生深刻的感性认识,建立“圆柱”的表象,是教师备课中应考虑的。因此在教学过程中,教师要让学生广泛地找一找生活中经常见到的圆柱和圆锥的物体,同时可以提前让学生自己先回去做一个圆柱,课中让学生结合自己做图形说一说,对于这两种形体自己有哪些了解。

第二、多给学生一些动手操作的机会。

立体几何图形的学习关键是学生要有空间观念,而培养学生空间观念的最佳途径就是要动手操作,因此在课堂上要让学生反复地摸一摸、量一量、比一比,从而归纳出圆柱圆锥的特征。

第三、注重多媒体的应用,培养学生的空间观念。

让学生把眼中的实物抽象出几何体,让学生认识圆柱圆锥的高。都有一定的难度,教师可以充分借用媒体,来化解这一难点。特别是要利用多媒体帮助学生区分出高和母线。条件不具备的学校要借助于教具,让学生认真观察、充分地展开想象,达到上述目的。

4、练习的分析:

练习要注意让学生在动手操作的基础上培养学生的空间观念。

自主练习第3题是培养学生想象能力、建立空间观念的题目,同时也为学生进一步学习表面积做铺垫。练习时,可以让学生先想一想,再连线。还可以作为学生动手操作的题目,让学生按照图中所示,找一些实物,沿着高剪开,初步认识圆柱和圆锥的侧面展开图。实际是为下一窗口学习圆柱的侧面积做铺垫,结合学生的想象,对于理解困难的学生,教师要让学生亲身动手操作,以加深理解。这一部分好多题目要加强实际操作,象练习中的第四题也要让学生亲自动手做一做。

第5题也是对学生空间观念进一步培养的题目,练习时可以先让学生进行想象,然后在想象不是非常清晰的情况下,让学生进行实验,然后抛开实验,进一步进行想象,这样一步步加深理解。

第6题要让学生明白两点:一是彩带的长度与圆柱的直径和高之间的关系,第二点要让学生发现圆柱底面也有与上面重复的彩带。

“课外实践”是让学生到生活中寻找圆柱形和圆锥形的物体并测量底面直径和高。教师要注意引导学生掌握测量圆锥高的正确测量方法:(1)先把圆锥的底面放平;(2)用一块木板水平地放在圆锥的顶点上面;(3)竖直地量出平板和底面之间的距离。(教参中所述的页码不对,是49页)

信息窗二:制作圆柱形纸筒

1、教学内容:圆柱的侧面积和表面积

2、信息窗的介绍:图中左侧呈现的是圆柱形纸筒制作车间生产纸筒的情境,右侧的纸筒标示出了底面直径和高。

3、信息窗的教学建议:

第一、加强直观操作,让学生直观理解圆柱的表面积与侧面积。

这里所说的操作,应是两点,一指课前操作。教师课前让学生们自己动手做一个圆柱形的纸筒,结合自己做纸筒的过程,交流自己是怎么做出来的。根据学生的回答课件出示纸筒制作车间做纸筒的过程。从而使学生更清晰了解纸筒的制作过程。从而让学生认识到圆柱的表面积是两个圆面积和一个侧面的面积。二指课中操作,重点解决侧面面积的计算方法,教师让学生通过剪一剪、拼一拼,认识到圆柱的侧面展开实际是一个长方形,而这个长方形的长和宽分别应该是底面的周长和高,这是学生非常难理解的,在这里要借助反复地操作和多媒体课件的展示学生理解。从而得到侧面积应该是底面周长×高。

第二、注重几个概念的区分。

这一窗口涉及到了好几个概念,如侧面积、表面积、底面积、底面周长等等。很多教过五年级的教师都有这种感触,学习这一部分知识时,一个知识点一个知识点地进行,学生们掌握得不错,但当把所有的知识点合到一起的时候,学生都乱套了,为什么,主要原因学生对这几个概念的理解。到底求什么要用到底面周长,求什么要用到底面积,让学生头脑清晰一些。

4、练习的分析:

自主练习第2题是教师要让学生明白求商标的面积实际上就是求圆柱的侧面积,同时注意该题的结果要用到“进一法”取近似值。

第3题学生理解起来比较难,因此练习时,要让学生用圆柱代替压路机的前轮,让学生通过演示明白,压路机转一周得到的是一个长方形,而求压路机转动一周的长,实际上就是求压路机的侧面积。如果学生不能理解可以用课件进一步强化对这一生活现象的理解。

第5题实际上是对圆柱表面积的一个深入理解题,这道题教师要让学生明白理解思路:第一看到长方形,我要怎样把长方形围起来,围起来以后谁做了底面的周长?第二底面周长知道了,那么怎样计算它的底面直径?从而根据底面直径对下面几种底面进行相应的选择。

第8~10题都是解决生活中的实际问题,练习时,建议把第8题或者第9题做为半例题处理,第10题应该提醒学生单位的转化。通过练习,进一步巩固圆柱的侧面积、表面积的计算方法,提高学生解决现实问题的能力。先让学生根据实际问题的特点,明确是求的哪些面的面积,再具体问题灵活解决,防止生搬硬套。

第12题是一道思考题可以根据本班的实际情况,先让学生独立完成,然后交流、反馈,也可以让学生动手操作体验一下,然后再解答,通过交流,使学生知道每截一次,表面积就增加两个底面的面积,该木料截成4段,需要截3次,增加了6个面,面积是36平方米。

信息窗三:冰淇淋包装盒容积

1、教学内容:圆柱和圆锥的体积

2、信息窗的介绍:这幅图呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。

例题的设置。这里有两个红点,红点一是学习圆柱的体积。红点二是学习圆锥的体积。

3、信息窗教学建议:

第一、启发诱导学生,回忆以往解决数学问题的和方法,通过猜想和操作,找到圆柱体积的计算方法,引领学生实现方法的迁移。

怎样求圆柱的体积,对于学生来说比较难于想象,这时教师可以让学生通过回忆以往解决数学问题的方法,从而让学生产生了要转化圆柱想法。联想到了圆面积公式的推导,脑子里出现圆面积推导的方法,将圆转化成长方体,圆柱与圆有着类似的地方,想到可能是把圆柱转化成长方体。有了这个猜想,就要去进一步验证。

第二、让学生在操作中理解圆柱、圆锥的体积。

教学圆柱的体积时,教师可以为学生准备一些圆柱形状的实物,如萝卜等,让学生以小组为单位试一试,怎么把圆柱转化为长方体,结合学生的操作,教师也可以用多媒体或教具再现这个过程,让学生更形象直观的看到这个转化的过程。通过这种操作进一步让学生体会转化的数学,要注意引导学生理解长方体与圆柱之间的关系,进而推导出圆柱的体积公式。(解释教材中为什么将体积的立方厘米转化成了毫升)。

圆锥的体积学生理解不是很难,教师在教学时根据教材中所的思路,首先引导学生进行猜想,圆锥的体积可能与什么有关系?有怎样的关系?其次,让学生设计实验进行操作,通过验证得出结论。第三、在操作的过程中让学生亲身体会到三分之一。在应用过程中,学生容易出的错是漏写1/3,为解决这一难点,教师在教学过程中,尽可能让学生通过实验理解圆锥与它等底等高的圆柱的关系,让学生亲身经历这一过程,以加深印象。教材呈现的实验只是一般的一个实验,教学时可以设计其它的实验。(可以补充讨论时的问题及想到的)

4、练习分析

圆柱和圆锥的体积放到一起时学生有些时候很容易混淆,要让学生反复加强基础练习。

第12题练习时,首先要让学生明确把圆柱捏成圆锥,体积是不发生变化的,得到了圆锥的体积和它的底面半径,就可以利用算术式或者是方程得到圆锥的高度。进一步观察学生也可以从圆柱和圆锥的关系中找到他们之间高的关系。由此可以让学生进一步研究等体积等高,底面直径的关系等。

第13题难度较大,学生必须有空间观念,在脑子中知道我这个圆柱是怎么样折成的,哪里做了底面周长,哪里做了高,这样才能算出正确的结果,如果学生想象不出来,一定要让学生用纸亲自折一折,这样进一步明确圆柱的底面周长和高。加强空间观念。

第※14题是一道有一定难度、综合性比较强的题目。练习时,要先使学生明确:三种图形的体积都可以用“底面积×高”计算,因为它们的高相等,所以只需比较底面积的大小即可。然后进一步引导学生思考:当周长相等时,圆、正方形、长方形,谁的面积最大?这一问题。可让学生把它们的周长假设成一个具体的数(如:31.4),再通过计算比较面积的大小;也可以给学生一段绳子,通过围一围、量一量、算一算,找到答案:当周长相等时,圆的面积最大,正方形的面积次之,长方形的面积最小。从而得到最后的答案:圆柱的体积最大。(计算时可用计算器)

“聪明小屋”这一题,难点是让学生理解表面积。教学过程中,教师要充分借助学具让学生理解。要让学生充分理解所谓的表面积就是表面的面积,所以应该是长方体的表面积去掉两个底面圆的面积。再加上圆柱的侧面积。学生理解起来比较困难,可以借助实物让学生来进一步理解。同时可以出示其它形状,让学生来说一说它们的表面积和体积。

回顾有两部分,上半部分是对本单元学过的知识进行梳理,圆柱和圆锥是以表格的形式让学生回顾圆柱和圆锥的特征和体积公式。下半部分是研究问题的方法。

第一种:自主式回顾。

青岛版教材在回顾方面从低中年级就比较注重,到了高年级,学生完全有能力进行自主地回顾与。可以让学生独立或者是小组合作交流,在交流中对本单元学了哪些知识进行回顾。

第二种:回顾时,教师可重点对研究问题的过程与方法进行引领。

综合练习第3题学生会感到很陌生,因为对雨量器学生并不了解,所以首先要结合图意让学生明白雨量器是怎样的结构,并结合要解决的问题让学生明白第一个问题,求做一个雨量器的外壳至少要用多少平方厘米的材料这是求雨量器的表面积(只有一个底面)。第二个问题求储水瓶里一共接了多少雨水?这是求一段圆柱的体积。在学生明确了这个以后再让学生自己来进行计算。

圆柱和圆锥的教案(篇3)

教学内容:教材第18-20页圆柱和圆锥的认识以及练习五1-4题。

教学目标:

1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。

2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。

3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。

教具学具:

1、教师准备大小不同的圆柱和圆锥以及其他几种形体的实物及模型。

2、学生准备圆柱和圆锥实物。

3、教师准备长方形、直角三角形和半圆形、梯形的小旗。

教学过程:

一、创设情境导入新课。

提问:我们以前学过哪些立体图形?你对长方体和正方体都有哪些了解?

这节课我们一起来研究新的立体图形。

二、教学新课

㈠认识圆柱。

1、出示例1。

请同学们找出哪些物体是圆柱体?你还能举出其他例子吗?

2、仔细观察这些物体,你发现什么?

(1)、请你拿起桌上的圆柱,摸一摸、看一看,你有什么发现?

(2)、根据问题,并将自己的发现与同桌交流。

(教师在学生交流时,深入到学生中,倾听孩子不同的见解,做到

心中有数)。

3、集体交流:

谁想把自己的发现告诉大家!学生交流,教师系统整理。

(生:可以把圆柱锯开,两个底面比一比。

师:方法不错,就是可惜了这么漂亮的圆柱。

如果不把它锯开,有办法让两个底面比一比吗?

生:可以把其中一个画出来,再用另一个来比一比)

板书:上下是两个完全相等的圆形。有一个面是弯曲的。上下是一样粗的。

4、圆柱的各部分名称。

⑴圆柱的上下两个面是面积相等的圆,这两个圆面就叫做底面。

⑵圆柱还有一个曲面,这个曲面叫做侧面。想一想,这个曲面展开会是什么形状?想个法子试一试!

(3)上下两个底面之间的距离叫做圆柱的高。想一想,圆柱的高有多少条?

※(4)我们认识了圆柱的高,知道标注的方法还不够,在生活实际中还需要来量一个圆柱的高。你打算怎样来量圆柱的高?

生:我用两把尺夹住圆柱,量出尺之间的距离。

生:我把圆柱倒在纸上,用笔在两个底面的位置做个记号,量出记号间的长度。

生:我量它的侧面。

二认识圆锥的特征

教师:刚才同学们发现了圆柱体的特征,在图上,你发现了其他的立体图形吗?(出示图)

1、下面哪些图形是圆锥体?

2、拿出桌上的圆锥形实物,象我们研究圆柱一样来观察圆锥体,看有什么发现?将自己的发现与同桌交流。

板书:圆锥有一个顶点。

圆锥的底面是一个圆形。

圆锥的侧面是一个曲面。

3、圆锥各部分名称:

⑴圆锥的底面是一个圆形,圆锥的侧面是一个曲面。

⑵从圆锥的顶点到底面圆心的距离是圆锥的高。想一想圆锥的高有几

条?

(3)※师:我们来用两根手指夹住圆锥,表示出它的高。(学生操作。)我发现大家都用一根手指按在顶点,另一根手指呢?

生:在圆锥的底面。

师:是底面任意的位置吗?

生:不是,是底面圆心。

师:请大家调整一下,好,现在我们用手指表示出了圆锥的高,谁能用语言来描述?

生:顶点到底面圆心的距离是圆锥的高。

(4)圆锥的高如何测量呢?

(5)教师引导:圆锥与圆柱相比,有什么不同

三、巩固练习

1、同学们通过努力,找到了圆柱和圆锥的特征。下面我们就用刚刚了解到的圆柱和圆锥的特征,来看看下面哪些物体是长方体,哪些物体是正方体。请打开课本翻到19页,看练一练。

2、填空。

(1)圆柱上下面是两个()的圆形,圆锥的底面是一个()形。

(2)圆柱有()个面是弯曲的,圆锥的侧面是一个()面。

(3)圆柱两个底面之间的距离叫圆柱的(),一个圆柱有()条高。

(4)从圆锥的()到()的距离是圆锥的高,一个圆锥有()条高。

3、书20页第2题。

4、书20页第3题。

师:其实,通过旋转,我们可以更加深刻的认识圆柱。大家想不想来细细研究?请看屏幕。注意观察A点和B点在旋转后,分别形成了圆柱的哪个部分?

生:圆柱的两个底面。

生:我觉得是两个底面的周长。

师:我们用手摸一摸形成的部分,是圆柱整个底面吗?(注意指准两个底面圆周。)

生:(肯定的)不是,是圆周。

师:长方形的这一组对边绕轴旋转后分别形成圆柱的什么部分呢?

生:两个底面。

师:圆柱的侧面是长方形的哪个部分旋转得到的?

生:长方形的一条边。

生:从图上看是线段AB。

师:确实如此。现在我们综合起来思考,长方形的这三条边同时绕轴旋转一周后,所形成的仅仅是圆柱的三个面,当长方形作为一个整体的面在旋转后,就形成了实实在在的圆柱。

师:其实我们身边的事物本来就是多姿多彩的,有些看上去差不多,但却差之毫厘,失之千里,就拿我们今天研究的圆柱和圆锥来说,在我们生活中也是千姿百态的。(演示各种大小形状不一的圆柱和圆锥的旋转图)。是什么造成它们高矮、粗细不一样的呢?

生:因为旋转出圆柱的长方形长和宽不同。

生:因为直角三角形的底和高不同。

师:看来大家都从旋转图中得到了启发。如果我们从圆柱和圆锥的本身来看,是什么造成它们大小形态不一的呢?

生:因为它们的高不同,底面的大小不同。

师:底面的大小由什么决定。

生:底面的半径。

师:原来是它们的高和底面半径共同决定了它们大小形状。

四、课堂小结

今天这节课你学到了哪些知识?

【评析:教者在拓展部分安排了三个环节:一是平面图形通过旋转形成立体图形,这是本节课旋转思想的延伸,使学生深刻认识到旋转是得到立体图形的一种重要方式,同时展示给学生丰富的图形表象,使学生对图形的美产生共鸣;第二个环节通过多媒体演示,让学生认识到因为圆柱和圆锥的高和底面半径不同,衍生出大小形状各异的圆柱或圆锥,感受形体的奇妙;第三个环节,合理的使用多媒体技术教学手段,科学的呈现圆柱和圆锥的三视图,有效克服了消极因素的干扰,培养了学生正确的空间观念和空间想象能力。】

圆柱和圆锥的教案(篇4)

教学内容:九年义务教育六年制小学数学第十二册P18—19,随后的练一练和练习五的1—4题

教学目标:

1.使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高.

2.使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

3.使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教学重点:掌握圆柱、圆锥的特征

教学难点:知道平面图形和立体图形之间的关系,认识立体图

设计理念:

本课努力将传统教具、学具和现代多媒体网络技术有机的结合起来,让学生亲身感受数学,在“找”中学,在“测”中学,在“思”中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学“动”起来、“活”起来,让学生在“做”中学,使数学课堂焕发出生命活力。

教学步骤教师活动学生活动

一、创设情景引入课题

1.教师出示一组相关的几何体的实物图,其中有长方体、正方体形状的,也有圆柱和圆锥形状的,提问:上面哪些是圆柱体?哪些是圆锥体?哪些不是?为什么?在日常生活中,你见过哪些物体是圆柱体和圆锥体?

2.揭示课题,板书:圆柱和圆锥

教师说明:我们所学的圆柱和圆锥都是直直的直圆柱和直圆锥.观察、辨别

举例、交流

二、动手实践探索特征(一)认识圆柱的特征

1.分组活动,每人拿一个圆柱,摸一摸量一量,比一比,你发现了什么?

2.互相交流,什么感觉.启发学生动手实验:

(1)用手平摸上下底,有什么特点.

(2)用笔画一画,上下底面积有什么特点?你怎样证明这两个底面大小的关系?

(3)用双手摸侧面,你发现了什么?

3.讨论、交流、总结

(1)教师根据学生的回答,

并板书:

底面2个平面完全相同圆

圆柱

侧面1个曲面

4.圆柱的高.

出示高、低不同的两个圆柱.

(1)直尺和三角板演示圆柱的高.使学生明确:圆柱两个底面之间的距离叫做高.

(2)让学生找一找圆柱的高,然后教师出示圆柱的立体图形,说明:两个底面之间的距离叫做圆柱的高。教师先画出一条高,再让学生画高,教师提问:刚才大家从不同位置画了高,说明高有多少条?

(二)圆锥形状的认识。

1。引导观察

(1)请学生从课前准备的物体中挑出圆锥体学具,请大家看一看,摸一摸,与圆柱比一比,你看到了什么?摸到了什么?说给同桌听。

(2)让一生上来边指边说,回答后师板书:

顶点:1个

侧面(曲面)

面:2个

底面(圆)

(3)师指导透视图,示范画。

画透视图的时候应该先画一个椭圆,然后在椭圆的正上方画上顶点,最后把顶点与底面连起来。

2、圆锥高的认识

(1)高在哪里?师指母线,问:这条是不是圆锥的高?为什么不是?你能举个例子驳倒他吗?

(2)你能用自己的话说说什么是圆锥的高?

(3)圆柱的高有无数条,圆锥的高有几条?为什么?(教师在黑板上作高,板书:1条)

(4)在下发的练习纸上的立体图上画高,标上字母h。

学生先在小组内活动、研究、交流,再组织全班交流

学生观察、独立思考

学生独立画高,思考高的条数

学生以小组为单位进行活动、交流

观察、思考

互相指一指、说一说

自己尝试概括

独立比较

独立画高

三、巩固练习,评价反馈

1.做“练一练”,说出下列物体的形状哪些是圆柱体,哪些是圆锥体?引导学生说说选择的理由。

2.找一个圆柱形和圆锥形的物体,指出它的各部分名称。

3.学生交流同座互相指、说学生连线,交流连线时的思考过程。学生拿出课前准备的小旗,依次将小旗快速旋转,借助观察和想象,交流自己的发现。

四、总结回顾拓展延伸

1.这节课你认识了什么?有什么收获?

2.布置课后作业:用硬纸做一个圆柱和圆锥,并量出它的底面和高。课后剪下教材中材料,独立制作圆柱和圆柱。

圆柱和圆锥的教案(篇5)

教学目标:

提高学生应用公式解决实际问题的能力,帮助学生在具体的情境中进一步感受所学知识的应用价值。

教学重难点:

进一步培养学生的空间想像能力和综合应用数学知识解决实际问题的能力。

教学过程:

一、基本练习

1、求下面各圆柱的体积

⑴底面积0.6平方米,高0.5米

⑵半径4厘米,高12厘米

⑶直径5分米,高6分米

2、做练习七第6题。

⑴各自练习。

⑵交流:怎么算这个油桶的容积?要注意什么?

提醒学生要看清单位。

怎么算这个油桶能装柴油多少千克?为什么?

二、综合练习

1、讨论练习七第7题。

⑴出示题目,理解题目意思。

⑵小组中讨论:要求一年里每个人大约要比原来多用去多少立方厘米的牙膏,先求什么?再求什么?然后求什么?

⑶说说怎样算一天里,每个人大约比原来多用多少立方厘米的牙膏?

2、讨论练习七第9题。

⑴出示题目,理解题目意思。

⑵讨论:塑料薄膜的面积相当于什么?

大棚内的空间相当于什么?

⑶分别怎么算?

三、讨论思考题

⑴把圆钢竖着拉出水面8厘米,水面下降4厘米,你能想到什么?

⑵全部浸入,水面上升9厘米,你又能想到什么?怎么算出这个圆钢的体积?

⑶这题还可以怎么想?

四、全课小结

五、作业:练习七第7、8、9和思考题。

圆柱和圆锥的教案(篇6)

一、填空题

1.用一张长31.4厘米,宽20厘米的长方形的纸围成一个圆柱体,这张纸的长就是圆柱体的(),宽是圆柱体的()。圆柱体的侧面积是()。

2、圆柱体的底面半径2厘米、高10厘米,它的侧面积是()平方厘米。

3、一个圆柱体的底面半径是1分米、高3分米,它的表面积是()平方分米。

4.一个圆柱体的侧面积是240平方厘米,高是5厘米,那么圆柱体的底面周长是()。

5、底面积和高都相等的圆柱和圆锥,圆柱的体积是15立方分米,圆锥的体积是()。

6、一个圆柱体的底面积是6.28平方厘米的圆柱切成两个同样大小的圆柱,表面积增加()

7、一个圆锥体,底面积是24平方分米,高是30厘米,那么圆锥的体积是()立方分米。

8、一个圆柱体的侧面积是12.56平方厘米,高是8厘米,底面周长是()厘米,底面半径是()厘米,底面积是()平方厘米,表面积是()平方厘米。

9、用一张边长5厘米的正方形纸围成一个圆柱,这个圆柱的高是()立方厘米。

10、一根电线杆底面周长50.24厘米,高10米,这根电线杆占地()平方厘米。

11.一个圆柱和一个圆锥等底、等高,若圆锥的体积比圆柱少30立方分米,则圆锥的体积是()立方分米,圆柱体积是()。

12、若圆锥的体积一定,圆锥的底面积和高成()比例。

13、一个圆柱的底面积是1.2平方分米,体积是60立方厘米,高是()厘米。

14、圆锥的体积等于和它等底、等高的圆柱体体积的,若圆锥体积是9.6立方分米,那么圆柱体积是()立方分米。

15、一个圆柱体与一个圆锥体的底面积和高都相等。已知圆柱的体积是6立方米,那么圆锥的体积是();如果圆锥的体积是6立方米,那么圆柱的体积是()。

16、一个圆柱和一个圆锥等底、等高,圆锥的体积比圆柱的体积少36立方厘米,圆柱的高是()。

17、一个圆锥体的底面半径扩大2倍,高缩小为原来的一半,它的体积是原来体积的()。

18、一个圆柱体,体积是立方米,和它等底、等高的圆锥体的体积是()。

19、一个圆锥体高1.5米,底面周长是12.56米,体积是()。

20、一个圆柱体的体积增加2立方米,那么与它等底、等高的圆锥体的体积是()。

二、判断题

1.圆柱两个底面之间的距离是圆柱的高,并且有无数条。()

2、如果一个正方体和一个圆柱体底面周长相等,高也相等,则它们的体积也相等。()

3、圆柱的底面半径扩大2倍,高缩小2倍,它的体积不变。()

4、一个圆柱体直径扩大3倍,体积也扩大3倍。()

5、圆柱体的体积和它的容积一样大。()

6、圆柱的高是3厘米,与它等底、等高的圆锥体高是9厘米。()

7、圆锥体比与它等底、等高的圆柱体体积小。()

8、一个圆柱体比和它等底、等高的圆锥体的体积多。()

9.圆柱的高是6厘米,和它体积相等,底面半径相等的圆锥的高是18厘米。()

10.圆锥体的体积总是比圆柱体的体积小。()

三、选择题

1.一个圆柱形水桶的容积()体积。

A相等B大于C小于D无法确定

2、一个圆锥体的底面半径是2厘米,高是3厘米,刚容积是()立方分米。

A37.68B0.03768C12.56.D0.01256

3、一个圆柱体,底面周长是37.68厘米,高是2厘米,它的体积是()。

A74.36立方厘米B226.08立方厘米C76.36立方厘米

4.一个正方体的棱长是6分米,表面积为()平方分米。

A36B216C72D108

5、一个圆锥体与一个圆柱体,底面积和体积相等,圆锥体的高是9分米,圆柱体的高是()

A3分米B27分米C9分米D34分米

6、两个底面半径相等的圆锥体和圆柱体,它们的体积比是1∶4,已知圆柱的高是8厘米,那么圆锥的高是()。

A2厘米B6厘米C18厘米D5厘米

7、一个无盖的圆柱形水桶可以装水多少升?就是求它的()。

A表面积B体积C容积D既可以说体积也可以说容积

8、把一个圆柱形木棒削成一个最大的圆锥,削去部分的体积是原圆柱形木棒积体的()

ABCD2倍

9、两个圆锥体的高相等,甲圆锥体的底面半径是乙圆锥体底面半径的2倍。那么甲圆锥体的体积是乙圆锥体体积的()

A2倍B4倍C6倍D8倍

10.一个圆柱的高不变,底面半径扩大2倍,它的体积扩大()倍。

A2B3C4D8

四、计算

五、应用题

1、一个圆柱,底面半径是0.2米,高是35分米,它的侧面积是多少平方分米?

2、一个圆柱,底面周长是25.12厘米,高是5厘米,这个圆柱体的表面积是多少平方厘米?

3.做一个圆柱形鱼缸,底面直径是6分米,高5分米。

(1)做这个鱼缸至少需多少平方分米的玻璃?(得数保留整数)

(2)用这个鱼缸装满水,能装水多少千克?(1升水重1千克,得数保留整数)

4、有两个底面半径相等的圆柱,高的比是3∶5,第一个圆柱体积是48立方厘米,第二个圆柱体的体积比第一个多多少立方厘米?

5、一个圆柱形的玉米囤,从里面量底面周长是12.56米,高是4米,每立方米玉米的重量是560千克,这个玉米囤大约能装多少千克玉米?(得数保留整数)

6、一堆煤呈圆锥形,底面直径是4分米,高是1.2米,这堆煤的体积是多少立方米?如果每立方米约重1.4吨,这堆煤约有多少千克?(得数保留整数)

7、一个圆柱形茶杯,底面直径是12厘米,高15厘米,这个茶杯能装水多少立方厘米?

8.有一圆柱形钢材,高是15米,侧面积是14.13平方米,这个圆柱形钢材的重量是多少吨?(每立方厘米钢重7.8克)

9.一个圆锥形物体的体积是6.28立方分米,底面积为3.14平方分米,锥体的高是多少分米?

10、一个圆锥形麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重720千克,这堆麦子的送入粮库,还剩多少千克小麦?(得数保留整数)

圆柱和圆锥的教案(篇7)

各位老师:

大家好,我代表六年级所有的数学老师对我们的新课程义务教育标准实验教科书人教版六年级下册《圆柱和圆锥》这个单元作一个说课,下面我将从教材,教法学法,教学过程和板书设计四个方面来进行说课。首先我从教材分析入手:本单元是在学生已经了解并掌握长方形,正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并在学生已经直观认识圆柱的基础上,引导学生进一步探索圆柱和圆锥的特征。本单元的主要内容有:圆柱和圆锥的认识,圆柱的表面积和体积,圆锥的体积。圆柱、圆锥是我们在生产生活中经常遇到的几何形体。内容的安排上不仅有利于发展学生的空间观念,也为进一步应用几何知识解决实际问题打下基础。根据新课标要求,教材特点和学生认知规律,我制定了以下三个教学目标:

1、知识和技能:使学生认识圆柱和圆锥,掌握它们的基本特征。并认识圆柱的底面、侧面和高,认识圆锥的底面和高。引导学生探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际的问题。

2、过程与方法:引通过观察、设计和制作圆柱、圆锥的模型等活动,使学生了解平面图形与立体图形之间的联系,发展学生的空间观念。

3、情感态度和价值观:使学生理解除了研究几何图形的形状和特征,还要从数量的角度研究几何图形,如图形的面积、体积等,体会数形结合的思想。通过圆柱和圆锥体积公式的探索,使学生体会转化、推理、极限、变中有不变等数学思想。

基于以上分析,我把本单元的教学重点确定在充分感知的基础上,探索圆柱和圆锥的特征,并学会运用计算公式计算圆柱的表面积和体积,圆锥的体积的计算。教学难点是认识和理解圆柱的侧面积以及侧面积的计算方法和认识理解圆锥的高。

现代教育心理学认为,小学生的思维发展是从具体形象向抽象思维过渡的。因此,按照学生的认知规律,按照从“具体感知——形成表象——进行抽象”的过程,在教学中,我准备利用直观教具如多媒体课件,圆柱和圆锥的模型,采用引导探究法、观察演示法、讨论法等方式让学生能够多种感官参与学习,自主构建知识。

在学法指导上,我准备让学生采用:动手操作法,观察发现法,合作交流法、自主探究法的方法进行学习。

为了完成教学目标,突破教学重点难点,根据学生的实际情况,我准备每一个课时从创设情境导入新课,主动参与探索新知,练习巩固开发智能,自我总结深化新知四个方面进行教学:

一、创设情境,导入新课

圆柱和圆锥是人们在生产和生活中经常遇到的几何形体。这一部分的内容有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础,因此在本单元的教学之中,我注重加强与学生实际生活的联系,重视运用所学知识实际问题的意识和能力的训练。例如,在认识圆柱和圆锥的教学之前,我让学生收集、整理生活中有关圆柱、圆锥的实例和信息资料,以便在课堂中交流,在导入新课时从生活情境引入,结合学生收集的实物图片从整体上感知圆柱和圆锥,帮助学生抽象出圆柱和圆锥的表象。然后引导学生通过观察、比较、交流等活动,进一步探索圆柱和圆锥的特征。结合圆柱的直观图,介绍圆柱的底面、侧面和高。通过快速旋转长方形硬纸操作活动,引导学生结合空间想象,体会立体图形的形成过程,发展学生的空间观念。通过剪开圆柱形罐头盒的商标纸,让学生充分探究,把圆柱侧面展开后得到的长方形的长和宽与圆柱的相关量对应起来,为后面学习圆柱的表面积计算作准备。

二、主动参与,探索新知

在教学圆柱的表面积的计算方法,把探索圆柱侧面积的计算方法作为重点,强调了圆柱侧面展开图与圆柱的相关量之间的对应关系,通过计算生活情境中圆柱形厨师帽的布料,引导学生根据不同的问题情境灵活选择计算公式,提高解决问题的能力。

在学习圆柱的体积计算公式时,我重视让学生体会转化思想和极限思想,引导学业生经历把圆柱切开、再拼成一个近似长方体的逐步细分的过程,初步感知直术体体积的一般计算方法,从而得出圆柱体积的计算方法,再创设生活化的问题情境,提高学生的应用意识和问题解决策略,全面发展学生的问题解决能力。

在学习圆锥的认识这一节时,我也充分利用生活中的圆锥实物图片,通过让学生观察、比较、测量、交流等活动,探索圆锥的特征。结合圆锥的直观图,介绍圆锥的底面、顶点和高的含义。在教学圆锥体积这一节时,首先创设一个问题情境:如何计算圆锥的体积?引导学生探索,并给出提示:圆锥的体积和圆柱的体积有没有关系,然后引导学生通过猜想和实验,探究圆锥和圆柱体积之间的关系。得出“圆锥的体积等于与它等底等高的圆柱体积的三分之一”。

三、练习巩固,开发智能

四、自我总结,开发新知

在每一节课结束时,问一问这节课你获得了哪些信息?掌握了什么本领?引导学生从知识、能力、感受三个角度进行自我总结。最后老师在此基础上进行总结和提升,让每个学生都能自主的从这三个方面进行总结和梳理,养成归纳、自主提升的好习惯。最后布置自主练习,让学生及时的巩固所学的知识。

五、最后是板书设计:

我的每一节课的板书设计力求简洁、清楚、层次分明,重点和难点突出,让人看起来一目了然。以上是我对本单元教学设计的一些认识和看法,有不足的地方请大家多指正。

圆柱和圆锥的教案(篇8)

教学内容:九年义务教育六年制小学数学第十二册P33、34

教学目标:1、复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合,构建体积计算公式系统,形成牢固的知识网络。

2、熟练地运用公式进行计算,让学生感受数学与生活的联系。

3、能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实际问题的能力。

教学重点:系统掌握体积公式的转化与推导过程,形成牢固的知识网络。

教学难点:灵活地运用相关知识解决实际问题。

设计理念:本节课让学生在梳理和交流中有所收获,并形成一定的知识网络。通过自我整理、自我提高,有效地培养学生根据不同的问题情景解决问题的能力,并正确进行自我评价和反思。

教学步骤教师活动学生活动

一、整理知识、形成网络。1、谈话导入,今天我们一起来复习圆柱和圆锥的有关知识,请各位同学把自己整理好的知识向大家展示一下。

2、圆柱和圆锥有什么特征?请同学们完整地表述一下。

3、强化公式的推导过程。

圆柱体体积公式是什么?请说一说它的转化和推导过程。

圆锥体体积公式是什么?说一说它的转化和推导过程?

4、根据学生的复习整理,让学生把下表填写完整。

图形特征计算公式

圆柱1、上下粗细一样

2、底面是两个相等的圆

3、侧面是一个曲面,沿高展开是一个长方形或正方形S底=πr

S侧=ch

=πdh

=2πrh

S底=2s底+s侧

V柱=sh

=πrh

圆锥1、有一个顶点

2、底面是一个圆

3、侧面是一个曲面,沿母线展开是一个扇形S底=πr

V锥=1/3sh

=1/3πrh

5、根据学生填写的表格教师质疑:根据圆柱和圆锥的特征能解决什么问题?运用圆柱和圆锥的体积公式能解决哪些问题?

根据学生的讨论得出:

(1)根据圆柱和圆锥的特征判断圆柱和圆锥。

(2)针对有关条件计算圆柱和圆锥的体积,并进行有关的逆运算。

(3)能运用所学的知识解决现实生活中的许多有关体积和容积的实际问题。学生先互相交流一下自己整理的结果。

学生填写表格,并互相提问表格中的有关内容

学生分组讨论。

二、运用知识、解决问题。1、相关概念分得清。

(1)把圆柱的侧面沿高展开后通常得到一个(),这个长方形的长就是圆柱的(),这个长方形的宽就是圆柱的(),这个长方形的面积就是圆柱的(),所以圆柱的侧面积等于()。当圆柱的()和()相等时,圆柱的侧面展开后是一个正方形。(2)一个圆柱底面半径是1厘米,高是2厘米。它的侧面积是()平方厘米。

(3)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米。

(4)一个圆柱形水箱,从里面量底面周长是18.84米,高3米,它最多能装()立方米水。

(5)一个圆锥形机器零件,体积是125.6立方厘米,底面半径是2厘米,这个圆柱的高是()厘米。

2、有关计算算得准。

(1)、一个圆柱形铁皮盒,底面半径2分米,

高5分米。

①如果沿着这个铁皮盒的侧面贴一圈商标纸,需要多少平方分米的纸?

②某工厂做这样的铁皮盒100个,需要多少铁皮?

③如果用这个铁皮盒盛食品,最多能盛多少升?

(2)、一个圆锥形沙堆,底面直径8米,高3米,这个沙堆占地多少平方米?如果每立方米沙重15千克,这堆沙一共重多少千克?

3、解决问题用得妙。

(1)、一个长9分米的圆柱形木材,底面半径是4分米。如果将它加工成一个最大的圆锥,这个圆锥的体积是多少立方分米?削去部分的体积是多少?

(2)、一个压路机的滚筒的横截面直径是1米,它的长是2米。如果滚筒每分钟转动8周,5分钟能压路多少平方米?

(3)、一个圆柱形钢块,底面半径和高都是6分米,把它熔铸成一个等高的圆锥,这个圆锥的底面积是多少平方分米?

学生说一说求容积为什么要从里面量。

学生讨论一下每一个问题各是求什么

三、综合运用、提高能力。

1、八仙过海,各显神通:

(1)在一个直径是20厘米的圆柱形容器里,放入一个底面半径3厘米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米。圆锥形铁块的高是多少厘米?

(2)一根圆柱形木料,底面直径20厘米,长40厘米,现需要沿直径把它对半锯开,锯开后每根木料的表面积和体积是多少?”

2、总结复习,畅谈收获。

3、作业:34页3、4

学生分组讨论。

圆柱和圆锥的教案(篇9)

教学目标:

1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

2、使学生在活动中进一步积累立体图形的学习经验,增强空间观念,发展数学思维。

教学重点、难点:

1、在充分感知的基础上,探索圆柱和圆锥的特征。

2、进一步体验立体图形玉生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教具准备:1、圆柱和圆锥的实物和模型。

2、多媒体演示课件。

学具准备:自己带的圆柱和圆锥的实物。

教学过程:

一、复习导入

1、我们以前学过那些平面图形?

2、出示一些平面图形,认识它们吗?你眼睛看到的是不是一定正确呢?

3、电脑演示,将平面图形变成立体图形。为什么刚才我们看到平面图形变成了立体图形了呢?是无眠眼睛出错了吗?

4、认识这些图形吗?

5、揭示课题:今天我们就来认识圆柱和圆锥。

二、新授

1、拿出圆柱和圆锥,说说它门的特点。

2、你能找出生活中有哪些物体是圆柱和圆锥形的吗?

3、现在无眠首先来研究圆柱。

(1)请以小组为单位,仔细观察桌上的圆柱,看看它有哪些特点。(提示:从面、棱、顶点和高这几方面来研究。)

(2)请一位同学代表你们组来说说你们发现了什么?

(3)老师现在有问题要问大家:圆柱上下两个圆有什么关系,怎样验证?

(4)我们称这两个圆为圆柱的底面,也就是说圆柱有两个底面,一个侧面。

(5)圆柱的高指什么?你有办法测量吗?说明圆柱有多少条高,长度有说明关系?

(6)谁能完整的说一下圆柱的特征。

4、下面我们来认识另一个立体图形圆锥。

(1)你有办法将一个圆柱变成一个圆锥吗?

(2)下面我们还是小组来研究圆锥的特点。

(3)你能找到圆柱的高吗?怎样测量?有几条?为什么?

(4)滚一滚圆锥,你有什么发现?

(5)你能比较完整的说一下圆锥的特征吗?

三、巩固练习

1、课本19页练一练。

2、分别出示钢管、压路机和玻璃台面(电脑出示),找出它的底面和高。

3、练习十五第2题。

4、转一转。电脑演示,小旗旋转一周所成的形状。并说说长方形的长和宽与圆柱有什么关系;三角形的底和高与圆锥有什么关系。

四、作业

课本20页练习五4.

五、欣赏一下生活中的圆柱和圆锥。

六、全课总结。

圆柱和圆锥的教案(篇10)

教学内容:

教材分四段进行教学。第一段,认识圆柱和圆锥的基本特征;第二段,探索并掌握圆柱侧面积和表面积的计算方法,解决相关的一些简单的实际问题;第三段,探索并掌握圆柱的体积计算公式,并运用此体积公式解决一些简单的实际问题;第四段,探索并掌握圆锥的体积公式,并应用体积公式解决相关的实际问题。最后,对本单元的学习内容进行了整理与练习,沟通知识间的联系,进一步提高综合应用数学知识解决实际问题的能力。

教材分析:

本单元内容是在学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。前面的学习内容既为新知识的学习奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。学习了新知,既是学生认识上的一次飞跃,又拓宽了学习空间,知识结构得到了进一步的完善,为今后学习其它的立体图形打好了基础。

教学目标:

1、使学生通过观察、操作等活动认识圆柱和圆锥,知道圆柱和圆锥底面、侧面和高的含义,掌握圆柱和圆锥的基本特征。

2、使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的'体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。

3、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考,培养初步的分析、综合、比较、抽象、概括和简单的判断、推理能力。

4、使学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

教学重点:使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。

教学难点:应用圆柱和圆锥的有关知识,灵活、合理地解决一些实际问题。使学生在活动中进一步积累空间与图形的学习经验,增强空间观念。

课时安排:圆柱和圆锥(11课时)

圆柱和圆锥的教案(篇11)

教学片段及评析:

片段一:引入。

(出示一个长方形小旗。)

师:这是什么图形?(长方形。)如果以这条边所在的直线为轴,让它快速旋转,可以得到什么形体?(圆柱。)

(多媒体出示生活中的圆柱实物。)

师:能找出哪些物体是圆柱形状的吗?

生:(奶粉罐、蚊香盒、水杯、火箭的中间一段。)

师:说的很准确,你在生活中见到过圆柱形状的物体吗?谁能再举个例子。

生:(我家的杯子、可比克的包装盒)

生:电线杆。

师:你是说我们常见的电线杆吗?仔细回忆,我印象中它好像是一端粗,一端略微细些吧?

生:(略加思考后肯定地)是。

师:那它是圆柱吗?

生:(犹豫地)不是。

【评析:通过旋转引出圆柱,直接把旋转的思想带进课堂,虽然只是一个简单的旋转小旗,但给了学生一个信息:圆柱可以通过旋转的方法得到,为下面更深刻的感受旋转做好认识储备。接着从生活中感知圆柱,圆柱对于学生并不陌生,可以说已经有了一些初步的感性了解,但很粗糙,难免会把诸如圆台的电线杆看作圆柱。教者略加点拨并纠正,逐步帮助学生描画圆柱。】

片段二:初步感知圆柱。

师:好,就请大家用摸一摸,数一数,量一量,画一画等方法研究桌面上的圆柱。

(学生研究。)

师:光顾着研究可不行,我们还得善于将自己的发现和大家一起交流、一起分享。谁先来说一说自己的发现?

生:我发现圆柱没有角。

师:你是指像长方体和正方体那样的顶点吗?圆柱确实没有。

生:我发现圆柱有两个圆形的面。

生:我认为圆柱还有一个面,(用手指着侧面。)这个面。

师:我们一起来摸一摸这个面。(环绕着摸侧面。)它像我们黑板一样是平的吗?(不是。)它是怎么样的?

生:(是环形的、是圆形的、是弧形的)

师:哦,其实大家说的都是同一个意思,它不是平的,而是弯曲的。我们把这个面称为圆柱的侧面。圆柱还有两个面,这两个面称为圆柱的底面。谁知道这两个底面有什么关系?

生:它们的面积相等。

生:我认为它们的周长也相等,它们完全相同。

师:你用了一个很好的词语:完全相同,你们又是怎么发现两个圆完全相同的?

生:(犹豫地。)我感觉它们大小一样。

生:我是用眼睛看出来的。

师:仅仅用眼睛看准确吗?

生:不准确,可以量一量它们的直径,看看是不是一样。

师:说的很好,你找到一种比较科学的方法。还有吗?

生:我把圆柱倒在桌上,让它滚了滚,发现滚出的是直线,说明它的两端大小相等。

师:这是个了不起的发现,你知道其中的道理吗?

生:(犹豫地)不知道。

师:但直觉告诉你,既然沿着一条直线滚动,可以说明两个底面大小相等,是吗?至于其中的道理,我们会在今后学习到。

生:可以把圆柱锯开,两个底面比一比。

师:方法不错,就是可惜了这么漂亮的圆柱。(生笑。)如果不把它锯开,有办法让两个底面比一比吗?

生:可以把其中一个画出来,再用另一个来比一比。

(多媒体演示长方形旋转形成圆柱的过程。)

师:我们已经知道圆柱可以通过旋转长方形得到,通过旋转过程,我们也可以验证这个结论。现在我们一起来量一量、画一画,或者分析旋转图,验证圆柱的两个底面是完全相同的圆。

(学生动手操作或看图思考,互相交流。)

【评析:摸一摸、量一量、画一画、比一比,教者引导学生使用多种方法自主研究圆柱,将学生置身于探索者、发现者的角色,避免了教者一味讲解的枯燥。在引导学生认识完圆柱的一些基本概念后,展开对于圆柱两个圆形底面完全相同这一特征的验证,该过程中,把多种方法一起交给学生,让学生自由选择,多种途径进行探究,并在交流对话中完善相应的认知结构。】

片段三:通过旋转,深入探究。

(多媒体分步显示长方形绕轴旋转)

师:其实,通过旋转,我们可以更加深刻的认识圆柱。大家想不想来细细研究?请看屏幕。注意观察A点和B点在旋转后,分别形成了圆柱的哪个部分?

生:圆柱的两个底面。

生:我觉得是两个底面的周长。

师:我们用手摸一摸形成的部分,是圆柱整个底面吗?(注意指准两个底面圆周。)

生:(肯定的)不是,是圆周。

师:长方形的这一组对边绕轴旋转后分别形成圆柱的什么部分呢?

生:两个底面。

师:圆柱的侧面是长方形的哪个部分旋转得到的?

生:长方形的一条边。

生:从图上看是线段AB。

师:(多媒体演示。)确实如此。现在我们综合起来思考,长方形的这三条边同时绕轴旋转一周后,所形成的仅仅是圆柱的三个面,当长方形作为一个整体的面在旋转后,就形成了实实在在的圆柱。

【评析:这是教者根据教材拓展的教学环节,这一环节向学生完整展示了长方形旋转形成圆柱的整个过程,帮助学生建立起圆柱完整的空间观念,深刻认识旋转是得到立体图形的一种重要方式。在这一教学环节中,科学的展示给学生点动成线、线动成面、面动成体的构建理念。】

片段四:认识圆柱的高。

(多媒体分步演示等宽不等长的三个长方形绕各自的一条边旋转形成圆柱。)

师:三个圆柱的大小一样吗

生:不一样。

师:你是怎么看出来的?

生:三个长方形的宽相等,得到的圆柱底面相等,但它们的高度不同。

师:那请大家思考,什么是圆柱的高呢?

生:长方形的长是圆柱的高。

师:哦,你是从旋转过程中看出来的,从圆柱本身来看,什么是它的高?

生:侧面的高度是圆柱的高。

生:两个圆之间的距离是圆柱的高

师:这里的两个圆,我们称为圆柱的什么?

生:圆柱的底面。

师:那还可以怎样描述圆柱的高?

生:两个底面之间的距离是圆柱的高。

师:说得很准确。我们可以在圆柱的立体图形上标注出它的高。(标注圆柱的高。)我们认识了圆柱的高,知道标注的方法还不够,在生活实际中还需要来量一个圆柱的高。你打算怎样来量圆柱的高?

生:我用两把尺夹住圆柱,量出尺之间的距离。

生:我把圆柱倒在纸上,用笔在两个底面的位置做个记号,量出记号间的长度。

生:我量它的侧面。

(肯定量高的方法,指导学生量一量。)

【评析:认识圆柱的高是教材的重点也是难点。但因为学生已经对长方形旋转得到圆柱的过程有了清晰的认识,这一重点和难点也就迎刃而解。教者设计了三个环节:认识高、标注高、测量高。先展示出三个等底不等高的圆柱,让学生感受到高的存在,激发认识圆柱高的欲望,逐步引导学生认识圆柱的高是什么,怎样标注圆柱的高,最后让学生动手操作,量一量圆柱的高,进一步加深对圆柱高的理解。】

片段五:认识圆锥。

师:屏幕上一个是长方形,另一个是?

生:三角形。

师:准确的说是

生:直角三角形。

师:它绕任意一条边旋转后会形成什么形体呢,大家想不想来研究?

(多媒体演示直角三角形绕任意边旋转得到的形体。)

师:请大家拿起桌面上的圆锥,看一看,摸一摸,你发现圆锥有哪些特征呢?

(学生自主探究。)

生:圆锥有一端是尖的。

师:用数学语言,这个尖的我们称为什么?

生:(恍然大悟地)顶点。

生:圆锥也有一个圆形的面。

生:圆锥还有一个弯曲的面。

师:我们把圆形的面称为圆锥的底面,这个弯曲的面,称为圆锥的侧面。其实圆锥就是由一个底面和一个侧面围成的立体图形。这些都是我们看得见,摸得着的。我们从直角三角形旋转形成圆锥的过程中,又可以发现什么呢?

(多媒体演示直角三角形旋转得到圆锥)

生:我发现从圆锥的顶点画一条垂线下来,正好通过底面的圆心。

师:老师真佩服你,想象力很丰富,你的判断很正确。

生:我发现圆锥的底面是直角三角形的一条直角边旋转后形成的。

生:直角三角形的斜边旋转后形成圆锥的侧面。

师:不错,在我们小学阶段学习的圆锥,都是这种可以通过旋转直角三角形得到的,这样的圆锥是直圆锥。

生:我发现圆锥的高是直角三角形的一条直角边。

师:你的发现很有价值,能说说什么是圆锥的高吗?

生:顶点到底面的距离是圆锥的高。

师:我们来用两根手指夹住圆锥,表示出它的高。(学生操作。)我发现大家都用一根手指按在顶点,另一根手指呢?

生:在圆锥的底面。

师:是底面任意的位置吗?

生:不是,是底面圆心。

师:请大家调整一下,好,现在我们用手指表示出了圆锥的高,谁能用语言来描述?

生:顶点到底面圆心的距离是圆锥的高。

【评析:正因为教者在前面认识圆柱时,充分调动了学生的眼、手、口、脑,学生认识起圆锥可谓得心应手。教者从旋转直接引出圆锥,通过旋转把圆锥彻底呈现给学生。认识圆锥的高本是教学的难点,但因为学生对旋转过程的清晰理解,认识圆锥的高变得轻而易举,这一难点已不复存在,这正是旋转的魅力所在。】

圆柱和圆锥的教案(篇12)

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积脳2即S表=S侧+S底脳2或2蟺r脳h+2脳蟺r2

7、圆柱的侧面积=底面周长脳高即S侧=Ch或2蟺r脳h

8、圆柱的体积=圆柱的底面积脳高,即V=sh或蟺r2脳h

(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1.这种取近似值的方法叫做进一法。)

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或蟺r2脳h梅3

13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

第一课时:面的旋转

教学内容:北师大版数学六年级下册2鈥?页。

教学目标:

1、通过观察面的旋转的特点,理解圆柱和圆锥的形成与面的旋转之间的关系。

2、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。

3、通过观察,初步了解圆柱和圆锥的组成及其特点。

教学重点:目标2、3.

教学难点:目标3.

教学过程:

教师活动

学生活动

活动一:初步认识圆柱和圆锥。

1、将自行车后轮支架支起,在后轮辐条上系上彩带。转动后轮,观察并思考彩带随车轮转动形成的图形是什么?

2、观察下图,你发现了什么?

延伸的铁路,雨刮器刮过的车窗,旋转门。

3、用纸片和小棒做成小旗,快速旋转小棒,观察并想象纸片旋转后所形成的图形,再连一连。

4、介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。

小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。

5、找一找:请你找出我们学过的立体图形。

活动二:进一步认识圆柱和圆锥。

1、圆柱与圆锥分别有什么特点?

2、认识圆柱和圆锥各部分的名称。

圆柱的上下两个面叫做底面,它们是完全相同的两个圆。

圆柱有一个曲面,叫做侧面。

圆柱两个底面之间的距离叫做高。

圆锥的底面是一个圆。

圆锥的侧面是一个曲面。

从圆锥顶点到底面圆心的距离是圆锥的高。

教师画出平面图进行讲解。并在图上标出各部分的名称。

3、找一找下面的物体中,哪些部分的形状是圆柱或圆锥?

4、找一找还有哪些物体的形状是圆柱或圆锥?

5、下面图形是圆柱或圆锥的在括号里写出图形的名称,并标出底面直径和高。

6、想一想,转动后会形成怎样的图形?

7、看图算出箱子的长、宽和高。

请学生想象后回答自己的想法。

说说你的发现。

转一转并观察,然后再连线。

指名请学生说。

请完成书上的练习,说说书上的图形分别是什么?

圆柱:有两个面是大小相同的圆,有另一个面是曲面。

圆锥:它是由一个圆和一个曲面组成的。

请学生仔细观察后回答。

自己独立完成,集体订正。

与同桌进行交流并汇报。

自己独立完成。

连一连。

自己独立算,然后说说你是怎样算的。

第二课时:圆柱的表面积(第一节)

教学内容:北师大版数学六年级下册5---6页。

教学目标:

1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计

算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实

际问题。

教学重点:目标1.

教学难点:目标2.

教学过程:

教学内容:北师大版数学六年级下册5---6页。

教学目标:

1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学重点:目标1.

教学难点:目标2.

教学过程:

教师活动

学生活动

活动一:复习旧知,巩固学过的公式。

1、一个直径是100毫米的圆,求周长。

2、一个半径3厘米的圆,求周长和面积。

3、一个长为3米,宽为2米的长方形,它的面积是多少?

4、出示圆柱体的模型,说说它有什么特征?

活动二;探究新知。

1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)

要解决这个问题,就是求什么?

2、圆柱的表面积包括哪几部分?

3、圆柱的表面积的计算关键在哪一部分?

4、探索圆柱侧面积的计算方法。

1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?

3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。

4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

5)请你来总结一下圆柱侧面积的计算方法。

6)圆柱的侧面积用2鈭弐h,求圆柱的表面积要用侧面积加两个底面积。

活动三:新知识的运用。

1、求底面半径是10厘米,高30厘米的圆柱的表面积。

2、教师板书:

侧面积:2╳3.14╳10╳30=1884(平方厘米)

底面积:3.14╳10╳10=314(平方厘米)

表面积:1884+314╳2=2512(平方厘米)

要求按步骤进行书写。

2、试一试。

做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?

求至少需要多少铁皮,就是求水桶的表面积。

这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。

3、练一练。书第6页第1题。

3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。

说说圆周长的计算方法。

说出圆面积的计算方法。

说出长方形的计算方法。

指名说。

生:就是求圆柱的表面积。

包括:上下两个底面和一个侧面。

圆柱的底面积容易求出,但侧面积该怎样求呢?

你能想办法说明吗?同桌两人合作,试一试,说一说。

四人小组讨论。

试着在作业本上写一写,然后在组内交流一下。

自己试独立计算。请同学上黑板板书,然后全班讲评。

请按步骤计算,写出小标题。

自己先试做,然后重点指导:已知底面周长,要先求出半径,才能计算表面积。

第三课时:圆柱的表面积练习课(第二节)

课题:圆柱的表面积练习课(第二节)

教学内容:北师大版数学六年级下册6鈥?页。

教学目标:

1、进一步理解圆柱表面积的含义及其计算方法。

2、能够运用圆柱表面积的计算方法解决简单的实际的问题。

3、进一步发展学生的空间观念。

教学重点;目标1、2.

教学难点:目标2.

教学过程:

教师活动

学生活动

活动一:复习,巩固圆柱表面积的计算方法。

1、圆柱的表面积和侧面积有什么关系?

2、侧面积怎样计算?

3、表面积怎样计算?

4、一个圆柱,底面周长94.2厘米,高25厘米,求它的侧面积和表面积。

5、一个圆柱,半径3.2分米,高5分米。求表面积。

活动二;提高解决问题的能力。

1、如图,压路机前轮转动一周,压路的面积是多少平方米?

请看着书上的图,说说压路机前面的圆柱,底面在哪?高在哪?

求压路的面积就是求什么?

2、一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1.2米,镶瓷砖的面积是多少平方米?

师:是指侧面积和一个底面积。

3、制作一个底面直径20厘米,长50厘米的圆柱形通风管,至少要用多少平方厘米铁皮?

通风管有什么特征?

计算通风管需要多少铁皮,就是求圆柱的的什么?

4、油桐的表面要刷上防锈油漆,每平方米需用防锈油漆0。2千克,漆一个油桐大约需要多少防锈油漆?(结果保留两位油漆)

求需要多少油漆就是求圆柱形油桐的什么?

注意:这种解决实际问题的内容,一般都采用进一法进行保留。

5、薯片盒规格如图,每平方米的纸最多能做多少个薯片盒的侧面包装?

要解决这个问题,必须先求什么?(先求侧面积)

再求什么?(再求1平方米里面包含了几个侧面积)

指名请学生说一说。

说出计算的公式。

自己试计算。

指名请学生说一说。

压路的面积是指侧面积,请试着计算。

仔细读题,想一想,镶瓷砖的面积包括什么?

请根据书上的数据,自己独立计算。

就是求圆柱的侧面积。自己试计算。

理解题意,自己进行计算。

准确理解题目的含义,自己进行计算。

计算时要注意换算单位,除不尽时,应当用四舍法求近似数。

圆柱和圆锥的教案(篇13)

教学内容教材第1819页的例1,完成第19页的练一练和练习五的第14题。

教学目标1.使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图。

2.认识圆柱和圆锥的底面、侧面和高,并会测量高。

教学重点1.让学生从整体上体会圆柱和圆锥的特征,了解围成圆柱或圆锥的各个面。

2.认识圆柱和圆锥的高,并会测量高。

教学难点认识圆锥的高。

教具准备:教师准备长方体和正方体的物体各一个,及多个圆柱形的物体(如罐头盒、茶叶筒、药盒、药瓶、纸盒等);让学生也收集几个圆柱形的盒子,同时让学生将教科书第125、127页上的图沿边剪下来。做一个圆锥的模型,并让学生收集一些圆锥形的实物,教师准备一个圆锥形物体,一块平板(或玻璃),一把直尺。

教学过程:

一、以旧引新

1.出示准备的长方体、正方体、圆柱、圆锥等几何形体,

问:你能找出我们已经认识的形体吗?

(学生可能会找出长方体和正方体)

你还记得长方体和正方体各有什么样的特征吗?(生回答)

(举起圆柱和圆锥)你知道这两个物体叫什么吗?猜猜它们各有什么特征?(学生发表不同的意见)

2.圆柱和圆锥到底有什么样的特征?学习了今天的内容就知道了。(揭示课题)

二、自主探究

1.圆柱的认识。

教师出示几个圆柱形的物体,大家注意了,你们看看这些物体跟长方体、正方体的形状一样吗

学生:不一样。

教师:请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它们与长方体有什么不一样

让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到长方体、正方体都是由平面围成的立体图形;而圆柱则有一个曲面,有两个面是圆,从上到下一样粗细,等等。

教师指出:像这样的物体就叫做圆柱体,简称圆柱。

教师:现在我们沿着这些圆柱形物体的轮廓画线,于是就可以得到这样的图形。随后教师演示得到圆柱形物体的轮廓线。

然后指出:这样得到的图形就是圆柱体的几何图形。

教师:请大家再观察一下,这些圆柱的上、下两个面有什么特点(同桌交流后,在全班说一说)

引导学生发现:圆柱的上、下两个面都是平面,并且它们是完全相同的两个圆。

教师指出:圆柱的上、下两个面叫做底面。

然后在图上标出底面以及两个圆的圆心O。

同时还要指出:我们所学的圆柱是直圆柱的简称,即两个底面之间从上到下一样粗细,高垂直于底面。

接着让学生用手模一模圆柱周围的面,使学生发现圆柱有一个曲面,由此指出:圆柱的这个曲面叫做侧面。(在图上标出侧面。)

让学生看圆柱形物体,指出:圆柱的两个底面之间的距离叫做高。然后在图上标出高。

提问:圆柱的高有多少条他们之间有什么关系

全班交流后使学生明白:圆柱的高有无数条,他们都相等。

然后让学生拿出自己的学具,同桌的两名同学相互指出圆柱的两个底面、侧面和高。

小结:圆柱的特征(可以启发学生总结),强调底面和高的特点。

上、下两个面都是面积相等的圆

圆柱

从上到下粗细相同

2.圆锥的认识。

让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆,等等。

教师指出:像这样的物体就叫做圆锥体,简称圆锥。

教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。

随后教师演示得到圆锥形物体的轮廓线。

然后指出:这样得到的图形就是圆锥体的几何图形。

教师指出:圆锥有一个顶点,它的底面是一个圆。

然后在图上标出顶点,底面及其圆心O。

同时还要指出:我们所学的圆锥是直圆锥的简称。

接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)

观察圆锥,看看圆锥的高在哪儿?它有几条高?

交流后,让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。

教师顺着母线的方向演示。问:这条线是圆锥的高吗

指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。

教师:圆锥的高到底有多少条呢

引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。

然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。

三、拓展延伸

(1)做第19页练一练。

要求学生说出图中哪些物体是圆柱形的,

(2)出示一组立体图形,辨析哪些是圆柱,哪些不是圆锥为什么

2.指出自己准备的圆柱和圆锥的底面和侧面、顶点以及高。教师工作室O$v.x:x*g(xa;E-j

3.做第19页练习五第2题:从正面、上面和侧面看圆柱和圆锥,看到的各是什么图形?连一连。

4.做第19页练习五第3题:

(1)做长方形、直角三角形和半圆小旗,将旗杆快速旋转,观察并想象一下:小旗旋转一周各成什么形状。

(2)自己设计小旗的形状,旋转小棒,观察并想象小旗旋转一周所成的形状,在小组里交流。

5.剪下第125、127页的图形,用硬纸做一个圆柱和一个圆锥,

(1)量出它们的底面直径和高。

(2)尝试计算出它们的地面周长和底面积。

四、全课总结。

这节课你学会了什么?圆柱和圆锥各有什么特征?

板书设计:

圆柱圆锥

上、下两个面都是面积相等的圆圆锥有一个顶点,它的底面是一个圆。

有无数条高有一条高

从上到下粗细相同教师工作室

作业设计:

1.填空

(1)圆柱上下面是两个()的圆形,圆锥的底面是一个()形。

(2)圆柱有()个面是弯曲的,圆锥的侧面是一个()面。

(3)圆柱两个底面之间的距离叫圆柱的(),一个圆柱有()条高。

(4)从圆锥的()到()的距离是圆锥的高,一个圆锥有()条高。

2.标出图中圆柱和圆锥的底面、侧面和高(图省略),并量出高和底面直径。

3.找出生活中哪些物体的形状是圆柱,哪些是圆锥。

相关推荐

  • 圆柱和圆锥课件9篇 老师上课前有教案课件是工作负责的一种表现,而现在又到了写课件的时候了。教案课件如果写好,避免老师遗漏重点内容。希望这份"圆柱和圆锥课件"能够解决您所遇到的困境,享受阅读的同时也别忘了分享这篇文章给身边的朋友哦!...
    2024-06-25 阅读全文
  • 圆柱与圆锥课件 此次小编为大家整理的是一篇关于“圆柱与圆锥课件”的文章,希望这些参考内容能够成为你工作或学习的锦囊妙计。在老师日常工作中,教案课件也是其中一种,老师在写教案课件的时候不能敷衍了事。教案是教学科研的重要资源。...
    2024-08-05 阅读全文
  • 圆锥侧课件 古人云,工欲善其事,必先利其器。在日常的学习工作中,幼儿园教师都会提前准备一些能用到的资料。资料所覆盖的面比较广,可以指学习资料。参考资料可以促进我们的学习工作效率的提升。你知不知道我们常见的幼师资料有哪些呢?以下是小编精心收集整理的圆锥侧课件,带给大家。仅供参考,大家一起来看看吧。教学目标:1、通...
    2023-04-21 阅读全文
  • 圆锥的课件6篇 通常老师在上课之前会带上教案课件,每天老师要有责任写好每份教案课件。教案是推动教学革新的有效途径。小编为您整理的这篇“圆锥的课件”的内容,我们后续还将不断提供这方面的内容!...
    2023-05-14 阅读全文
  • 圆锥的认识课件 为了让教学更加顺利,老师需要提前准备教案和课件,确保每个课件都设计得更加完善。教案是对教学技巧的重要总结。我们为您准备的“圆锥的认识课件”是经过特别精心打造的惊喜,希望这些思考方式能够帮助您更好地发挥想象力!...
    2024-02-08 阅读全文

老师上课前有教案课件是工作负责的一种表现,而现在又到了写课件的时候了。教案课件如果写好,避免老师遗漏重点内容。希望这份"圆柱和圆锥课件"能够解决您所遇到的困境,享受阅读的同时也别忘了分享这篇文章给身边的朋友哦!...

2024-06-25 阅读全文

此次小编为大家整理的是一篇关于“圆柱与圆锥课件”的文章,希望这些参考内容能够成为你工作或学习的锦囊妙计。在老师日常工作中,教案课件也是其中一种,老师在写教案课件的时候不能敷衍了事。教案是教学科研的重要资源。...

2024-08-05 阅读全文

古人云,工欲善其事,必先利其器。在日常的学习工作中,幼儿园教师都会提前准备一些能用到的资料。资料所覆盖的面比较广,可以指学习资料。参考资料可以促进我们的学习工作效率的提升。你知不知道我们常见的幼师资料有哪些呢?以下是小编精心收集整理的圆锥侧课件,带给大家。仅供参考,大家一起来看看吧。教学目标:1、通...

2023-04-21 阅读全文

通常老师在上课之前会带上教案课件,每天老师要有责任写好每份教案课件。教案是推动教学革新的有效途径。小编为您整理的这篇“圆锥的课件”的内容,我们后续还将不断提供这方面的内容!...

2023-05-14 阅读全文

为了让教学更加顺利,老师需要提前准备教案和课件,确保每个课件都设计得更加完善。教案是对教学技巧的重要总结。我们为您准备的“圆锥的认识课件”是经过特别精心打造的惊喜,希望这些思考方式能够帮助您更好地发挥想象力!...

2024-02-08 阅读全文
Baidu
map