课件精选:数学分数教案(8篇)
发布时间:2022-10-21 小学分数的教案 小学六年级数学分数教案 小学数学分类统计教案经验时常告诉我们,做事要提前做好准备。每一位任课幼儿园的老师都希望小朋友们能在幼儿园学到知识,为了加强学习效率,我们一般会事先准备好教案,教案可以帮助学生更好地进入课堂环境中来。我们要如何写好一份值得称赞的幼儿园教案呢?为此,小编从网络上为大家精心整理了《课件精选:数学分数教案(8篇)》,大家不妨来参考。希望您能喜欢!
数学分数教案【篇1】
教材分析
《分数乘整数》是苏教版小学数学第十一册第三单元的内容。这节的内容是在已学整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。对今后求几个加数的和的简便运算用乘法来解决。注重培养学生的计算能力。
学情分析
学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法来推导出分数乘整数时只需把分子和整数相乘的积做分子,分母不变。
学生在刚学习分数乘法时,可能会有时想不到先约分,在课堂教学时要注意加以强调。
教学目标
1、使学生理解分数乘整数的意义。
2、培养学生的合作探究意识和良好的逻辑思维能力。
3、让学生在学习中获得成功的体验。
教学重点和难点
重点:理解分数乘整数的意义。
难点:掌握分数乘整数的计算法则。
教学过程
1、让学生动手做绸花,加深了学生对求几个相同加数的和的简便运算用乘法来算。
2、让学生操作涂彩纸表示绸带,加强学生对分数意义的推算。
3、理解分数乘法的意义,认识分数乘法算式,加深理解两个因数相乘,交换因数的位置积不变。
4、小结。
数学分数教案【篇2】
教学目标:
1、正确掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。
2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学过程:
一、复习
1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?
2、学生找出这道题目的分率句,确定单位1,并根据数量关系列式:1400(1+ )
二、新授
1、教学例3
(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(2)学生读题,找条件和问题,明确这道题是把谁看成单位1。
(3)引导思考:从今年图书册数增加了12%这句话中,你能知道些什么?
① 今年图书增加的部分是原有的12%。
② 今年图书的册数是原有的120%。
(4)学生讨论后分小组交流,并独立列式计算:
人教版数学《用百分数解决问题(3)》教学设计第一种:140012%=168(册)
1400+168=1568(册)
第二种:1400(1+12%)
=1400112%
=168(册)
2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)
3、巩固练习:完成P93做一做第1题。
三、练习
1、补充练习
(1)出示练习:
①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?
②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?
(2)分析理解:
A、出油率是什么意思?这两道题有什么相同和不同?
B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?
(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
课后反思:
本部分内容是求比一个数多(少)百分之几的应用题,这部分内容与求比一个数多(少)几分之几的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也较为容易。
数学分数教案【篇3】
教学目标:
使学生加深对分数意义和分数与除法关系的理解。会熟练地比较分数的大小。
教学重点:
进一步理解分数的意义,会进行分数的大小比较。
教学难点:
能在实践中进行运用。
教学课型:
新授课
教具准备:
课件
教学设计:
一、出示课题,学习目标
加深对分数意义和分数与除法关系的理解。会熟练地比较分数的大小。
二、出示自学指导认真看课本学习、掌握分数意义和分数与除法关系的理解。会熟练地比较分数的大小。
三、学生看书,自学
四、效果检测
P94 。例6: 比较下面每组中两个分数的大小。
(1)设问:A,图中的阴影部分用分数表示分别是多少
B,从图上比较2/3与1/3,哪个大 哪个小
C,如果没有图形供观察,那么怎样比较2/3与1/3的大小
(想:2/3是2个1/3,1/3是1个1/3,所以2/3>1/3)
板书: 2/3>1/3
D,第二组图中用括号表示的线段用分数表示分别是多少
E,看图比较,谁大于谁
F,若没有参照图,你会怎样比较它们的大小
板书: 2/51/3 3/81/3 2/51/3 3/8 3/5 > 2/5
4,P97 。11
习前分析:想想,括号里填的这个分母与8和3之间有什么关系
板书 ∵ 1/8
∴ 括号里可以填7,6,5,4这四个数字。
习后提问:从这道题中,你发现了什么
述:分子相同的分数,分母小的分数大。
5,P97 。12
§ 因为快车从甲站到乙站要行10小时,那么快车每小时行全程的1/10;慢车从甲站到乙站要行15小时,那么慢车每小时行全程的1/15。因此,相遇时:
快车6小时行了全程的:1/10×6(即6个1/10)=6/10,
慢车6小时行了全程的:1/15×6(即6个1/15)=6/15。
五、重点指导
1,P97 。7
先要求学生用直线上的点把各分数表示出来。
再指导学生比较出各分数的大小,并按从小到大的顺序排列。
2,应用题。[课件2]
(1)甲车从东站开往西站要7小时,乙车从西站开往东站要8小时,甲,乙两车同时从两地相对开出3小时,哪一辆车行的路程长
(2)某小学学生在一块地里收棉花,第一天收了这块地的3/25,第二天收了这块地的3/20,第三天收了这块地的2/25,三天中哪一天收得最多 哪一天收得最少
六、家作
P97 。8,9,10
数学分数教案【篇4】
教学目标:
1、掌握分数与小数互化的方法并能进行分数与小数之间的大小比较·
2、 培养学生的观察、比较和分析、推理等思维能力·
教学重点:分数与小数互化的方法·
教学难点:会利用分数与小数互化的方法解决实际问题·
教学准备;多媒体教学·
教学过程:
一、新授·
出示主题图·
师:从图中知道了那些信息?要我们做什么?
师:有什么问题吗?
师:分数和小数之间能直接比较吗?怎么办?
学生试做·
反馈:指名回答·引导出把分数与小数互化的方法·
分组进行分数与小数互化:学生分为两组,一组研究小数化成分数的方法,一组研究分数化成小数的方法·
集体交流·
总结方法·
练习:
把9/25、5/6化成小数(除不尽的保留三位小数)
把0·3、0·13、0·213化成小数·
二、巩固练习·
1、小麦地的面积是7/8公顷,棉花地的面积是0·8公顷,什么地的面
积大一些?
学生独立完成·
同桌之间交流·
集体交流·
2、小军做了1·1小时,小明做了6/5小时,谁做得快一些?
学生独立完成·
同桌之间交流·
集体交流·
三、思考题·
A和B都是大于0的整数,当A( )时,B/A是真分数;
当A( )时,B/A是假分数;B/A能化成整数·
四、课堂总结:
小数与分数互化的方法是什么?
数学分数教案【篇5】
一、教学内容:
小学数学第七册《分数的初步认识》第一课时。
二、教学目标:
直观认识几分之一,初步形成关于几分之一的表象,会读写几分之一。
三、教学重点:
认识几分之一。
四、教学难点:
通过一系列的数学学习活动,培养学生的创新意识、操作能力、观察能力。
五、德育目标:
培养学生主动参与、互相合作的学习态度和自主探索的学习习惯。
六、教学过程:
1、遇困求知、导出分数
(1)把4块饼平均分给2个人,平均每个人分得几块饼?
(2)把2块饼平均分给2个人,平均每个人分得几块饼?
(3)把1块饼平均分给2个人,平均每个人分得几块饼?
设计意图:这一阶段的教学,复习“平均分”,从每份是整数过渡到每份不是整数,自然引出分数。(1)(2)激活了学生原有的认知结构。(3)题对学生发出了挑战,旨在激发学生的求知欲。
2、自主创造,探究分数
(1)这半块饼怎样表示?请大家想一个办法。
设计意图:(学生自由创造)(指名学生汇报所想符号,并说出意思)
这个问题的设计意在让学生结合日常生活实际和学生的知识基础来创造,培养学生的创新意识。
(2)原来学的数不能表示这“半个”,需要创造一种新的数-分数。(出示课题)(3)你想知道分数的哪些情况?
数学分数教案【篇6】
教学目标
1、通过练习活动,进一步巩固本单元所学的知识,加深理解,提高掌握水平。
2、能运用所学知识和技能,解决有关实际实际问题。
教学重难点
通过练习,进一步巩固对分数含义的理解和分数大小比较的算法。
教学过程
一、复习引入新课。
计算下面各题:2/5+1/5=3/8+5/8=7/9-4/9=1-1/3=4/6+5/6=
7/8-7/8=10-4/4=14/30+5/30=12/28+16/28=
二、新授
1、涂色部分是几分之几?
2、涂一涂,比一比。
3、爸爸吃了六分之二,妈妈吃了六分之一。
(1)他们一共吃了这张饼的几分之几?
(2)还剩下几分之几?
4、分数计算
5、一个月饼平均分成8块,两个共吃了这个饼的几分之几?
6、有三个苹果四个梨
苹果占全部水果的几分之几?
梨占全部水果的几分之几?
苹果占的分数比梨少几分之几?
7、阴影部分是这个图形的几分之几?
8、(1)参加跳绳活动的共有几人?
(2)男同学占总人数几分之几,女同学占总人数的几分之几?
(3)你还能提出哪些数学问题。
9、数学故事
10、实践活动:制作七巧板。
这是个具有实践性和挑战性的活动。“想一想”中要用到分数的知识。七巧板又变成了研究分数加减法的学具了。
一定要鼓励学生亲手制作七巧板,这不仅能培养他们的动手能力,更能使他们借助操作完成“想一想”中的问题。
11、做一做
(1)拿一张长方形纸,折出一个最大的正方形,并剪下来。
(2)用剪下的正方形纸,按下面的顺序制作七巧板,并涂上不同的颜色。
11、想一想
(1)1号图形是原正方形的几分之几?2号呢?它们共占原正方形的几分之几?
(2)3号、4号、5号、6号、7号图形分别占原正方形的几分之几?
(3)用七巧板中的图形拼出长方形或正方形,估一估,量一量,算出它们的周长和面积大约是多少?
三、小结
课后反思:通过练习活动,使学生进一步巩固本单元所学的知识,加深理解,能运用所学知识和技能,解决有关实际实际问题。
数学分数教案【篇7】
教学目标:
1.知识与技能
明确假分数与带分数、整数之间的关系;
会进行假分数和整数、假分数和带分数之间的互化.
2.过程与方法
经历自主探索假分数和整数互化、假分数和带分数互化的过程,掌握它们互化的方法.
3.情感、态度与价值观
在运用已有知识探索新知识的过程中,获得成功的体验.
教学重点:
会进行假分数和整数、假分数和带分数之间的互化.
教学难点:
会进行假分数和整数、假分数和带分数之间的互化.
教学准备:
幻灯片.
教学过程:
一、铺垫孕伏
教师出示几道口算题,让学生回答.
通过出示几道口算题,明确分数的意义,为下面整数化假分数作铺垫.
1.口算.
0.45÷15;1.53-0.7;0.4×0.8;
4.8×0.02;0.3÷1.5
2.口答.
(1)各表示什么意义?
(2)2个是几分之几?
5个是几分之几?
12个是几分之几?
二、整数化假分数
1.提出“把1、2化成分母是3的假分数”的要求,让学生自主尝试,然后交流结果.
教师提出问题,先鼓励学生自己动脑思考,然后师生一起解决问题,最后教师应引导学生大胆表达自己的想法,明确解答的过程.
师:把1、2化成分母是3的假分数.
学生思考,自主尝试,然后教师在标有1、2、3、4、5的直线上表示出来.
师:说一说你是怎样想的.
生:1里面有3个,是,2里面有(2×3)个,是。
……
2.
教师提出问题.
鼓励学生自己结论.
师:整数怎样化成假分数?
学生相互交流、讨论.
师:以指定的分母作分母,分母与整数的乘积作分子.
3.练一练
熟练掌握转化方法。
(1)把2、4、7分别化成分母是3、2、3的假分数;
(2)把3、4、5化成分母是3的假分数.
师引导学生:整数(0除外)可以化成分母是任意自然数(0除外)的假分数。
三、假分数化整数或带分数
1.出示例题
教师出示例题,师生一起解决.
指导学生写出假分数和带分数,再让学生观察,讨论直线上同一个点假分数和带分数的关系,使学生了解对应的假分数分子除以分母,商是带分数的整数部分,余数是分数部分的学习.
问题:把下面直线上的点用假分数和带分数表示出来.
(展示图片:例题二)
师生一起解决.
师:直线上同一个点假分数和带分数的关系是怎样的?
2.假分数化带分数
1.师:怎样把化成带分数?
(教师用课件“分数的再认识(二)”演示)
2.练习:把、、化成带分数。
方法:假分数分子除以分母,商是带分数的整数部分,余数是分数部分.
3.带分数化假分数
师:怎样把、、化成假分数?
(教师用课件“分数的再认识(二)”演示)
方法:用带分数的分母乘以带分数的整数部分,所得的积再加上分子即得假分数的分子,假分数的分母与带分数的分母相同。
4.试一试
列出式子,让学生解答.
通过“试一试”让学生假分数化成整数或带分数的方法.
问题:把下面的假分数化成整数或带分数
、、、、生:=15÷7=2……1
=24÷8=3
……
四、练一练
让学生自行练习.
第1题,学生独立完成后交流,说一说是怎样想的.
第2题,先让学生理解题目要求,然后自己完成,再全班交流.
第3题,是试一试的变式练习.指导学生弄懂题目要求,再自己涂色.
板书设计:
数学分数教案【篇8】
教学内容:
九年义务教育六年制试用教材第八册第三单元《分数的初步认识》
教学目标:
1、使学生初步认识分数,认识几分之一,几分之几;会正确地读、写分数,知道分数各部分名称。
2、通过演示、操作、观察、比较,培养学生初步的逻辑思维能力。
3,调动学生的积极情感,使学生主动探求,充分发挥学生的主动性。
教学重点:
为什么必须平均分才能用分数表示?
教学过程:
引入:
1、同学们都认识什么数?
2、这节课我们来初步认识分数。
3、猜想:这种数为什么会叫分数?
准备:
(一)分与平均分
问题:6个苹果可以怎样分?
方法:对几种平均分的结果提问。
小结:象这样每份同样多的分法是平均分。
(二)分数的产生
问题:3个苹果可以怎样平均分?
平均分成的每份还能用整数表示吗?
说明:这就要求产生一种新数----分数。
新课:
(一)认识二分之一和二分之二
1、认识二分之一
演示:把一个苹果平均分成2份。
说明:2份中的1份是这个苹果的二分之一。
2、认识二分之二
演示:2份中的每一份都是这个苹果的二分之一。
说明:这样的2份是2个1/2,也就是苹果的2/2。
3、强化平均分
演示:把一个苹果平均分成大小不同的2份。
问题:2份中的1份还是这个苹果的1/2?为什么?
说明:只有平均分成的两份,每一份才能用1/2表示。
4、过渡:
学生动手操作:折出图形纸的1/2;
问题:怎样折出图形纸的1/2?
方法:学生演示折纸的方法和结果。
问题:如果大家继续平均分,能得到正方形的1/4吗?
(二)、认识四分之一和四分之几
方法:学生小组合作,动手操作
展示折纸的结果。
问题:为什么4份中的每一份都是这个正方形的1/4?
它们有什么不同吗?
这样的2份,3份是这个正方形的几分之几?
方法:指一指哪是正方形的2/4;
闭上眼睛想一想3/4是什么样?
举起正方形的4/4;
问题:为什么4/4是整个的正方形?
2/4,3/4,4/4都和谁有关系?
说明:1/4这样的分数很重要。
过渡:如果继续平均分,还能得到几分之几呢?
(三)、认识三分之一和三分之几
出示:一根钢管
问题:要得到钢管的1/3需要怎样平均分?
出示:一个圆
观察:钢管的1/3和圆的1/3
问题:你又发现什么?
说明:把谁平均分了,得到的分数就是谁的。
(四)加深理解
出示:花瓣图,看图说分数
小结:1/2,2/2,1/3,2/3,3/3......都是分数;
几分之一都很重要,有这样的几个几分之一,就是几分之几。
学生举例
(五)看图自学
1,看书:P178页(学生边看边说)
2,说一说:对分数又有了哪些了解?
3,反馈:看图写分数、读分数
(1/9)(5/9)(4/9)(9/9)
巩固练习:
1,判断:图1的红色和绿色部分各是线段的几分之几?
图2中的绿色部分是线段的5/8吗?
2、猜想:出示不平均分的苹果图
问题:每一部分不是苹果的1/2,大概是苹果的几分之几呢?
用什么方法可以验证你的猜想是否准确呢?
学生总结:对分数的初步认识
Yjs21.Com更多幼儿园教案扩展阅读
函数的课件教案精选(8篇)
老师都需要为每堂课准备教案课件,不过教案课件里知识点要设计好。 学生的思维方式和逻辑可以通过课堂反应得出结论,有没有值得借鉴的优秀教案课件素材?下面编辑为您呈送了“函数的课件教案”主题的相关内容,本文供你参考,希望能帮到你!
函数的课件教案 篇1
一、教材分析
(一)内容说明
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。
著名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。
本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排
4.8节教材安排为4课时,我计划用5课时
(三)目标和重、难点
1.教学目标
教学目标的确定,考虑了以下几点:
(1)高一学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;
(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(1)知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法;
(2)能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2.重、难点
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢?
因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;
其二,利用函数的周期性规律,抓住“横向距离”和“k∈Z"的含义,充分结合图象来理解单调性和对称性
二、教法分析
(一)教法说明教法的确定基于如下考虑:
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二)教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(2)为便于课堂操作和知识条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
三、学法和能力培养
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。因此
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
四、教学程序
指导思想是:两条线索、三大特点、四个环节
(一)导入
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质
1.定义域、值域2.周期性
3.单调性(重难点内容)
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
xx教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍
为什么要这样强调呢?
因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
4.对称性
设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
5.最值点和零值点
有了对称性的理解,容易得出此性质。
第二部分————学习任务转移给学生
设计意图:
(1)通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价;
(2)通过学生自主探索,给予学生解决问题的自主权,促进生生交流,利于教师作反馈评价;
(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。
(三)巩固练习
补充和选作题体现了课堂要求的差异性。
(四)结课
五、板书说明既要体现原则性又要考虑灵活性
1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)
2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)
六、效果及评价说明
(一)知识诊断
(二)评价说明
1.针对本班学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。
2.根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。
3.本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。
通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果。
函数的课件教案 篇2
目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,
AB长x(m)123456789
BC长(m)12
面积y(m2)48
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?
在这个问题中,可提出如下问题供学生思考并 回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
5.若设该商品每天的利润为y元,求y与x的函数关系式。
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x (0<x<10)……………………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
y =-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?
(分别是二次多项式 )
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点 ?
让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y= 5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。
函数的课件教案 篇3
一、说教材
1、 地位与重要性
“反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。
2、教学目标
(1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;
(2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;
(3)培养学生发现问题、观察问题、解决问题的能力;
(4)使学生树立对立统一的辩证思维观点。
3、教学重难点
重点是反函数的概念及反函数的求法。理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。
难点是反函数概念的接受与理解。学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。
二、说教法
根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。
引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。
电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。
三、说学法
“授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。
四、说过程
在新课导入、新课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发、引导为教师的责任。
一、新课导入
首先,在导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢?
首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。
这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。
二、新课讲授
在导入的基础上,给出反函数的具体概念。
给出概念后,必须防止学生对于反函数f-1(y)形式的误解(以为是1/f(x))。此外,还要学生理解:最终的表达形式写为y=f-1(x)是顺应习惯,并且也为后面的图象研究提供方便,y实际上是原函数中的x,x是原函数中的y。对于这一问题可以引导学生从图象观察得出。
进一步深化对概念的理解,出示电脑幻灯,设置疑问:(1)反函数是不是函数;(2)反函数有没有三要素?如何确定?
引导学生思索,学生逐渐会认识到:反函数也是函数,其定义域是原函数的值域,对应法则可由原函数得到,值域则是原函数的定义域。
这时,给出电脑动画,指明反函数与原函数的关系。澄清学生对于概念的认识,抓住问题的关键。
但是,具体怎样求一个函数的反函数呢?
这些问题,必须通过实例解决,于是进入例题解答过程。
例1、 求下列函数的反函数。
(1)y=3x-1(x∈R); (2)y=x3+1;
(3)y=(2x+3)/(x-1)(x∈R且x≠1)
通过例1,要使学生明白具体求反函数的过程。以达到突出重点、突破难点的目的。
启发学生:既然反函数也存在三要素,那如何一一求出,得到具体的反函数呢?这时结合第(1)小题,让学生思考问题。引导学生找出关键 通过解关于x的方程,将x用y表达,以得到反函数的表达式。这个表达式中的x、 y表示什么?这和我们通常的函数表达式有什么区别?进而引导学生想到交换x、 y得到我们习惯使用的函数表达式。再考虑:反函数的定义域、值域怎么求?是怎样来的?学生思考后,可得出通过求原函数值域来得到反函数的定义域的方法。
教师板书第(1)小题,学生完成后两题。
此时,引导学生比较三道小题的解题步骤,师生共同小结出求反函数的三部曲:反解(把解析式看作x的方程,求出反函数的解析式)--→互换(求出所给函数的值域并把它改换成反函数的定义域)--→改写(将函数写成y=f-1(x)的形式)。
教师在这一部分教学中,抓住反函数是函数这一本质问题,突出了反函数与原函数之间的联系,给出了具体求解的过程,使学生掌握了重点问题的解决方法。教师以一个个问题来引导学生逐步“发现”解决问题的方法,符合学生的认知水平。在教师创设的问题情境中,学生的认识达到了第一次平衡。
“反函数的概念已经理解,反函数也会求了,任务已基本完成,该休息了”,有的学生会这样想。这时,出示第二道例题,打破平衡,激起学生的疑难。
例2、(1)y=x2(x∈R)的反函数
(2)y=x2(x≥0)的反函数是
(3)y=x2(x
相当一部分同学会按部就班求出第(1)小题的“反函数” y= (x∈R)。这对不对呢?出示电脑动画,引导学生观察图象,从函数的概念出发,必须存在x→y的单值对应,但反过来呢?y→x存不存在单值对应呢?适当的引导提问,使学生抓住了问题的关键:在原函数的定义域内必须存在y→x的单值对应,这是反函数存在的前提。认清这一问题后,引导学生进一步分析,y=x2(x∈R)不存在反函数,在定义域的局部存不存在反函数呢?让学生借助图形发现答案,并且进一步得出y=x2(x≥0),y=x2(x
这样设计的好处是:(1)通过函数图像来研究问题,直观形象,符合学生的认识水平,并且为后续的互为反函数的函数图像关系问题做好铺垫。(2)对于反函数的存在性问题,不能回避,必须使学生理解其内在含义,由具体的二次函数结合图像解决这一问题,可以澄清的学生的疑问,达到教学目标。 $_:7au%X
此时,趁学生对于概念有了一个比较清晰的认识,出示幻灯,从函数概念、反函数的存在性、反函数的求法三方面进行简单的归纳,突出重点,突破难点。
三、终结阶段 Z7
(一)课堂练习
出示电脑幻灯,让学生完成以下练习:
(1)函数y=2|x|在下列哪个定义区间内不存在反函数? ( )
(A)[2,4]; (B)[-4,4] (C)(0,+∞] (D)(-∞,0]
(2)求反函数:y=x/(2x+5),(x∈R且x≠-5/3)
(3)已知y= ,x∈[0,5/2],求出它的反函数,并指明定义域。
第一道题是概念题,使学生对于反函数的概念有更清晰的认识,使学生对于反函数的存在条件认识更深刻。第二道题使学生熟悉反函数的求法,突出重点。第三道题使学生加深对于概念的理解,弄清反函数与原函数的内在关系。
(二)小结归纳
通过对反函数概念和性质的小结,使学生理清这节课的重难点,并使终结阶段的教学更为完整,达到本堂课的教学目标。
让学生做课本P65习题六2、3、5,通过作业反馈学生掌握知识的效果,以利课后解决学生尚有疑难的地方。
布置一道发散性的练习(已知函数y=f(x),(x∈A)是增函数,问:反函数y=f-1(x)单调性如何?图象中如何反映?),进一步深化教学。
总之,在整个教学过程中,我抓住学生的“主体”作用作文章,不浪费任何一个促使学生“自省”的机会,以积极的双边活动使学生主动自觉地发现结果、发现方法。培养了学生的观察分析能力和思维的全面性。具体教学中,教师创设问题情境,学生在这一情境中去讨论分析、探究发现,以符合学生思维的形式发展了学生的能力,达到了教学目标,优化了整个教学。
函数的课件教案 篇4
教学目标:
1.进一步理解函数的表示方法的多样性,理解分段函数的表示,能根据实际问题列出符合题意的分段函数;
2.能较为准确地作出分段函数的图象;
3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.
教学重点:
分段函数的图象、定义域和值域.
教学过程:
一、问题情境
1.情境.
复习函数的表示方法;
已知A={1,2,3,4},B={1,3,5},试写出从集合A到集合B的两个函数.
2.问题.
函数f(x)=|x|与f(x)=x是同一函数么区别在什么地方
二、学生活动
1.画出函数f(x)=|x|的图象;
2.根据实际情况,能准确地写出分段函数的表达式.
三、数学建构
1.分段函数:在定义域内不同的部分上,有不同的解析表达式的函数通常叫做分段函数.
(1)分段函数是一个函数,而不是几个函数;
(2)分段函数的定义域是几部分的并;
(3)定义域的不同部分不能有相交部分;
(4)分段函数的图象可能是一条连续但不平滑的曲线,也可能是由几条曲线共同组成;
(5)分段函数的图象未必是不连续,不连续的图象表示的函数也不一定是分段函数,如反比例函数的图象;
(6)分段函数是生活中最常见的函数.
四、数学运用
1.例题.
例1某市出租汽车收费标准如下:在3km以内(含3km)路程按起步价7元收费,超过3km以外的路程按2.4元/km收费.试写出收费额关于路程的函数解析式.
例2如图,梯形OABC各顶点的坐标分别为O(0,0),A(6,0),B(4,2),C(2,2).一条与y轴平行的动直线l从O点开始作平行移动,到A点为止.设直线l与x轴的交点为M,OM=x,记梯形被直线l截得的在l左侧的'图形的面积为y.求函数y=f(x)的解析式、定义域、值域.
例3将函数f(x)= | x+1|+| x-2|表示成分段函数的形式,并画出其图象,根据图象指出函数f(x)的值域.
2.练习:
练习1:课本35页第7题,36页第9题.
练习2:
(1)画出函数f(x)= 的图象.
(2) 若f(x)= 求f(-1),f(0),f(2),f(f(-1)),f(f(0)),f(f(12))的值.
(3)试比较函数f(x)=|x+1|+|x|与g(x)=|2x+1|是否为同一函数.
(4)定义[x]表示不大于x的最大整数,试作出函数f(x)=[x] (x[-1,3))的图象.并将其表示成分段函数.
练习3:如图,点P在边长为2的正方形边上按ABCDA的方向移动,试将AP表示成移动的距离x的函数.
五、回顾小结
分段函数的表示分段函数的定义域分段函数的图象;
含绝对值的函数常与分段函数有关;
利用对称变换构造函数的图象.
六、作业
课堂作业:课本35页习题第3题,36页第10,12题;
课后探究:已知函数f(x)=2x-1(xR),试作出函数f(|x|),|f(x)|的图象.
函数的课件教案 篇5
各位评委老师,你们好!
我是来自密山市兴凯湖乡中学的一名数学教师,姓名姚宝昌。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。
新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。
一、 教材分析:
1、教材内容所处的地位及作用
本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
在《数学课程标准》中,对于本节内容提出了明确的要求,另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。
2、教学目标:
⑴、知识与能力:
①、能通过函数图象获取信息,发展形象思维。
②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
⑵、过程与方法:
①、在亲身的经历与实践探索过程中体会数学问题解决的办法。
②、初步体会方程与函数的关系,建立良好的知识联系。
⑶、情感态度与价值观:
①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。
②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
3、教学重点、难点及其确立的依据:
由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:
1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。
二、学情状况分析:
1、学生现状:
针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:
⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。
⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。
⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。
⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。
2、知识情况:
本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。
3、预期效果:
学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合” 、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。
另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到最佳效果。
函数的课件教案 篇6
一、说课内容:
苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题二、教材分析:
1、教材的地位和作用这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的'取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
二、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程。
2、从学生活动出发,通过以旧引新,顺势教学过程。
3、利用探索、研究手段,通过思维深入,领悟教学过程四。
三、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件?k值对函数性质有什么影响?
(二)设计意图
复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较。
引入新课函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
看下面三个例子中两个变量之间存在怎样的关系:
例1、(1)圆的半径是r(cm)时,面积s(cm)与半径之间的关系是什么?解:s=πr(r>0)。
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?(三)讲解新课以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。二次函数的定义:形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数叫做二次函数。巩固对二次函数概念的理解:1、强调“形如”,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)3、为什么二次函数定义中要求a≠0?(若a=0,ax2+bx+c就不是关于x的二次多项式了)4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以为零?(四)巩固练习已知一个直角三角形的两条直角边长的和是10cm。(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。(五)小结思考:本节课你有哪些收获?还有什么不清楚的地方?让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。(六)作业布置必做题:正方形的边长为4,如果边长增加x,则面积增加y,求y关于x的函数关系式。这个函数是二次函数吗?在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围?选做题:1.已知函数是二次函数,求m的值?2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象?作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
函数的课件教案 篇7
关于《幂函数》教学设计
一、设计构思
1、设计理念
注重发展学生的创新意识。学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的再创造过程。我们应积极创设条件,让学生体验数学发现和创造的历程,发展他们的创新意识。
注重提高学生数学思维能力。课堂教学是促进学生数学思维能力发展的主阵地。问题解决是培养学生思维能力的主要途径。所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。内容的呈现应采用不同的表达方式,以满足多样化的`学习需求。伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生乐学的余味,学生学习的积极性与主动性在教学中便自发生成。本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。
注重学生多层次的发展。在问题解决的探究过程中应体现以人为本,充分体现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展的教学理念。有意义的数学学习必须建立在学生的主观愿望和知识经验基础之上,而学生的基础知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到发展。
注重信息技术与数学课程的整合。高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。
2、教材分析
幂函数是江苏教育出版社普通高中课程标准实验教科书数学(必修1)第二章第四节的内容。该教学内容在人教版试验修订本(必修)中已被删去。标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。故在教学过程及后继学习过程中,应能够让学生体会其实际应用。《标准》将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已经学习了y=x、y=x2、y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识。现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外应让学生了解利用信息技术来探索函数图象及性质是一个重要途径。该内容安排一课时。
3、教学目标的确定
鉴于上述对教材的分析和新课程的理念确定如下教学目标:
⑴掌握幂函数的形式特征,掌握具体幂函数的图象和性质。
⑵能应用幂函数的图象和性质解决有关简单问题。
⑶加深学生对研究函数性质的基本方法和流程的经验。
⑷培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。
⑸渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。
4、教学方法和教具的选择
基于对课程理念的理解和对教材的分析,运用问题情境可以使学生较快的进入数学知识情景,使学生对数学知识结构作主动性的扩展,通过问题的导引,学生对数学问题探究,进行数学建构,并能运用数学知识解决问题,让学生有运用数学成功的体验。本课采用教师在学生原有的知识经验和方法上,引导学生提出问题、解决问题的教学方法,体现以学生为主体,教师主导作用的教学思想。
教具:多媒体。制作多媒体课件以提高教学效率。
函数的课件教案 篇8
教学目标
知识与技能:
1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点
教学难点
1)重点:画反比例函数图象并认识图象的特点.
2)难点:画反比例函数图象.
教学关键教师画图中要规范,为学生树立一个可以学习的模板
教学方法激发诱导,探索交流,讲练结合三位一体的教学方式
教学手段教师画图,学生模仿
教具三角板,小黑板
学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法
教学过程
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)
内容设计意图
一:课前检测:
1.什么叫做反比例函数;
(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。)
2.反比例函数的定义中需要注意什么?
(1)k为常数,k0
(2)从y=中可知x作为分母,所以x不能为零.
二:激发兴趣导入新课
问题1:对于一次函数y=kx+b(k0)的图象与性质,我们是如何研究的?
y=kx+by=kx
K0一、二、三一、三
b0一、三、四
K0一、二、四二、四
b0二、三、四
问题2:对于反比例函数y=k/x(k是常数,k0),我们能否象一次函数那样进行研究呢?
可以
问题3:画图象的步骤有哪些呢?
(1)列表
(2)描点
(3)连线
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
生:我知道反比例函数的解析式为且k不等于0
生:我知道反比例函数的图象是曲线。
师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?
生:该研究反比例函数图象和性质了。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
三:探求新知
学生思考、交流、回答。
提问:你能画出的图象吗?
学生动手画图,相互观摩。
(1)列表(取值的特殊与有效性)
x-8-4-2-1-1/21/21248
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
议一议
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的.发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交
学生先分四人小组进行讨论,而后小组汇报
做一做
作反比例函数的图象。
学生动手画图,相互观摩。
想一想
观察和的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点
相同点:
(1)图象分别都是由两支曲线组成
(2)都不与坐标轴相交
(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限
四:归纳与概括
反比例函数y=有下列性质:反比例函数的图象y=是由两支曲线组成的。
(1)当k0时,两支曲线分别位于第___、___象限,
(2)当k0时,两支曲线分别位于第___、___象限.
五:课堂练习
(1)
(2)反比例函数的图象是________,过点(,____),其图象分布在___象限;
六:形成性检测
(1)已知函数的图象分布在第二、四象限内,则的取值范围是_________
(2)若ab0,则函数与在同一坐标系内的图象大致可能是下图中的()
(A)(B)(C)(D)
(3)画和的图象
七:反馈拓展
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.
八:作业布置
(1)作反比例函数y=2/x,y=4/x,y=6/x的图象
(2)习题5.2.1
(3)预习下一节反比例函数的图象与性质II
复习上节主要内容
(3分钟)
(5分钟)
运用类比研究一次函数性质的方法,来研究反比例函数图象与性质
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:(1)x取绝对值相等符号相反的数值
(2)x取值要尽可能多,而且有代表性
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)
活动效果及注意事项学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线
(4分钟)
培养学生归纳,语言表达能力
此中注意分类讨论思想的应用
巩固反比例函数图象性质
(2分钟)
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)
巩固作反比例函数图象的步骤,预习下一节课内容
教学反思与检讨:
本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。
由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。
在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。
反比例函数的图象与性质
一:画出的图象
(1)列表(取值的特殊与有效性)
x-8-4-2-1-1/21/21248
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
注:(1)x取绝对值相等符号相反的数值
(2)x取值要尽可能多,而且有代表性三:练习
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
二:反比例函数的图象y=是由两支曲线组成的。
(1)当k0时,两支曲线分别位于第一、三象限,
(2)当k0时,两支曲线分别位于第二、四象限.
初三数学课件教案精选(5篇)
幼儿教师教育网编辑特别从网络上整理了初三数学课件教案,我们后续还将不断提供这方面的内容。老师职责的一部分是要弄自己的教案课件,又到了老师开始写教案课件的时候了。 设计精良的教案和课件能够提高课堂教学的质量。
初三数学课件教案 篇1
一、教学目标
1、理解二元一次方程及二元一次方程的解的概念;
2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4、在解决问题的'过程中,渗透类比的思想方法,并渗透德育教育。
二、教学重点、难点
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段
通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
四、教学过程
1、情景导入:
新闻链接:x70岁以上老人可领取生活补助。
得到方程:80a+150b=902880、
2、新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:
(2)课本P80练习2、判定哪些式子是二元一次方程方程。
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
并提出注意二元一次方程解的书写方法。
3、合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程x+2y=8。
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4、课堂练习:
(1)已知:5xm—2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;
5、你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。
6、课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
7、布置作业。
初三数学课件教案 篇2
第1章反比例函数
1.1反比例函数
教学目标
【知识与技能】
理解反比例函数的概念,根据实际问题能列出反比例函数关系式。
【过程与方法】
经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。
【情感态度】
培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值。
【教学重点】
理解反比例函数的概念,能根据已知条件写出函数解析式。
【教学难点】
能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
教学过程
一、情景导入,初步认知
1、复习小学已学过的反比例关系,例如:
(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)
(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)
2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?
【教学说明】对相关知识的复习,为本节课的学习打下基础。
二、思考探究,获取新知
探究1:反比例函数的概念
(1)一群选手在进行全程为3000米的_比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式。
(2)利用(1)的关系式完成下表:
(3)随着时间t的变化,平均速度v发生了怎样的变化?
(4)平均速度v是所用时间t的函数吗?为什么?
(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?
【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数。其中x是自变量,常数k称为反比例函数的比例系数。
【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式。探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围。由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.
【教学说明】教师组织学生讨论,提问学生,师生互动。
三、运用新知,深化理解
1、见教材P3例题。
2、下列函数关系中,哪些是反比例函数?
(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;
(2)压强p一定时,压力F与受力面积S的关系;
(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系。
(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式。
分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0)。所以此题必须先写出函数解析式,后解答。
解:
(1)a=12/h,是反比例函数;
(2)F=pS,是正比例函数;
(3)F=W/s,是反比例函数;
(4)y=m/x,是反比例函数。
3、当m为何值时,函数y=是反比例函数,并求出其函数解析式。分析:由反比例函数的定义易求出m的值。解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=。
4、当质量一定时,二氧化碳的体积V与密度ρ成反比例。且V=5m3时,ρ=1.98kg/m3
(1)求p与V的函数关系式,并指出自变量的取值范围。
(2)求V=9m3时,二氧化碳的密度。
解:略
5、已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式。
分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式。
解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.
【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式。
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结。教师作以补充。
课后作业
布置作业:教材“习题1.1”中第1、3、5题。
初三数学课件教案 篇3
活动目的:
1、使学生能结合具体内容初步了解小数的含义,会认、读、写小数部分不超过两位的小数。
2、使学生能结合具体内容比较一位、两位小数的大小。
3、使学生会计算一位小数的加减法。
教材说明
1、本单元的内容结构及其地位作用。
本单元的内容主要包括认识小数和简单的小数加减法两部分。
这部分内容结构如下:
这部分内容的教与学,是在学生认识了万以内的数,会计算三位数的加减法,初步认识了分数,会计算简单的同分母分数加减法,并且学习了常用计量单位的基础上进行的。学习这部分内容既可以在实际生活中应用,又能为今后系统地学习小数打下初步基础。
2、教材编写特点。
(1)联系儿童的生活认识小数。
小数在现实生活中有着广泛的应用,即便是儿童,也经常会接触到一些小数。教材充分利用了小数与日常生活的密切联系,创设了较为丰富的,贴近儿童生活实际的情境,让学生在熟悉的情境中感悟小数的含义,比较小数的大小,学习小数的加减计算。可以说,本单元的每一个知识点,都充满了生活的气息。
(2)以元、角、分等常用计量单位的知识作为学习小数的形象支撑。
为了适应儿童的年龄特征,使学生易于接受,本单元的小数都结合元、角、分或常用的长度、质量单位出现,以便于学生联系实际,来初步认识小数的含义,进行小数大小比较和学习小数加减法。到以后系统学习小数时,再作抽象。
(3)引导学生探究简单的小数加减法。
小数加减法的算理和算法与整数加减法联系紧密,这是教师引导学生探究小数加减法的有利条件。据此,教材创设的问题情境(文具商店一角)具有一定的开放性,学生可以看图提出很多小数加减计算的问题,一般学生都能运用原有知识,尝试计算,得出答案。
教学建议
1、调动学生的生活经历和已有知识,促进知识经验的迁移。
初三数学课件教案 篇4
教学目标:
知识目标1.经历探索圆的中心对称性和旋转不变性的过程;.
2.理解圆心角的概念,并掌握圆心角定理。
3.理解“弧的度数等于它所对的圆心角的度数”这一性质。
能力目标体验利用旋转变换来研究圆的性质的思想方法,进一步培养学生观察、猜想、证明及应用新知解决问题的能力。
情感目标用生活的实例激发学生学习数学的浓厚兴趣,体验数学与生活的密切联系,坚定学好数学的信心,进一步培养学生尊重知识、尊重科学,热爱生活的积极心态。
教学重点:圆心角定理
教学难点:根据圆的旋转不变性推导出圆心角定理
教学过程:
一、设疑引新
你可曾想过:水杯的盖子为什么做成圆形?利用了圆的什么性质?
前面我们已经探究了圆的轴对称性,利用这一性质我们得到了垂径定理及逆定理,它帮助解决了圆的许多问题,那么圆还有哪些性质呢?
二、探究新知
1、圆绕圆心旋转180°后,仍与原来的圆重合——圆是中心对称图形,圆心是对称中心。
2、圆绕圆心旋转任意一个角度后,仍与原来的圆重合——圆的旋转不变性。集体备课3.1《圆心角》解决课前疑问。
3、顶点在圆心的角叫圆心角。如图,集体备课3.1《圆心角》就是一个圆心角。判别下列各图中的角是不是圆心角,并说明理由。
4、探究圆心角定理:
集体备课3.1《圆心角》(1)实验操作:设集体备课3.1《圆心角》,把∠COD连同集体备课3.1《圆心角》、弦CD绕圆心O旋转,使OA与OC重合,结果发现OB与OD重合,弦AB与弦CD重合,集体备课3.1《圆心角》和集体备课3.1《圆心角》重合。
(2)让学生猜想结论,并证明。
(3)同圆变等圆,结论成立。
5、圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等(补充)。
几何表述:∵∠AOB=∠COD∴集体备课3.1《圆心角》=集体备课3.1《圆心角》,AB=CD,OE=OF
分析定理:。去掉“在同圆或等圆中”定理还成立吗?
反例:两个同心圆,显然弦AB与弦CD不相等,集体备课3.1《圆心角》与集体备课3.1《圆心角》不相等。
集体备课3.1《圆心角》提醒学生注意:定理的成立必须有大前提“在同圆或等圆中”。
6、应用新知:
例已知:如图,∠1=∠2.求证:集体备课3.1《圆心角》
【变式】已知:如图,∠1=∠2.
求证:AC=BD.,∠OBC=35°,
求弧AB的度数和弧BC的度数。
9、拓展提高:
集体备课3.1《圆心角》三、课堂小结
通过本节课的学习,你对圆有哪些新的认识?
1.圆是中心对称图形,圆具有旋转不变性。
2.、圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等
3、弧的度数:
1?的圆心角所对的弧叫做1?的弧。
弧的度数等于它所对的圆心角的度数。
四、作业布置
作业本3.3.1节
7、再探新知:你能将⊙O二等分吗?
用直尺和圆规你能把⊙O四等分吗?
你能将任意一个圆六等分吗?
若按刚才这种方法把一个圆分成360份,则每一份的'圆心角的度数是1?,因为相等的圆心角所对的弧相等,所以每一份的圆心角所对的弧也相等。
我们把1?的圆心角所对的弧叫做1?的弧。弧的度数等于它所对的圆心角的度数。
集体备课3.1《圆心角》写法:若∠COD=80°,则CD的度数是80°
注:不可写成集体备课3.1《圆心角》=∠COD=80°,但可写成集体备课3.1《圆心角》=m∠COD=80°
8、巩固新知:如图:已知在⊙O中,∠AOB=45°
初三数学课件教案 篇5
教学目标:
1、进一步掌握推理证明的方法,发展演绎推理能力。
2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。
3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教学过程:
引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。
定理:直角三角形两条直角边的平方和等于斜边的平方。
如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,
延长CB至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE,则△ABC≌△BED。
∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等)。
∴四边形ACDE是直角梯形。
∴S梯形ACDE=(a+b)(a-b)=(a+b)2
∴∠ABE=180°-∠ABC-∠EBD=180°-90°=90°
AB=BE
∴S△ABC=c2
∵S梯形ACDE=S△ABE+S△ABC+S△BED,
∴(a+b)2=c2+ab+ab即a2+ab+b2=c2+ab+ab
∴a2+b2=c2
反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?
已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC是直角三角形。
证明:作出Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则
A’B’2+A’C’2=B’C’2(勾股定理)
∵AB2+AC2=BC2,A’B’=AB,A’C’=AC,
∴BC2=B’C’2
∴BC=B’C’
∴△ABC≌△A’B’C’(SSS)
∴∠A=∠A’=90°(全等三角形的对应角相等)
因此,△ABC是直角三角形。
定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。
一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
近似数课件教案8篇
优秀的人总是会提前做好准备,幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了将学生的效率提上来,老师会准备一份教案,有了教案的支持可以让同学听的快乐,老师自己也讲的轻松。幼儿园教案的内容具体要怎样写呢?或许你需要"近似数课件教案8篇"这样的内容,供大家借鉴和使用,希望大家分享!
近似数课件教案 篇1
【同步教育信息】
一.本周教学内容:
1、除数是小数的小数除法
2、求商的近似值
二.教学重点和难点:
1、除数是小数的小数除法
教学重点:理解小数除法的算理及转化的数学思想。
教学难点:建立转化的数学思想。
2、求商的近似值
教学重点:求商的近似值的基本方法。
教学难点:灵活求商的近似值。
三.知识简要介绍:
除数是小数的小数除法解决问题的关键是要把除数是小数的小数除法转化成我们以前学习过的除数是整数的小数除法进行计算,转化后的计算方法同我们前面学习的计算方法是相同的。
求商的近似值就是根据实际的需要,用四舍五入的办法保留一定的小数位数。
[知识教学]
一、除数是小数的小数除法
(一)学习计算的方法:
例1:新学期小刚买了几支铅笔,每枝铅笔0.5元,共花去4.5元,小刚买了几支同样的铅笔?
4.50.5=9(支)
计算的方法:
我们以前研究过除数是整数的小数除法,只要把除数转化成整数我们就会进行计算了。把0.5转化成整数5,扩大了10倍,根据商不变的性质,要想商不变,被除数4.5也要扩大10倍成为45,只要计算出455的商,这个商也就是4.50.5的商。
例2:0.8640.36=2.4
提示:在计算除数是小数的除法时,需要以谁为标准进行转化?(除数)
小结:计算除数是小数的除法时,我们应该怎么做?
例3:0.30.25=1.2
提示:
当被除数根据除数的变化移动小数点进行倍数扩大的时候,会出现位数不够的现象,需要在被除数的末尾用0来补足。
小数除法计算的步骤:
1、看清楚除数有几位。
2、把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数的位数不足时,用0补足。
3、按照除数是整数的小数除法的方法计算。
(二)研究被除数与除数之间大小变化的规律。
(1)81.99=(2)2725=
81.90.9=270.25=
解答:81.99=9.12725=1.08
81.90.9=91270.25=108
结论:
当被除数大于0,除数大于1的时候,商比被除数小。
当被除数大于0,除数小于1的时候,商比被除数大。
二、求商的近似值
1、准备题目:
保留整数保留一位小数保留两位小数保留三位小数
0.9547
10.2995
怎样取一个数的近似值?
方法:根据要求看它的下一位进行四舍五入。
2、解决问题。
一盒笔有12支,售价62.55元,平均每支笔多少元?
62.55125.21(元)
思考:求商的近似值和求积的近似值的方法有什么相同点和不同点。
4.972.311.43(保留两位小数)
3、商5试除法。
方法:商和被保留的位数同样多的时候,试商5可以知道,是四舍还是五入了。
4、去尾法和进一法
例1:学校为同学们做校服,每套校服用布2.6米,150米可以做多少套校服?
1502.65(套)
答:150米可以做5套校服。
分析:本来按照四舍五入的方法,十分位的数是7应该向前一位进1,答案是可以做6套衣服。但是与实际的生活相联系,少一点布也做不成一套衣服,所以答案就是5套,也只能是5套。
例2:每个油桶最多装油2.5千克,要装油36千克,至少需要这种油桶多少个?
362.515(个)
分析:这道题目计算的是需要多少个油桶,因为油桶的个数必须是整的个数,所以要根据十分位上的数字进行保留,十分位上的数字是4,按照四舍五入的原则,应该舍去,但再与实际相联系,即使是再少的油也需要装在一个油桶中,所以反而要进一。
近似数课件教案 篇2
教学内容:
商的近似值
教学重点:
求商的近似值的方法
教学难点:
求商的近似值除到哪一位及在实际生活中应用。
教学目标:
使学生掌握求商的近似值的方法,并会求商的近似值;
让学生体会到求商的近似值的,要性,能根据生活世界灵活去商的近似值;
培养学生积极创新思维,培养小组作精神,增强数学应用交织及环保意识。
教学过程:
一、导入
出示四副图:反映经济发展带来环境的破坏。
欣赏了这四副图,你要发表感想吗?
师小结:是啊,我的环境污染太严重了,国庆期间,老师特地去了套环抱局,了解到,就这么一节7号电池大约可以污染300吨水。相当于我们这个多媒体教师那么大的一个池塘的水。
二、新援
列1我们的太糊有水45.7亿吨,如果湖州梯田所生产的废电池全部投入水中会污染0.7亿吨谁,照这样计算,多少天就会让建我们失去美丽的太糊?、
(1)自己算一算,指名扳滨。
(2)计算的时候,一切顺利吗?那怎么办呀?
(3)我们来看xxx是怎么想的,你能告诉大家吗?
(4)奥,除不尽了,在世界生活中,我们不需要太多的小数位数,这是我们就可以取商的近似值。(板书)
(5)那么听了他的想法,结合他的竖式,你有什么好的建议要送给他呢?
保留整数,只要除到十分位。(板书)
(6)如果不注意环抱的话,大约只要70天我们就会失去我们美丽的太户,废电池的危害可大了,那么大家更交做一个环保小卫士,一起去收集废电池吗?那么,谁来组织这个活动呢?好,其他同学七人一组,迭好你们的组长。
好了,我们来看:、
列2:假如我们智力15.2平方米的城镇土地上一共有废电池188千克,那么平均每平方千米土地上有多少千克呢?(得数保留1位小数)
(1)看了题目,怎么列式?188梅15.2
(2)大家来算一算,指名扳演,、
(3)你算的这么快,有什么秘密吗?
保留一位小数,只要除到百分位
小结:我们刚才都对商取了近似值,你是怎么求商的近似值的呢?指名说说,说给同桌听听,出了:小数除法,需要取商的近似值时,一般先除到比需要保留的小数位数多一位,再按照四舍五入法取商的近似值。
三、练习
大家都会求商的近似值了,现在来算算你的任务是多少?
出示:镇政府要把收集188千克废电池这个环保任务我们班57位同学,你一个人要收集多少千克,才能完成任务?(得数保留2位小数)
2、我们班57位同学一起保护了15.2平方千米的土地,平均每人保护了多少土地呢?(得数保留3位小数)
(1)看完了题目,你发现题目中有什么要求?你有什么话要提两道吗?
保留2位小数,除到十分位,保留三位小数,除到万分位。
(2)那么怎么样列式呀?
1885715.257
(3)自己算一算,指名扳滨
四、发展练习:
我们学校才0.02平方千米,你一个人就相当于保护了4个字扳,真了不起!
但是,在活动过程中有一个组发生了争执,如果这样的事发生在你身上,你会怎么做?大家口渴了吧,要去买矿泉水喝,小店里只大瓶的矿泉水。
出示:大瓶矿泉水标价4.7元,而我们只有组长身上的13.5元,有人说:买2瓶吧!有人说:买3瓶吧!你说呢?
1自己算一算,指名扳滨
2马上组长召集开个会,商堂以下,某某组,你可以出来,去看看多个组的会议情况。
3先来听听大家的,指名说,有不同意吗?那你能用你的道理说服对方采约你的意见吗?真行,理由充分不要听他的!
4再来看黑板上,有没有地方要提的他的?(除到哪一位)只要除带个位,人付的,我们得把钱还给他。
出示:我们7人小组,平均每人要给组长多少钱呢?
(1)先来看看你们组付了多少钱
2瓶3瓶
24.7=9.4(元)13.5元
(2)算一下你们组的。(指名扳滨)
(3)检查反误:xx组长,你觉得满意吗?
5、:xx组长,你觉得今天的活动,大家完成得怎么样?
大家都干得很出色,我想是有了我们这么多能干的环保小位士,才被评上了全国文明城镇,那么通过今天的活动,你得到了什么呢?
六作业练习:
书上P421、2、3中的分别选一题想做的。
板书设计:
商的近似值
48.70.7=70天保留整数,除到十分位保留一位小数,除到百分位
近似数课件教案 篇3
教学目标:
1.使学生掌握求一个小数的近似数的方法.
2.能正确地用“四舍五人法”求近似数.
3.使学生理解保留小数位数越多,精确程度越高.
教学重点:
使学生理解取近似值对结果的精确程度的影响.
教学难点:
理解保留小数位数越多,精确程度越高.
教学方法:
探究交流法
教学准备:
多媒体课件
课时课型:
1课时 新授课
教学过程:
(一)、创设情境
1.出示情境图,电子秤上显示的数据和售货员的话,提出疑问怎么会不一样?引出“四舍五入法”
2.引出近似数,复习整数求近似数。
(二)探究交流
1.出示情境图,在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。提出0.984的近似数是多少?小组讨论后指名汇报。
(根据学生汇报现场操作展示在多媒体PPT中,插入函数能在播放时在方框里输入学生汇报结果,能及时将学生的想法展现在课件上)
2根据汇报结果,分别具体探讨保留两位小数的近似数,保留一位小数,保留整数后的近似数。并说一说操作的过程。
3、强调取近似数的要求不同表示方法
4、小组探讨1与1.0的精确度
5、引导通过线段图理解保留一位小数是1.0,小数末尾的0,应当保留,不能去掉。
6、总结:刚才是利用什么方法求0.984的近似数?独立完成想一想后在小组中交流,找不同说原因。
(三)巩固练习
1、选择,学生独立完成,指名汇报
(1)保留( )位小数,表示精确到十分位。
①一位 ②两位 ③三位
(2)如果要求保留三位小数,表示精确到( )位。
①分 ②百分 ③千分
2、求下面小数的近似数
(1)保留两位小数
0.256 12.006 1.0987
(2)精确到十分位
3.72 0.58 9.0548
(选两组,整组4人一起在电脑前讨论后,将本组答案用电脑操作展现在课件上放映呈现给大家)
3、按要求填出表中的近似数
4、拓展题
四、全课总结
1、数学课将结束了,你有哪些收获?在哪方面还需努力?
2、今天我们学习的是课本73页的知识,打开课本,认真看一看课本,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。
课后作业: 1.从课后习题中选取;
2.完成练习册本课时的习题
板书设计:
求一个小数的近似数
0.984≈0.98 0.984≈1.0 0.984≈1
小于5,舍去 大于5,向前一位进1 大于5,向前一位进1
表示近似数的时,0不能去掉
课后反思:
近似数课件教案 篇4
教学内容:《近似数与有效数字》是九年义务教育冀教版七年级数学第三章第三节 (1课时)
教材分析:《近似数与有效数字》是九年义务教育七年级数学人教版《有理数》这一章中的一节课,通过教学,要求学生知道近似数与有效数字的意义;能说出近似数,精确到哪一位,有几个有效数字;能按要求求或保留近似数与有效数字。
学情分析:这节课学生对"零什么时候是有效数字,什么时候不是有效数字"及对"四舍五入进位时出现零的情况"容易出错,要反复强化。
教学目标:
1.理解精确度和有效数字的意义,要能准确第说出精确位及有几个有效数字。
2.按要求进行四舍五入取近似数。
教学理念:
我进行教学设计时主要考虑以下几点:
1、数学教学是数学活动的教学,是师生之间、学生之间交流互动与共同发展的过程。
2、培养数学来源于实践,而又作用于实践的情感。
教学过程:
一、新课引入
我们常会遇到这样的问题:
(1)初一(4)班有42名同学;
(2)每个三角形都有3个内角。
这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:
(3)我国的领土面积约为960万平方千米;
(4)王强的体重是约49千克。
960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数。
我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米。
王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克。
我们把象960万、49这些与实际数很接近的数称为近似数,在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是就精确度的问题。
二、新课讲解
1、概念
利用电脑设备:讲述老博士想分苹果的故事,同时引出课题。
3个人分10个苹果,如何分?
3 =3.33333333
若结果取到3,叫精确到个位
若结果取到3.3叫精确到十分位
若结果取到3.33叫精确到百分位
若结果取到3.333叫精确到千分位
……
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边第一个不是0的数起,到精确到的数为止,所有的数字都叫做这个数的有效数字
象上面我们取3.333为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字3、3、3、3。
2、例题
例1 按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.015 8(精确到0.001);
(2)30 435(保留3个有效数字);
(3)1.804(保留2个有效数字);
(4)1.804(保留3个有效数字)。
解:(1)0.015 8≈0.016;
(2)30 435≈3.04×104;
(3)1.804≈1.8;
(4)1.804≈1.80
注意:(2)不能写成30 400,这样是有5个有效数字,像这样的数保留几位有效数字一般要用科学计算法,或3.04万。
例2 下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?
(1)132.4;(2)0.0572;(3)2.40万
解:(1)132.4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;
(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2;
(3)2.40万精确到百位,共有3个有效数字2、4、0。
注意 由于2.40万的`单位是万,所以不能说它精确到百分位。
注意 (1)例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉。
3、课堂练习
1.请你列举出生活中准确值和近似值的实例.
2.下列各题中的数,哪些是精确数?哪写是近似数?
(1)东北师大附中共有98个教学班;
(2)我国有13亿人口.
3.用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148 (精确到千分位);
(2)1.5673 (精确到0.01);
(3)0.03097 (保留三个有效数字);
(4)75460 (保留一位有效数字);
(5)90990 (保留二位有效数字).
4.下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?
(1)54.8;(2)0.00204;(3)3.6万.
课堂练习答案
1.略.
2.(1)精确值;(2)近似值.
3.(1)0.65148 ≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310;(4)75460≈8×104;(5)90990≈9.1×104.
4.(1)精确到个十分位,有3个有效数字;(2)精确到千万分位,有3个有效数字;(3)精确到千位,有2个有效数字.
4、小结
1、 有效数字、精确度的意义。
2、 实际生活中遇到的数大部分是近似数
3、要注意应用。
5、课后作业
(一)、书本上作业(略)
(二)、补充作业
1.下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?
(1)32; (2)17.93; (3)0.084; (4)7.250;
(5)1.35×104; (6)0.45万; (7)2.004; (8)3.1416.
2.23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?
①23.04 ②23.06 ③22.99 ④22.85
课后选作题答案
1.(1)精确到个位,有两位有效数字;
(2)精确到百分位,有四位有效数字;
(3)精确到千分位,有两位有效数字;
(4)精确到千分位,有四位有效数字;
(5)精确到百位,有三位有效数字;
(6)精确到百位,有两位有效数字;
(7)精确到千分位,有四位有效数字;
(8)精确到万分位,有五位有效数字.
2.②和④.
近似数课件教案 篇5
一说教材
本节教材是人教版七年级上册第一章第五节的内容,将从生活实际入手,根据自己已有的生活经验,观察身边熟悉的事物,收集一些数据引入近似数的研究。
二教学目标
1了解近似数和精确度的概念。
2能按要求用四舍五入法取近似数。3体会近似数的意义及在生活中的应用
三教学重点和难点
能说出一个近似数的精确度;能按照要求取一个数的近似值
四教学方法
通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极思考,教学环节的设计与展开,都以问题的解决为中心,使教学过程成为教师指导下的一种自主求知的活动过程,在解决问题的过程中获得新知。
五教学设计过程
(一)创设情境,提出问题
问题1:(1)我班有__名学生,__名男生,__ 名女生;
(2)我今年 岁。
(3)我的体重约为__千克,我的身高约为__;
(4)我们的数学课本有 页
(5)量一量我们的.数学课本的长度是 厘米,宽度是 厘米设计说明
提出现实生活中的实际问题,根据自己已有的生活经验观察身边熟悉的事物,收集一些数据,吸引学生注意力,激发学习兴趣,自然引入新课。
以学生熟悉的数据引入,使学生认识到生活中存在着准确数和近似数。
问题2:在这些数据中,那些数是与实际接近的?哪些数据是与实际完全符合的?
师生共同完成:
与实际接近的数就是我们今天要研究的近似数。
你还能举出准确数与近似数来吗?生活中哪些方面用到近似数?
设计说明
在了解近似数的概念后,教师提出这样的问题,使学生认识到生活中很多情况用到近似数,有时是因为客观条件无法或难以得到准确数,如:我国人口数时刻在变化,无法得到准确数,有时是实际问题不需要得到准确数。
(二) 探索活动
1、某班约50人,与准确数54人的误差是多少?
2、为什么产生了这个误差?
师生讨论以后得出是因为精确度的问题。近似数与准确数的接近程度,用精确度来表示。
54精确到个位,而这里的50是精确到十位。设计说明
使学生明白近似数的精确度。 近似数与准确数的接近程度,用精确度来表示。
3、按四舍五入对圆周率=3.1415926p取得的近似数精确到哪一位?
设计说明
学生感受四舍五入取得的近似数是精确到哪一位,即指出精确度。
(三)、例题教学
例1.小亮用天平秤一罐头的质量为2.026kg请按下列要求去近似值,(1)精确到0.01kg,(2)精确到0.1kg,(3)精确到1kg
2.0后面的0能去掉吗?近似数0.1与0.10有区别吗
例2、用四舍五入法,按要求对下列取近似值,并用科学记数法表示
(1)某人一天饮水1890ml(精确到1000ml)
(若近似成20xxml,你认为正确吗?近似数20xx精确到哪一位?这与精确到1000ml矛盾,那该如何表示呢?2千或2×103,当这个数比较大时,第一种表示方法方便吗?)
(2)地球上七大洲的总面积约为149480000km2(精确到10000000km2)(3)人的眼睛可以看见的红光的波长为0.000077cm(精确到0.00001)
这是以实际为背景的题目,说明生活中有很多近似数,这里要用科学记数法来表示近似数,或其他方法表示,教师可适当点拨,做好知识的拓展延伸。
例3、用计算器计算(精确到0.01)
(四)、随堂练习
1、说说哪些是准确数?哪些是近似数?⑴某词典有1752页。⑵量杯里有水50ml。
⑶女子短跑100m世界记录为10.49s。⑷世界人口为61亿。
2、用四舍五入法对下列各数取近似数:(1)0.00356(精确到万分位);(2)61.235(精确到个位);(3)1.8935(精确到0.001);(4)0.0571(精确到0.1)。(5)0.0239(精确到0.001);(6)414.45(精确到个位);(7)0.0571(精确到千分位);(8)23.45(精确到个位);3、指出下列近似数精确到哪一位?(1)13亿;(2)0.36万;(3)2.3×108;(4)23.56亿;(5)2.9和2.90
(五)、总结
这节课你有何收获?
六、评价与反思
1、本节课以学生课前收集的生活数据引入,使学生获得直观的经验,认识到数学来源于生活,认识到生活中存在着准确数和近似数,在了解了近似数后,启发学生“生活中还有什么地方用到近似数?”并通过教师自己设计的情境使学生认识到有时是因为客观条件或难以得到准确数,有时是实际问题无法得到准确数。
2、拓展练习以生活为背景,不过数据有些大,学生易出错特别是要用到科学记数法,教师要做好点拨,讲解清楚。
3、鼓励学生去查资料。收集数据,培养数感。
近似数课件教案 篇6
一、问题的提出
《四舍五入求近似数》这节课的知识目标是“结合具体情境理解近似数的意义,理解和掌握用‘四舍五入’法求近似数的方法”。在达成知识目标的过程中,渗透数形结合思想和模型化思想,培养学生推理能力。本课的教学难点主要集中在两个方面:
一是由于数目较大,离学生的现实生活较远,学生对“四舍五入法”的学习往往感到比较抽象。
二是如果仅仅把“四舍五入法”局限在对整万数、整亿数的估计,学生容易形成点状的知识,很难从整体上把握四舍五入的方法,也就不能把握“四舍五入法”的本质和规律,即“四舍五入法”求近似数时要看哪个数位,为什么四及四以下要舍、五及五以上要入?
二、解决问题的思考
针对上述难点一的解决方法,我认为:从学生已有的经验出发去寻找教学的切入点。学生在万以内数的认识和数的运算学习时,就已经有“四舍五入法”的经验积累,只不过没有归根概括提炼出“四舍五入法”这个抽象名称而已。学生的这些个体经验不仅为抽象的“四舍五入法”的学习提供了理解概念内涵的感性支撑,而且还提供了丰富概念内涵的基础性资源。因此,可以从学生这些感性的个体经验出发去寻找教学的切入点,在学生的个体经验与抽象的'“四舍五入法”之间搭建起沟通的桥梁。
针对上述难点二的解决思考:我认为一是可以引导学生从感性的知识出发,经历“四舍五入法”的归纳、概括、提炼和抽象命名的形成过程,从而了解和把握“四舍五入法”的来龙去脉,真正做到知其然而知其所以然。二是采用数形结合的方法,用数轴来辅助教学,化抽象为直观。
三、教学过程设计
(一)创设情境,理解近似数的意义及必要性。
1、出示教材中的情境图,学生阅读后,通过问题“观察上面的几组数,你有什么发现?”引导学生发现这些数的共同特点,引出近似数。
2、让学生找找日常生活中的近似数,联系学生已有经验,增进对近似数意义的理解,体验近似数产生的必要性。
最后小结:生活中一些事物的数量,有时不需要精确地表示出来,用近似数表示更方便。
(二)借助素材,探究“四舍五入法”求近似数的方法
引入环节:从学生的感性认识和经验出发,了解估“整十数”看个位。
教师提出问题:一棵大树高约30米。这棵大树实际高多少米可以估计成30米?你能有序地说出这些数吗?
学生有序说出后,再让学生观察并进行分类,根据学生的回答教师板书:25~2931~34并引导学生在数轴上表示如下:
30
20
40
25
35
师问:25、26、27、28、29这些数都是二十几,为什么约等于30?
生可能:因为它们离30比离20更近。
师问:31、32、33、34这些数都是三十几,为什么也约等于30?
生可能:因为它们离30比离40更近。
此时,学生在根据已有经验,再借助数轴的直观,可以初步感知以5为分界线来估数的特点。
师生把刚才的结论简单地整理如下:
估整十数
十位
个位
2
大于等于5
3
小于等于4
第一环节:发现估“整百数”看十位的规律,教给学生发现的方法结构。
紧接上个环节,教师提出问题:什么样的数可以估计成300?
能有序地分段写出这些数吗?可以像老师这样借助数轴来找一找!
教师提出大问题,充分放手让学生找数。此时学生的思维可能是凌乱的散点状态,无法有序地分段写出所有可以估成300的数;也可能有学生能有序地找,但出现遗漏或重复的现象,如只找到295~304;或260~270,270~280,280~290,……,320~330,330~340。教师及时捕捉学生的思维动向,选取有代表性的几种做法进行交流。
通过课前学情调查,由于学生在二年级学万以内数的近似数时都是找最接近的数,所以大多数学生仅仅找出295~299,301~304这些数,这是学生最原始的思维状态,所以我们的交流就从295-304开始。
出示数轴,引导学生从数轴上找出295-304这些数的位置。
300
200
400
为了更准确地找出295所在的位置,我们需要再分,标出数据,如
300
200
400
210
220
230
240
250
260
270
280
290
320
330
340
350
360
380
390
370
310
问:这些都可以估成300吗?
学生可能回答:可以,但还没找全。学生进一步补充。
教师引导学生再对这些想法进行辨析比较,在辨析中逐渐帮助学生明确思路,如学生找到25□~299,教师可以追问:25□~299的这些数都是200多,为什么也能估成300?
生可能发现,它们最接近的整百数是300,或者说这些数在数轴上比200~300的一半要多。
同样方法引导学生找出301~349这些数,逐渐帮助学生形成正确的认识:
251~299、301~349.
300
200
400
210
220
230
240
250
260
270
280
290
320
330
340
350
360
380
390
370
310
当百位上是2时,要想估成300,十位上的数字要大于或等于5;当百位上是3时,要想估成300,十位上的数字要小于或等于4。教师进一步引导思考:个位上的数字呢?如果学生一时难以概括,可举例子,如251可估成那个整百数?252呢?253?259?通过举例和借助数轴学生会发现:251~259,无论个位上的数字是几,这个数都可以估成300。同样,260~269,270~279,280~289,290~299,301~309,310~319,320~329,330~339,340~349.这些数也可估成300。学生发现:估成与个位上的数字无关。教师再把学生的思维过程进行简单的整理和记录如下:
估300
百位
十位
个位
2
大于等于5
任意数
3
小于等于4
任意数
师举例:476接近哪个整百数?生回答并阐明理由;再请学生举一个三位数,请同学们判断接近哪个整百数。
这样通过举例,学生发现:估整百数都合这一规律,即:
估整百数
百位
十位
个位
2
大于等于5
任意数
3
小于等于4
任意数
也就是,估整百数时,要看十位上的数字,与个位上的数字无关。
第二环节:发现估“整千数”看百位、估“整万数”看千位的规律,学生运用方法结构自主发现。
教师提出问题:什么样的数可以估计成3000、30000?你能有序地分段写出这些数吗?如果有困难,还可以借助数轴来找一找!
由于结构相同,可以采取同桌分工合作的方式,每人分别研究其中一种情况然后互相交流。
集体交流,课件出示数轴,让学生在数轴上找出这些数的范围,并借助数轴的直观来体验为什么这些数都接近3000.
3000
20xx
4000
2500
3500
2500~2999
3001~3499
同样方法可得到估成30000的数的范围。
30000
20000
40000
25000
35000
25000~29999
30001~34999
对以上规律进行比较和概括,学生在表格上自己整理:
估整千数
千位
百位
十位
个位
2
大于等于5
任意数
任意数
3
小于等于4
任意数
任意数
估整万数
万位
千位
百位
十位
个位
2
大于等于5
任意数
任意数
任意数
3
小于等于4
任意数
任意数
任意数
通过整理,学生进一步发现:估整千数时,只看百位;估整万数时,只看千位。
第三环节:发现估“整十万数”看万位、估“整百万数”看十万位……的规律,学生运用结构进行想象。
第四环节:对以上规律进行比较和概括,归纳提练和抽象出四舍五入的一般方法。
教师提出问题:通过举例探究的方法,我们分别发现了估整十数、整百数、整千数……的方法,你能把这些规律简练地概括一下吗?
学生交流,教师小结:像这样求近似数的方法,叫作“四舍五入法”。
(三)巩固应用,内化提升。
出示信息:小明的妈妈一月份的工资收入是6492元。
提出问题:
问题一:估成整十数,大约是多少元?为什么?(交流后,课件出示数轴)
教师进一步明确要求:估成整十数,也就相当于省略十位后面的尾数求近似数。
问题二:省略百位后面的尾数,大约是多少元?说说你的想法!(交流后,课件出示数轴)
问题三:你还能提出其他关于近似数的问题吗?
生提问题并解决。(交流后,课件出示数轴)
问题四:仔细观察数轴,这三个近似数哪个更接近6492元?你有什么发现?
小结:省略的尾数越多,近似数离准确值就越大;反之就越接近准确值。所以我们在运用近似数时,要根据实际的需要来估计。
四、我们的思考与疑惑:
1、说明:《近似数》这节课在备课时,我们教研组出现了两种不同的声音:一种是遵循教材,通过研究将大数怎样估成整万数或整亿数,教学“四舍五入”取近似数的方法。
另一种就是刚才所呈现的,从估整十数、整百数、整千数、整万数、整十万数……这样依次探究,在估整百数时教结构,让学生在大量的数例中充分感悟:估整百数要看十位上的数字,与个位上的数字无关。接下来的估整千数、整万数是用结构,学生同桌分工合作,运用方法结构自主发现规律。估整十万数、整百万数、整千万数和整亿数的规律,则可让学生运用结构进行推理和想象。
通过两种思路的对比和研讨,我们统一了认识:如果仅仅把“四舍五入法”局限在对整万数、整亿数的估计,学生容易形成点状的知识,很难从整体上把握四舍五入的方法。另外从对整万数、整亿数的估计入手,由于数目较大,离学生的现实生活较远,学生对“四舍五入法”的学习往往感到比较抽象,也不容易把握“四舍五入法”的本质和规律。基于这些,我们提出了上述问题,并做了以上设计。
一开始我们对于这种整体架构、教结构——用结构的思想也是又爱又怕,甚至持怀疑的态度:学生能有序地分段找到这些数吗?能发现规律吗?基于不自信,我们在三年级上了半节课,结果虽然有点生涩,但学生所表现出来的比我们预期的要好得多。而且,从长远来看,学生经历了“四舍五入法”背后的过程形态的知识,比如借助知识结构的类比思考、归纳概括的思想和方法等等,都可以成为教学过程中促进学生成长的重要资源。
2、思考:数轴对于这节课的教学有很大的帮助,数形结合不仅能帮助学生直观地理解“四舍五入”的本质,并能有效地培养学生的数感。
3、疑惑:25估成整十数,与20、30一样接近,该估成30吗?再如25□,251~259估成整百数应该是300,250估成整百数呢?期待大家能帮我们答疑解惑。
以上是我们团队对《四舍五入求近似数》这节课内容的理解,如有不当之处,恳请领导和老师们多提宝贵意见。谢谢!
近似数课件教案 篇7
内容预览:
……
注意:阅读本文需要消耗点数444点和金钱0元!!
你确实愿意花费444点点数和0元金钱!来阅读本文吗?
我愿意我不愿意
(说明:有效期用户可不受点数限制)
“商的近似值”说课
一、说教材
教材中截取近似值有积的近似值和商的近似值,一般是采取“四舍五入”法截取,前面已学过积的近似值截取,对商的近似值截取,有一个初步的了解,在教学时,通过结合实例教学,要求学生明确截取商的近似值的实际意义(当小数除法有时碰到永远除不尽或有时虽然除尽,但实际上不需要那么多的小数位数,这就需要取商的近似值),初步学会在小数除法中用“四舍五入”法截取近似值。进一步体验学习数学的目的,能够把学到的知识应用于生活实践。
二、说学生的认识
学生用“四舍五入”法截取近似值已基本掌握,也已学习了积的近似值的截取,对商的近似值的截取也能略知一二,但在实际操作中会出现很多的问题。如:把得数保留两位小数,除到百分位,就看百分位上的数直接截取,应看千位上的数是用“四舍法”或“五入法“再来截取,尤其在解决实际问题时,就感到更加困难了,如:有一堆煤共有100吨,用一辆载重3吨的汽车来运,几次能运完?学生计算得100÷3=33次……1吨,往往是根据已学的知识用“四舍法”把余数1吨直接舍去,直观地取整数33次,这样出现了这堆煤还留有一部分,学生这种直观地思考忽略了没有从实际情况出发去考虑。
三、说指导学生学习
根据教材的内容,学生的认知基础、年龄特点,结合学生的生活实际,精心设计指导学生学习的过程,揭露认知上的矛盾。
1、简单回顾四舍五入法截取近似值,设计让学生求6.8496保留一位小数()两位小数()三位小数()。
设计的这个数字既有四舍,也有五入,还有保留三位“五入”后的数字变化,可以说一题中涵概了许多知识分量。
2、生活实例引入,在探索中求知:
(1)例1我们五(一)班期中考试,全班总分是5089分,请你算一算他们班的平均分有多少分?
不告诉学生人数,让学生自己搜集信息的能力得到了培养,他们当然能够计算这题的平均分:5089÷55
尝试计算后,学生发现此题不能除尽,得5089÷55=92.52727……(分)
此时教师归纳:在日常生活中,当我们遇到小数除法不能除尽时,我们按实际情况保留一定的
小数位数,取它的近似值,应是多少分?(五入法92.5分)。
整个过程是让学生自己充分思考、判断、推理,由实际生活知识引入到所要学的内容,并在
从中悟出其中的道理。
3、反馈练习:
(1)要求学生从下列每组中自由任选一题进行计算(板演和自练)
a、保留一位小数49.6÷33.85÷0.76
b、保留两位小数4.84÷2538.36÷12
让学生把自己的学习成果展示在黑板上,并指名说说截取商的近似值的方法,肯定对的,找出错误原因,加以纠正,然后由学生互相去讨论,总结商的近似值的取法,最后加以归纳总结,使学生更加明确截取商的近似值的方法,即要保留一位,要看第二位,也就要除到第二位。这个方法是学生在尝试练习中自己得出的结论,是本课教学的重点所在。语文教学需要感悟,数学教学也同样需要学生的感悟,感悟方法,感悟规律。
(2)我国的原煤产量1981年是6.2亿吨,1991年达到10.9亿吨,1991年的原煤产量是1981年的多少倍?(得数保留一位小数)
a、学生读题后,问你读题后想到什么?教给学生读数学题的方法,读了题目,学生应该知道用除法计算,并且是不能除尽,要保留一位,需要除到第二位。让学生养成先通盘考虑,然后进行计算的好习惯。培养习惯应该是数学课的重要任务,不能只授知识,无素质、习惯的培养。
计算后,强调一些细节问题:如横式中用“约等于”连接,竖式的正确书写及答案中写上“约”字等,培养学生良好的计算和书写习惯。
4、巩固练习:
(1)按要求在下表里填上商的近似值:这个表是书本的试一试,我把它放到巩固练习处理,因为这个题,不仅仅是保留方法的训练,还有计算技巧的素质培育。所以在学生对保留有更深的认识后再练习,是练习层次性的体现
保留一位小数
保留两位小数
保留三位小数
43÷19
0.487÷2.5
a、学生练习,比一比谁最快。
b、计算并介绍好的方法(可能出现)。
①先除到百分位保留一位小数,再列式除到千分位,保留两位小数,以此类推。
②先除到百分位(第二位小数)保留一位小数,再在原式上继续往下除,保留两位小数以此类推。
③看最多保留三位小数,先直接除到万分位(第四位小数)然后再一位小数、两位小数、三位小数的进行保留。
c、通过学生的方法介绍后,问学生认为哪一种方法,既快又简便,并说出为什么。
第③种方法简便,因为他从全局出发只列一个竖式,而且保留小数时,只要一位一位往下看,也不易出错。
(2)为了强化数学教学的生活应用性,我还设计了一题生活性题目:
7个小朋友合买了一份的礼物,去看望生病住院的老爷爷,请小虹去商店买了76.5元的礼品,每个人应掏多少钱?
这题没有直接告诉学生要保留多少位小数,但涉及到钱,应该最多也是两位小数,元、角、分,除到10.929,说说应付给小虹多少元呢?可以教给学生许多做人的知识,应付11元,不能太小气而付10.9元,但作为小虹应该找给其余小朋友0.1元,不能多拿。这样就很好地落实了素质教育的要求,不能光在知识中打圈。
通过以上练习,提高学生计算能力和速度,巩固商的近似值的截取方法,进一步加深具体情况,具体分析的观念,培养学生观察问题要从实际出发去思考、探索、解决一些简单的实际问题,使学生感受到数学就在我们的身边,与现实生活有着密切联系,调动学生学习数学的积极性。
(3)开放题练习:
一个小数保留一位小数后得到近似值是1.4,这个小数可能是多少?
设计意图:
想到这是个两位小数:1.35、1.36、……1.43、1.44。
再启发学生作答,使他们想到是个无数位的小数:只要十分位是3、百分位上是5到9的小数或十分位是4、百分位是0到4的小数都行。
通过开放题的设计训练,使学生很好地进行了创新的意识培养。
5、最后作业练习。(略)
近似数课件教案 篇8
教学目标
1.使学生能根据要求正确地运用四舍五入法求一个小数的近似数.
2.使学生学会把较大的整数改写成以万或亿作单位的小数.
教学重点
求一个小数的近似数及把较大的数改写成以万或亿作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
教学步骤
一、铺垫孕伏.
1.把下面各数省
省略万后面的尾数,求出它们的近似数.(卡片出示)
9865345874131200
5004739801014870
2.下面的□里可以填上哪些数字?
32□64532万47□0547万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用四舍五入法保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0.2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.
分组讨论:保留一位小数3.0十分位上的0能不能去掉为什么
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位
(3)求下面小数的近似数.
3.781(保留一位小数)
0.0726(精确到百分位)
(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(5)小结.
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几然后按四舍五入法决定是合还是人.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
(6)分组合作学习,填表.
在下表的空格里按照要求填出近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
4.3808
3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用万台作单位的数.
1)教师提问:把61581400台改写成用万台作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?
(根据学生回答教师板书:61581400台=6158.14万台)
教师总结说明:把较大数改写成用万作单位的数,只要在万位的右边,点上小数点,在数的后面加写万宇.
(2)做一做.
把248000改写成用万作单位的数.
4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用亿吨作单位的数.再保留一位小数.
(1)学生讨论:把一个数改写成用亿吨作单位的数,应该怎么办?
学生独立改写成573000000吨=5.73亿吨5.7亿吨,并说出改写的方法.
教师提问:如果要求保留一位小数怎么办?
启发学生自己得出1.4亿吨,并说出保留一位小数的方法.
教师总结说明:把较大数改写成用亿作单位的数,只要在亿位的右边,点上小数点,在数的后面加写亿字.如果小数位数比较多,可以根据需要保留前几位小数.
(2)做一做第2题.
把750000000改写成用亿作单位的数.
做一做第3题.
把34562800000改写成用亿作单位的数后,保留两位小数.
5.区别对比.
例2、例3的学习中,有的数需要把它改写成以万或亿作单位的
数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)
三、巩固发展.
1.填空.
求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位
2.填空.
近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的0不能丢掉.
3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?
5.2812.714.867.05
4.按照四舍五入法写出表中各小数的近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
9.9564
0.9053
1.4639
5.(1)1999年北京市从事工程技术的人员共120xx0人,改写成用万人作单位的数.
2)1999年我国出版图书7320000000册(张),改写成用亿册(张)作单位的数.
四、全课小结.
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用四合五入法保留小数位数.要注意保留小数位数越多,精确程度越高.
五、布置作业.
1.把下面各小数四舍五入.
(1)精确到十分位:3.470.2394.08
(2)精确到百分位:5.3446.2680.402
2.把下面各数改写成用亿作单位的数.
(1)保留一位小数:3672800000648500000
(2)保留两位小数:4853900000288160000
板书设计
求一个小数的近似数
例12.95保留二位小数,一位小数和整数,它的近似数各是多少?
2.9532.95
2.9533.0
2.9533
求一个小数的近似数要注意:
①要根据题目的要求取近似值.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.
例261581400台=6158.14万台
在万位右边点上小数点,在数的后面加写万字.
例3573000000吨=5.73亿吨.5.7亿吨
在亿位右边点上小数点,在数的后面加写亿字.
分数的认识课件精选
经过一番精心策划幼儿教师教育网小编今天带来了令人期待的“分数的认识课件”。通常老师在上课之前会带上教案课件,通常老师都会认真负责去设计好。教案是课堂教学的基础设施。应用本文内容或许能为您提供解决问题的帮助!
分数的认识课件(篇1)
数学教学是数学活动的教学,美国教育学家杜威早就提出:“让同学从做中学。”这种教学理念反映在数学教学上就是“做数学”,“做数学”就是要用一种亲身体验的数学学习方式来有效地回避那种“灌输式”的数学学习。它强调同学学习数学是一个实际的体验、理解和反思的过程,强调以同学为主体的学习活动对同学理解数学的重要性。因为“听过会忘记,看过能记住,做过才干学会(youdo,youlearn)。”吴老师执教的《分数的初步认识》这节课充沛体现了在数学教学中让同学经历“做数学”的过程。她以独具匠心的设计、细腻灵活的诱导,将同学推上了自主学习的舞台,真正把学习的主动权交给了同学。她利用小组合作学习、争辩等多种形式,培养和激励同学独立考虑、勇于创新、善于表达的能力。同时使同学在倾听与争辩、接纳与赞赏之中,学到与他人交流的技巧,这对于同学的综合能力和人格完善大有裨益。同学自始至终置身于教师为其创设的发现和讨论的情境之中,兴趣盎然,积极主动地参与研讨、质疑、发明等教学活动,让同学在考虑、交流、倾听、争论和发现中学习数学知识,充沛发挥了同学的主体作用。体现了在同学原有生活经验和认知的基础上进行学习的建构主义教学理念。
下面谈谈我听完这节课的一些感受,仅供参考,缺乏之处,请多指教。
1、恰当地组织数学学习内容。
荷兰数学教育家弗赖登塔尔认为“数学的根源在于普通的常识”。新课程规范也指出,同学的数学学习内容应当是实际的、有意义的,富有挑战性的。这些内容要有利于同学主动地进行观察、实验、猜想、验证、推理与交流等数学活动。一般认识分数的教学都是按教材的顺序,由1/2、1/3、1/4等几分之一到几分之几,通过图形演示直接出现给同学。这样认识的分数是形式上的,并没有为同学积累足够丰富的感性经验。将来要理解单位“1”和分数的意义需要有丰富的表象作支撑。因此,教学中出现的内容不应是一个分数与一个图形的简单机械的对应,而应有更为丰富宽广的内涵。所以,教师只提供给同学相应的学习资料:各种形状的纸片和一条线段,让同学通过操作、演示、讨论、说理等方法,表示出三角形、正方形、长方形、一条线段等图形的—,在脑海中建立起—这个分数与多幅图象之间的对应联系,并突出1/2的实质属性。这样的1/2是生动的、具体的,富有活力的。练习设计中的“猜测游戏”和“色块问题”,对同学来说,也是富于挑战性的,满足不同层次同学的需要,可以尽显同学的能力和潜力。
2、经历自主探索的过程。
建构主义学说认为:小同学数学学习是一个主动建构知识的过程。同学学习数学的过程不是被动地吸收课本上的现成结论,而是一个亲自参与的充溢丰富、生动的思维的活动,经历一个实践和创新的过程。分数的发生包括着丰富的思维过程。在上述教学过程中,教师始终注意让同学经历知识的发生发展过程,感悟知识的原本面目,让同学在“再发明”中实现知识、情感、态度和价值观的充沛发展。我们可以看到,一开始,教师就以直接揭题法激起同学对问题的探索欲望,为主动探究作了心理上的铺垫。接着,教师提出:既然是分数,与什么有关?自然地引出分东西,师生一起在分东西的过程中,经历的发生过程。在认识1/2基础上,教师充沛信任同学,鼓励同学,放手让同学借助学具自身去发明分数、研究分数。这就给同学提供了广阔的发明空间。我们欣喜地发现,每个同学根据自身的体验,用自身的思维方式自由地、开放地去探究、去发现、去再发明分数,他们有各自独特的发现。不只顺利地认识几分之一,而且还发明出了几分之几的分数,并且还能举生活中的实例来验证,说明同学的潜力是无穷的。在这“做数学”的过程中,同学创新火花不时地迸发出来,不时体验到发明的愉悦和探索的乐趣。
3、构建群体互动交流的发展区。
“做数学”强调数学学习是群体交互合作与经验共享的过程。新课程规范也提出:有效的数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索和合作交流是同学学习数学的重要方式。本节课中让同学在积极主动的交流反思中一起分享学习效果,提升活动的价值。如当同学利用学具充沛操作后,和时组织小组讨论:你是怎样发明出分数的?让同学交流各自的学习效果,使认知结构得以扩充与放大。当同学提到“正方形的1/4”时,抓住契机,收集同学的不同的折法,展开对—实质意义的研讨。教师只提出:看到这些图形,你有什么想法?生自身提出问题:为什么阴影局部的形状各不相同,却都是这个图形的1/4呢?经过讨论才发现:分数与平均分的份数有关,而与具体分的方法和分成的形状无关,从而剔除分数的非实质属性。在上述思维的相互碰撞中,明确实质,升华认识。又如:“奇妙的色块图”的问题解决,先让同学独立考虑、动手操作,再采用小组讨论,合理反馈交流的活动形式,既总结了本课的'主要内容,又展示了不同层次同学的形象思维,渗透极限思想。不只满足了不同学习水平同学的需要,同时为局部困难同学发明了“最近发展区”,进而享受到胜利的喜悦,达到共享效果的层面。
此外,本节课老师以满腔的热忱、高超的教学艺术和真诚的爱心,感染小朋友们的情,粘住小朋友们的心。她从不轻易否定同学的回答,总是以热情的鼓励、耐心的等待和巧妙的疏导与小朋友们同喜同忧。在这节课上,我们不只能感受到知识信息的传授、思维的碰撞,还有心与心、情与情真诚地交流。其独特的学风格,炉火纯青的教学艺术,在这节课上得到了充沛的体现,听吴老师的课,如同亲临精彩的演出,既让人精神愉悦又回味无穷,难怪小朋友们上她的课不愿下课,老师们不愿离开。
听完这节课,我深切地体会到,我们的数学教学不只应关注同学获得怎样的结果,更应关注他们是否经历了自主探索的过程。只有让同学亲身经历数学的实践、探究与交流的过程,才有可能懂得数学的价值和意义。也只有让同学在“做中学”,才干获得最大程度的发展。
分数的认识课件(篇2)
(一)认识1/2。
1.多媒体课件演示例1分月饼的情境图。指出:把一个月饼平均分成两块,每块是一半,也就是它的二分之一。
2.指导学生读、写1/2。
3.学生活动:用图片折出它的1/2,并写上1/2。
4.实物投影出示判断题。
下面哪些图形的阴影部分是原图的1/2?哪些不是?说出理由。
(二)认识1/4。
1.要得到一块月饼的1/4应该怎样分?这个1/4怎么表示出来?怎么写?
(1)组织学生活动。拿出图片通过折、涂、看、说等活动感知1/4。
(2)电脑课件动态演示,把一块月饼平均分成四块,每块是它的四分之一。
(3)小结:像1/2、1/4这样的数都是分数。
2.教学例2。
(1)想一想:如何折出一个正方形的1/4?
(2)组织小组合作学习。学生独立折纸,然后在小组里交流。
(3)全班集中汇报。学生自愿将小组成果展示在实物投影仪上(或贴在黑板上),说一说各自的折法。
3.完成第93页做一做第1题。
(三)比较分子是1的分数大小。
1.出示例1第一组图1/2和1/4。
(1)猜想:哪个分数大一些?
(2)引导学生讨论并交流讨论信息。
(3)电脑课件演示1/2和1/4比较重叠过程、闪现,让学生直观感受。
2.独立探究、完成例2第二组图片,1/4和1/3的比较,再跟小组的同学说一说是怎样比较的?
3.让学生讨论合作。通过上面两组数的比较,你发现了什么?师生共同小结几分之一的分数比较大小的基本方法。
4.完成第93页做一做第2题。
以上就是范文为大家带来的3篇《《分数的初步认识》教学设计》,希望对您有一些参考价值。
分数的认识课件(篇3)
1、结合具体的情境和直观操作,初步理解分数的意义,体会学习分数的必要性。
2、会用折纸涂色等方式,表示简单的分数。
3、学会分数的读、写,从中感受分数与平均分的内在联系。
教学重点、难点:
1、理解分数的意义,会读、写简单的分数。
2、会用折纸、涂色等方式,表示简单的分数。
教具学具准备:
苹果2个,正方形、长方形纸片若干,投影仪,录音机。
教学过程:
(一)创设情境,引入新课。
1、出示情境图。
这是教材为我们提供的两幅淘气和笑笑分苹果的情境图,请大家带着下面的问题读图:
(1)这两幅图分别表达了什么意思?
(2)淘气和笑笑是怎样分苹果的?
(3)他们遇到了什么数学问题?
2、组织学生讨论交流(板书:平均分――一半)。
3、用各种方式表示一半或半个。
4、引入1/2。
同学们,用了这么多不同的方式方法表示了一半,真不错,这就是一种发明,一种创造,但各种表示方式标准不统一,让我们请教一下智慧老人吧。
(放录音)历史上每一个数学符号从发明到被普遍认可,都经历了十分漫长的岁月。现在世界通用的表示“一半”或“半个”的数学符号是1/2。
你们知道像1/2这样的数叫什么数吗?(板书:分数)。
(二)动手操作,探究新知。
1、认识1/2。
(1)涂一涂,感受1/2(见课本56页)。
a要分别涂出他们的1/2,你认为首先应该怎样做?
b其中六边形、圆、和正方形有几种不同的分法?
c利用投影进行交流,每一个1/2分别表示什么?
(2)折一折,做出1/2。
a独立操作。
b展示各种不同的表示方法。
2、认识1/4、2/4、3/4、4/4。
(1)折一折,用你喜欢的方法,将一张正方形纸平均分成4份。
(2)涂一涂。
a将其中的一份涂.......喜欢的颜色,涂色部分是这张正方形纸的1/4,其余部分是这张纸的()。
b将其中的两份涂上颜色,涂色部分是这张纸的()。
c将其中的三份涂上颜色,涂了这张纸的(),还有这张纸的()没涂颜色。
d如果将所有的4份都涂上颜色,那么就涂了整个正方形纸片的()。
分法与涂法展示交流。
3、学习分数各部分名称和分数的读、写。
(1)你发现一个分数由哪几部分组成?
(2)你知道各部分分别叫什么吗?一个分数应该怎么读?
3……分子。
板书:…分数线读作四分之三。
4……分母。
(3)你认为分数该怎样写?为什么?看到这些分数,你想到了哪个运算符号?
(4)由3/4读作四分之三,你认为3/4表示什么意思1/4、2/4、4/4呢?
(5)想一想,分数和什么分法有关系?
4、尝试运用。
(1)看图说一说、写一写、读一读(图见57页下方)。
a读出每一个分数。
b写出每一个分数(注意,先居中写出分数线,再写分母,后写分子)。
c说出每一个分数所表示的含义。
如:1/3表示把一段绳子平均分成3份,其中的一份就是这根绳子的1/3。
(2)联系实际,体会分数就在身边。
我们已经知道,1/2、1/3、3/4、5/6等这些数都是分数,你能否联系自己的见闻说一个你曾经见过的或听到的分数吗?如:
a用这块地的2/5种大蒜。
b有1/2的大棚被大风刮坏了。
c今年的人平均收入比去年增长14/100。
(三)巩固与应用。
1、用分数表示下面各图中的涂色部分,并读一读(图见58页第1题)。
(1)独立写出各图中涂色部分表示的分数,巡示指导分数的写法。
(2)指名读出各分数。
(3)组内说一说各分数所表示的意义。
2、按分数把下面各图形涂上颜色(图见58页第2题)。
(1)各分数表示的意义分别是什么?
(2)你为什么这样涂?
3、判断:用下面的分数表示各图的阴影部分对吗?(图见58页第3题)。
(1)独立判断。
(2)交流判断的理由。
(3)分数的产生和哪一种分法有关系?
4、左图中有,请你用所学知识解释下列问题(见图58页第4题)。
(1)哪一个图形的涂色部分等于它的1/2?
(2)哪一个图形的涂色部分大于它的1/2?
(3)哪一个图形的涂色部分小于它的1/2?
a由这些及以上的各个图形,你想到了我们刚刚学过的哪方面的知识?
b你是如何进行判断的?你的理由或根据是什么?
5、判断正误。
(1)把一根铁丝分成8份,其中的3段就是这根铁丝的3/8。()。
(2)把一个苹果分给小红和小冬,每人分得这个苹果的1/2。()。
(3)一块不规则的地块是无法把它平均分成2份、3份或几份的。()。
(4)一个苹果的1/2和一个橘子的1/2不相等。()。
a组内讨论。
b全班交流。
(四)小结。
这节课我们认识并学会了有关分数的哪些方面的知识?分数和什么分法有关系?读分数和写分数的顺序有什么区别?到现在我们已经学过了哪几种数?请你说一说。
分数的认识课件(篇4)
教学目标:
1.在具体的情境中,进一步认识分数,发展学生的数感,理解分数的意义。
2.结合具体的情境,体会整体与部分的关系,感受分数的相对性。
3.体验数学与生活的密切联系。
教学重点:
理解整体1,体会一个分数对应的整体不同,所表示的具体数量也不相同。
教学难点:
结合具体情境,体会整体与部分的关系,感受分数的相对性。
教学准备:
两盒铅笔(两盒中所装铅笔数不同)、12根小棒、实物投影
教材分析:
教材设计这个学习活动的目的是为了丰富学生对分数的认识,进一步理解分数。教材先安排了拿铅笔活动,使学生体会同样是1/2,铅笔的数量可能相同,也可能不同,这是因为原有的铅笔总数有的相同,有的不同。然后,教材又安排了一个说一说的活动,联系一本书的1/3等实际情境展开交流,体会一个分数对应的整体不同,所表示的具体数量也不同,进一步加深学生对分数的认识。画一画是借助直观图形体会一个图形的1/4都是一个□,但这个图形的形状有可能不同。这样的学习活动,既有利于加深学生对分数的理解,又有利于发展学生的空间想象能力。
教学过程:
一、复习旧知,了解起点。
1、我们已经认识了分数,谁能说出几个你喜欢的分数?
2、这些分数到底是什么意思呢?谁能说说各个分数所表示的意义?
3、你还知道分数的哪些知识?
二、体会整体与部分的关系,理解分数的相对性。
(一)拿一拿
1、出示两盒铅笔(两盒中所装铅笔数不同),问:谁能拿出盒中铅笔的?
2、你准备怎么拿?发现什么问题?都是,为什么拿的支数不一样?
3、每一个同学都拿出你所有铅笔的,比一比,说一说发现。
3、从刚才拿铅笔的活动中你明白了什么?
4、归纳提升:一个分数对应的整体不同,所表示的具体数量也不同。
(二)想一想
1、把6支、9支、12支铅笔分别平均分给3个同学,每位同学得到的铅笔支数可以怎样表示?(1/3或者2支、3支、4支)
(三)说一说
2
(三)画一画
画一画是借助直观图形体会一个图形的1/4都是一个□,但这个图形的形状有可能不同。
三、体会分子与分母之间的关系
根据分数拿出相应的数量。
1、12根小棒,请拿出12根小棒的
思考:这里的分子1表示的是什么?(是1支还是1份)
2、12根小棒,请拿出12根小棒的。
(同学相互说分数并拿出数量。)
四、在练习中进一步体验
1、基础练习:
看图写分数:
表示用分数:
2、拓展练习:
(1)说得对吗?请说明理由。
(2)、选一选
①由一段木料的估计这段木料有多长。
②由一段图形的估计这个图形。
(3)、填一填:
通过学生填数、观察,使学生体会这些分数之间的关系,先让学生填一填,再让学生说一说有什么发现。
五、课堂总结,拓展延伸。
板书设计:
分数的再认识
认识整体1
一个分数对应的整体不同,所表示的具体数量也不相同。
课后反思:
分数的认识课件(篇5)
今天我说课的内容是人教版小学数学三年级上册91---93页《分数的初步认识》。
2.教材分析:
《分数的初步认识》这一单元是在学生已经掌握一些整数知识的基础上进行教学的。从整数到分数是学生对数概念的一次扩展,又是学生认识数的概念的一次质的飞跃。因为从数到分数无论是在意义上还是在读法和写法上以及计算方法上,他们都有着差异。本节课结合具体生活情境,通过直观操作,使学生逐渐积累分数的正确表象,初步建立分数的概念,理解分数的意义,为今后进一步学习分数和小数打下基础。因此,本节课的教学重点为:让学生初步认识几分之一,会读写几分之一。
3.学情分析:
布鲁纳认为学习是一个主动形成和发展认知结构的过程,这个认知过程经历三个阶段:动作性认知过程、映象性认知过程和符号性认知过程,三年级学生处于第二个阶段,这时期儿童开始在头脑利用视觉和听觉的映象代表外界事物并尝试借助映象解决问题;学生在这个阶段对数学概念的认识具有较强的具体性,概念形成主要依赖对感性材料的概括。学生在生活中可能接触过二分之一,三分之一等分数,但并不理解它的含义。所以教学中要注意让学生从实际生活经验出发,在丰富的操作活动中主动的去获取分数的相关知识。根据以上学情确立了本课的难点:初步理解分数几分之一的意义,培养学生勇于探索和自主学习的精神,培养学生的语言表达能力。
4.教学目标:
结合以上教材分析和学情分析,根据《课程标准》的基本要求,制定以下三维目标:
(1)知识能力目标:引导学生在实际操作中体会分数的产生,初步理解分数的意义,会读、写几分之一,培养学生的观察能力,比较能力和归纳总结的能力。
(2)过程方法目标:引导学生在操作探究、比较发现、推理归纳、互相交流等活动中,经历几分之一的认识过程,体会几分之一的含义,建构数学知识。
(3)情感态度目标:在动手操作、观察比较中,激发学生的学习兴趣,培养学生勇于探索、善于观察的学习态度,体会数学知识的严谨性,同时感受数学在现实生活中的价值。
三年级学生主要以具体形象思维为主,动手能力比较强,他们虽然对整数已经相当熟悉,却是第一次接触比较抽象的分数,而且从认识整数到认识分数是一次飞跃。根据我对教材内容、学生的特征等深入的分析,注重从学生的生活情境和感兴趣的事物出发,努力挖掘学生身边的学习资源,为他们创建一个发现、探索的思维空间,使学生能更好地去发现、去创造,本节课的设计的重点放在能够促进学生学习发展上,而不是活动的形式上。在学习过程中充分发挥学习的主动性,体现学生的首创精神。因此我在教学中根据学生好动、好奇等特征。采用游戏教学法、情景教学法、自主探求法、直观教学法等教法,来完成本节课教学。新课标第一网
小学生认知水平还处在发展的初期,思维发展水平从具体形象思维向抽象逻辑思维过渡,注意力不稳定,受兴趣的影响很大,所以在教学时我创设了问题型教学情境:让学生在已有知识与学生求知心理之间制造一种“不协调”,把学生引入一种与问题有关的情境的过程,在他们的心理上造成一种悬念,从而使学生的注意、记忆、思维凝聚在一起,以达到智力活动的最佳状态。因此在教学中引导学生主动参与、亲身实践、独立思考、合作探究。通过动手猜一猜、折一折、涂一涂等方法理解分数几分之一的意义,培养学生的想象力、创造力和应用能力,让学生在玩中学,学中玩,合作交流中学,学后交流合作等环节中突破本节课的难点。
《课程标准》指出:“数学教学必须注意从学生最感兴趣的事物出发,为他们提供参与数学学习的机会。”
1、在每张课桌上都有一张白纸,这张纸是同桌两个人的,后面我们就要用,现在请你们两人把这张纸分开,每个人得到的同样多,应该怎样分呢?同桌两人商量一下,把你们的想法折出来,让大家看看公平吗?然后我们再分。
2、学生动手折,展示折法。(这一环节的目的是让学生充分感知分数的产生过程,体会平均分的重要性,在具体操作中积累感性认识,形成正确表象的过程)
3、师引导学生说出平均分,提问:进一步让学生说出你能用一个数表示你拿到的这一份吗?
4、生活中有很多这样的现象:两个人分一张饼,分一个苹果,分蛋糕……这时的一份我们无法用整数表示,这时就要用到一个新的数:分数。今天我们就来一起认识一下这个新朋友-分数(板书)
[设计意图:这个问题情景的创设,唤醒学生已有的生活经验,让学生从实际问题出发引入新课,让学生感受到已有知识已经不能解决这个问题,从而引出分数,让学生体会到分数是在实际生活中产生的,让学生经历分数产生的过程,调动学生参与情感,回忆平均分的含义,吸引学生的注意,激发了学生探索的欲望。]
1、明确:我们每人得到是这张纸的12 (板书,贴图),通过折你对这个“12 ”有一个什么样的认识呢?(找3、4个学生说,从折中感悟分数12 的产生过程)具体感知分数,从而认识分数。
师:明确分数的意义:2代表我们把它平均分成2份,这其中的1份就是12 。(师边写边说)
[设计意图:通过回忆折的过程让学生感悟12 的产生,引导学生归纳总结12 的含义,明确分数的意义,加深对分数的认识,让学生会读、写简单的分数。]
2、认识14 。
①现在请大家拿出刚刚得到的这张纸,你能折出这张纸的14 吗?说一说你是怎么做的?
a.组织学生活动。拿出准备好的纸通过折、涂、看、说等活动感知14 。(找生上台展示)让学生利用身边资源,再折出一些几分之一。
[设计意图:在以上整个教学环节中,我充分利用身边的资源,引导学生动手操作,归纳总结,自主探索,从折中体会分数的形成,在具体操作中培养学生的数感,在自主探究中培养学生的观察能力,独立思考的能力,直观认识几分之一,初步形成关于几分之一的表象,达到了突出重点、突破难点的目的,起到了事半功倍的作用。]
[为了体现数学来源于生活,用于生活的理念,我设计了四个层次的练习题:加深认识,拓展参与,自主类推,拓展提高]
妈妈买了一根甘蔗,掰了一半给爸爸,剩下的妈妈平均分成两份,一份给我吃,另一份她和奶奶各吃了一半,你知道爸爸、妈妈、奶奶和我各吃了这根甘蔗的几分之一吗?
[设计意图:此环节的设计,是为了让学生进一步巩固例1,例2的教学,通过练习增强学生自写分数的能力,加深对几分之一的理解,主题图的出示为了让学生运用所学知识解决生活中的实际问题,培养学生的观察能力,对学生所学知识进一步拓展,起到举一反三的作用,彰显学生的个性。]
师:通过折我们今天研究了什么内容?你对他有一个什么认识?
[设计意图:通过回忆折的过程让学生从具体情景中抽象出分数的形成过程,明确分数的意义。]
12 14
[这节课我的板书设计是这样的]本节课我采用此板书力图全面而简明的将授课内容传递给学生,清晰直观,便于学生理解并掌握。
总之,整节课活动丰富,给学生提供了动手操作,自主探索,合作交流的空间,也给学生提供了尝试成功和欣赏数学美的机会,每一环节都在关注学生能力发展和情感体验,培养了学生的想象能力和动手能力和语言表述能力。