[收藏]数学三角形内角教案2500字合集7篇
发布时间:2023-02-04 数学三角形内角教案俗话说,磨刀不误砍柴工,这告诉我们要做好充足的准备。身为人民教师,是常常需要根据教学进度来编写修改教案的,教案要成为一篇独具特色“课堂教学散文”或者是课本剧。你是不是写起教案来就毫无头绪?为此,你可能需要看看“数学三角形内角教案”,欢迎大家阅读,希望对大家有所帮助。
数学三角形内角教案(篇1)
教材分析
“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。本节课是在学生学过角的度量、“三角形的特征”和“三角形的分类”等知识的基础上进行教学的,这些知识已熟练掌握,但动手操作能力和思维创新的意识还有待培养。
教学目标
根据教学内容及学生自身的特点,我制定了以下教学目标:
1、知识与技能:明确三角形的内角的概念,促使学生自主探究和发现三角形内角和等于180°。
2、过程和方法:①通过学生猜、量、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律来解决实际问题。
3、情感与态度:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的喜悦,增强学好数学的信心。
重点和难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°,来拓宽学生思路。
课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐角三角形、直角三角形、钝角三角形各两个,量角器、剪刀。
教学过程
一、创设情境,引入新知。
导入:“同学们,今天老师请来了一些小朋友和大家一同学习,你们瞧,他们来了。你们认识吗?“(出示三角形动画课件),让学生依次说出各是什么三角形,通过这样的复习方式,让学生回顾了前面所认识的几种三角形,为下面的教学做好了铺垫。
在此基础上,我马上询问学生:“你们发现这些三角形有什么共同点吗?”通过这样的引导,不少学生发现它们都有三个角,我及时给予了肯定,并向学生介绍:“这三个角就叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。可是有一次,这些三角形为它们各自内角和的大小发生了争吵,让我们一起去看看吧!”
接着我出示情境课件,【大三角形说:“我的个头大,所以我的内角和最大。”直角三角形,不服气:“哼,我才不信呢?”钝角三角形说:“我有一个角最大,应该是我的内角和最大。”“我的大!”、“我的大!”……】就在他们争论不休时,我关闭课件,对学生说:“同学们,你们看,他们为内角和的大小,争得不可开交,究竟谁说得对呢?今天这节课,我们就一起探讨三角形的内角和。”就这样,在情境中揭示了课题,让学生带着解决问题的强烈欲望来展开探究活动。
二、动手操作,自主探究
1、操作感知。
为了让学生初步感知三角形的内角和,请学生先大胆猜一猜三角形的内角和是多少?然后组织学生画出一个任意三角形,测量各角的度数,并计算出它的内角和,由于测量存在误差,学生汇报的结果有179°、180°、178°、181°等等,用接近180°来概括并板书度量法的结果,
2、剪拼验证:
安排学生进行剪一剪、拼一拼的活动,自主发现规律,掌握规律。为了完成这些活动,设计四人小组合作的学习方式:你们能把
3、折叠验证:
为了再一次验证三角形内角和等于180°,我又设计了“折一折”的学习活动,同样先采用多媒体进行直观演示,再让学生折一折,叠一叠。当学生出现这样(多媒体演示)的错误时,我没有做出消极的评价,而是把问题交给大家,通过讨论、交流,找到正确的折叠方法,让学生充分享受成功的喜悦,体会到了学习数学的乐趣。在这轻松、活跃的课堂气氛中,我把学生得出折叠法的结论也进行了板书。
三、应用规律,解决实际问题:
揭示规律后,学生要掌握知识,形成技能和技巧,就要通过解答实际问题的练习来巩固内化,为了让学生积极参与,我设计了闯三关的活动来激励学生做题的兴趣。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。
②求等边三角形每个角的度数是多少。
这两个提高练习的安排,是为了让学生灵活应用隐含条件来解决问题,使学生的思维能力得到了进一步提高。
第三关:拓展练习。
针对不同思维能力的学生,我设计的拓展题目要求学生应用“三角形内角和是180°”的规律,求四边形和五边形的内角和(多媒体出示)。考虑到学生空间思维能力的局限性,我用多媒体课件演示,通过画对角线的方法,把四边形和五边形都分成几个小三角形,让学生们体会到学以致用,通过本道题练习,既能对学生进行思维训练,又能培养应用知识的能力,更能培养学生的创新精神。
这样的练习安排可以兼顾不同能力的学生,从易到难,逐步加深,还富有趣味性。在保证基本教学要求的同时,尽量满足学生的学习需要,更重要的是数学思维得到不断的发展。
四、课堂小结:
我认为一堂成功的好课要有一个好的开头,更要讲究一个完整的结尾,我在课堂的最后进行这样的小结:同学们通过这节课的学习,学到了什么?有什么感受呢?学生们个个跃跃欲试,畅所欲言,欲罢不能,把整堂课的气氛推向了最高潮。
说板书设计【多媒体展示板书】
最后,说说我的板书设计,遵循了板书的目的性原则、概括性原则、简炼性原则、直观性原则,简洁明了,能帮助学生把整堂课的学习内容融入大脑。
【说课结束语】
本节课通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦,从根本上改变旧的教学模式,使学生在自主中学习,在探究中发现,在发现中成长,最终实现学生可持续性发展。
以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
数学三角形内角教案(篇2)
高一数学教案三角形的内角和篇1
教学目的:
(1)明确函数的三种表示方法;
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;
(3)通过具体实例,了解简单的分段函数,并能简单应用;
(4)纠正认为“y=f(_)”就是函数的解析式的片面错误认识.
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
教学过程:
引入课题
复习:函数的概念;
常用的函数表示法及各自的优点:
(1)解析法;
(2)图象法;
(3)列表法.
新课教学
(一)典型例题
例1.某种笔记本的单价是5元,买_ (_∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(_) .
分析:注意本例的设问,此处“y=f(_)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;
解析法:必须注明函数的定义域;
图象法:是否连线;
列表法:选取的自变量要有代表性,应能反映定义域的特征.
巩固练习:
课本P27练习第1题
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:
第一次 第二次 第三次 第四次 第五次 第六次 王 伟 98 87 91 92 88 95 张 城 90 76 88 75 86 80 赵 磊 68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;
本例能否用解析法?为什么?
巩固练习:课本P27练习第2题
例3.画出函数y = | _ | .
解:(略)
巩固练习:课本P27练习第3题
拓展练习:
任意画一个函数y=f(_)的图象,然后作出y=|f(_)| 和 y=f (|_|) 的图象,并尝试简要说明三者(图象)之间的关系.
课本P27练习第3题
例4.某市郊空调公共汽车的票价按下列规则制定:
(1) 乘坐汽车5公里以内,票价2元;
(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).
已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.
解:设票价为y元,里程为_公里,同根据题意,
如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量_的取值范围是{_∈N_| _≤19}.
由空调汽车票价制定的规定,可得到以下函数解析式:
()
根据这个函数解析式,可画出函数图象,如下图所示:
注意:
本例具有实际背景,所以解题时应考虑其实际意义;
本题可否用列表法表示函数,如果可以,应怎样列表?
实践与拓展:
请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)
说明:象上面两例中的函数,称为分段函数.
高一数学教案三角形的内角和篇2
教学目标:
(1) 了解集合、元素的概念,体会集合中元素的三个特征;
(2) 理解元素与集合的"属于"和"不属于"关系;
(3) 掌握常用数集及其记法;
教学重点:掌握集合的基本概念;
教学难点:元素与集合的关系;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流;
(3) 非负奇数;
(4) 方程的解;
(5) 某校2021级新生;(6) 血压很高的人;
(7) 的数学家;
(8) 平面直角坐标系内所有第三象限的点
(9) 全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA
例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A
4A,等等。
6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。
7.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N_或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
(二)例题讲解:
例1.用"∈"或""符号填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。
例2.已知集合P的元素为, 若3∈P且-1P,求实数m的值。
(三)课堂练习:
课本P5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。
作业布置:
1.习题1.1,第1- 2题;
2.预习集合的表示方法。
高一数学教案三角形的内角和篇3
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作N,
(2)正整数集:非负整数集内排除0的集记作N_或N+
(3)整数集:全体整数的集合记作Z,
(4)有理数集:全体有理数的集合记作Q,
(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集记作N_或N+Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,
或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:
(1)当x∈N时,x∈G;
(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G
证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
则x=x+0_=a+b∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整数,
∴=不一定属于集合G
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
七、课后记:
高一数学教案三角形的内角和篇4
教学目标
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.
(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.
(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.
3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.
教学建议
教材分析
(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.
(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.教法建议
(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.
高一数学教案三角形的内角和篇5
一、教学目标:
1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.
2.培养广泛联想的能力和热爱数学的态度.
二、教学重点:
在于让学生领悟生活中处处有变量,变量之间充满了关系
教学难点:培养广泛联想的能力和热爱数学的态度
三、教学方法:
探究交流法
四、教学过程
(一)、知识探索:
阅读课文P25页。实例分析:书上在高速公路情境下的问题。
在高速公路情景下,你能发现哪些函数关系?
2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?
问题小结:
1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。
2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。
3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。
(二)、新课探究——函数概念
1.初中关于函数的定义:
2.从集合的观点出发,函数定义:
给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;
此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。
定义域,值域,对应法则
4.函数值
当x=a时,我们用f(a)表示函数y=f(x)的函数值。
数学三角形内角教案(篇3)
一、教学目标
1.知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。
2.能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。
3.情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。
二、教学过程
(一)创设情境,导入新课
1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?
(学生畅所欲言。)
2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!
师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,
3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)
(二)自主探究,发现规律
1、认识什么是三角形的内角和。
师:你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
2、探究三角形内角和的特点。
①让学生想一想、说一说怎样才能知道三角形的内角和?
学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)
②小组合作。
通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。
引导学生推测出三角形的内角和可能都是180°。
3、验证推测。
让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。
(小组合作验证,教师参与其中。)
4、全班交流,共同发现规律。
当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。
学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)
5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
(三)巩固练习,拓展应用
根据发现的三角形的'新知识来解决问题。
1、完成“试一试”
让学生独立完成后,集体交流。
2、游戏:选度数,组三角形。
请选出三个角的度数来组成一个三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。
3、“想想做做”第1题
生独立完成,集体订正,并说说解题方法。
4、“想想做做”第2题
提问:为什么两个三角形拼成一个三角形后,内角和还是180度?
5、“想想做做”第3题
生动手折折看,填空。
提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?
6、“想想做做”第5题
生独立完成,说说不同的解题方法。
7、“想想做做”第6题
学生说说自己的想法。
8、思考题
教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导
出四边形的内角和公式吗?
(四)课堂总结
本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。
三、教后反思:
“三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:
1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。
2、已知三角形两个角的度数,会求出第三个角的度数。
本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。
(一)创设情景,激发兴趣
俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。
(二)给学生空间,让他们自主探究
“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。
(三)以学定教,注重教学的有效性
新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。
在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。
数学三角形内角教案(篇4)
教学目标
⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与
教师活动:学生活动媒体应用设计意图
目标达成
导入新课
一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?
我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?
三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)
由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系
二、动手操作,探究新知
1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数
把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?
我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3.学生测量
4.汇报的测量结果
除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°
5、巩固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?
环节
三、应用所学,解决问题。
1、基础练习(课本第68页做一做)
在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。
2、判断题
(1)大三角形的内角和大于180度。()
(2)三角形的内角和可能是180度。()
(3)一个三角形中最多只能有一个直角。()
(4)三角形的三个内角分别可能是30度,60度,70度。()
3、求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。
四、总结:这节课你有什么收获?
数学三角形内角教案(篇5)
教学目标:
1、掌握三角形内角和是180°,并能应用这一规律解决一些实际问题。
2、让学生经历“猜想、动手操作、直观感知、探索、归纳、应用”等知识形成的过程,掌握“转化”的数学思想方法,培养学生动手实践能力,发展学生的空间思维能力。
3、在活动中,让学生体验主动探究数学规律的乐趣,体验数学的价值,激发学生学习数学的热情,同时使学生养成独立思考的好习惯。
教学重点:
让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程。
教学难点:
三角形内角和的探索与验证。
教学准备:
量角器各种类型的三角形(硬的纸板)三角板
教学过程:
一、设疑激趣,导入新课
师:今天老师给大家带来了一位朋友(课件)出示三角形,
师:对于三角形你有哪些认识与了解。
生:三角形有锐角三角形、直角三角形、钝角三角形
生:由三条线段围成的平面图形叫三角形。
师:介绍内角、内角和
三角形中每两条边组成的角叫做三角形的内角。
师:三角形有几个内角。
生:三个。
师:这三个角的和,就叫做三角形的内角和。你知道三角形内角和是多少度?
生1:我通过直角三角板知道的
生2:我通过长方形中四个角都是直角,是360度,三角形是长方形的一半,所以是180度
生3:我预习了,三角形内角和就是180度)
师:是不是向他们说的一样,所有的三角形内角和都是180度呢?
二、自主探索,进行验证
师:你打算怎样验证呢?
生1用量角器量出每个角的度数,再加一加看看是不是180度生2:把三角形撕下来
师:怎么撕?象这样撕吗?(作乱撕状),能说的详细些具体些吗?生2:(补充),把三个角撕下来,拼在一起,看能不能拼成一个平角
生3:把三个角顺次画下来也可以
生4:拼一拼的方法
师:好!同学们想出了这么多办法,下面就用你喜欢的方法验证师:CAI多媒体课件展示操作要求:
合作探究:
1、每四人一组,每组至少选两个三角形,用你喜欢的方法验证
2、看那个小组验证的方法新、方法多
师:在巡视,并进行个别操作指导
三、交流探索的方法和结果
孩子们探索的方法可能有三个:
生1:一是用量角器量各个角,然后再算出三角形中三个角的度数和,用这种方法求的结果可能是180度也可能比180度小一些,也可能比180度大一些。
生2:二是用转化法,把三角形中三个角剪下来,拼在一起成为一个平角,由此得出三角形中三个角的和是180度。
生3:三是折一折,把三个角折在一起,折在一起成为一个平角,由此得出三角形中三个角的和是180度。
四、归纳总结,体验成功
师:孩子们,三角形中三个角的度数和到底是多少度呢?
生:180度。
五、拓展应用
1、基础练习
2、等边三角形、等腰三角形、直角三角形
六、课堂小结
谈一谈自己的学习收获。
数学三角形内角教案(篇6)
教学目标:
1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生合作交流的能力,体验学习数学的快乐。
教学过程:
教学设想
学生活动
备注
一、 创设情境
1、故事导入
有一天,两个三角形吵了起来,大三角形说自己的个头大,所以内角比小三角形大。可小三角形说别看自己个头小,但角却不小。他们争得不可开交,始终争论不出结果。到底谁的内角大,谁的内角小,请大家帮忙想个办法,好吗?
生:可以用三角板量一量每个内角的度数,也就求出三角形内角的和,就知道谁大谁小了。
这节课,我们就来研究三角形的内角和。
二、合作交流
量一量
(1)师:同学们,你们的书上有许多三角形,现在就请你们选择喜欢的三角形,到小组里量出每个角的度数。再计算出三角形内角的和,并填好小组活动记录表。
(2)各小组汇报记录结果,并说说有什么发现?
生:每个三角形的三个内角和接近180度。
师:三角形的内角和就是180度。接近180度的是在测量过程中出现了一点小的误差。
(3)除了用测量的方法能计算出三角形的内角和等于180度外,还有许多好的方法呢!
撕一撕
引导学生把一个三角形的三个角撕一下,拼一拼。
折一折
自己试着折一折,也会发现利用折一折,可以知道三角形内角和是180度。
师小结:刚才,同学们用量、撕、折的方法知道了三角形内角和是180度,现在你们可以告诉这两个三角形不要吵了,它们的内角是一样大的。
算一算
这两个三角形很感谢同学们,你们看,它们的好朋友也来了,它们只知道自己两个角的度数,你们能帮它们算出另外一个角的度数吗?
尝试:阅读与思考第1、2题
反馈交流
三、巩固练习
完成练习与应用第1、2题
小组活动开始
小组活动记录表第()组
数学三角形内角教案(篇7)
教学内容:
义务教育课程标准实验教科书xx版小学数学四年级下册第42~46页
教学目标:
1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出三角形内角和是180的结论,会应用这一规律进行计算。
2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。
教学过程:
一、创设情境,导入新课
1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?
2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!
播放课件
详细内容说明:一个大的直角三角形说:我的个头大,我的内角和一定比你们大。一个钝角三角形说:我有一个钝角,我的内角和才是最大的。一个小的锐角三角形很委屈的样子说:是这样吗?(它们在争论谁的内角和大。)
你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。
【设计意图】从学生的心理、兴趣和意愿为出发点,利用故事的形式提出疑问,激发学生的学习兴趣,提高学生探索的积极性。
二、自主探究、发现规律
1、探究三角形内角和的特点
(1)量一量
师:你认为怎样能知道三角形的内角和?
生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。
学生活动(小组合作———每组准备三种不同的三角形)量角,求和,完成第43页的表格。
学生交流汇报测量结果。
师:从刚才的交流中,你发现了什么?
生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180。
(在量的过程中,由于误差,有的学生可能算出内角和在180左右,这时教师要相机诱导:在测量的过程中出现一些误差是正常的,因为同学们画的角不够标准,量角器的不同,还有本身测量的原因都可能导致误差。)
师:看来量一量会出现误差,那么你还有其它的更科学的办法进行验证吗?
(2)拼一拼
学生分小组活动,教师参与学生的活动,并给予必要的指导。
学生展示交流,师:从大家的交流中,我们发现都可以把三角形的三个内角拼成一个平角,证明三角形内角和是180 。
(3)折一折
小组活动,学生交流
生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360,所以三角形的内角和就是它的一半,是180。
生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90,因此三角形内角和就是180。
2、归纳
师:通过刚才的活动,我们得出了什么结论?
生:三角形的内角和等于180。
3、师谈话:三个三角形争论的问题现在能解决了吗?你现在想对这三个三角形说点什么?
学生畅所欲言,对得出的规律做系统的整理。
【设计意图】动手实践,自主探索,亲身体验,是学习数学的重要方式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也使学生学到了怎样由已知探索未知的思维方式与方法,培养了他们主动探索的精神。
三、灵活运用,巩固练习
师:好,大家已经发现了三角形内角和是180这一规律,你能应用这个规律解决一些实际的问题吗?
1、判断
钝角三角形比锐角三角形的内角和大。 ( )
锐角三角形的两个内角和小于90。 ( )
一个三角形最少有两个锐角。 ( )
一个钝角三角形最少有一个钝角。 ( )
学生判断并说出理由。
2、自主练习第6题
练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。
小结:以后如果遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简单又精确。
3、游戏: 选度数,组三角形
(课件显示如下)
请选出三个角的度数来组成一个三角形
10 18 15 150 130 72
20 50 70 35 75
52 56 54 58 60
学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,并说出理由。
[设计意图]用已学到的新知解决实际数学问题,认识学数学的价值,再次体验成功,增强学习数学的兴趣。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探索性和开放性的问题,注重拓宽学生的思维活动空间。
四、课堂总结、深化认识
谈话:这节课你学会了什么?解决了什么问题?是怎样解决的?
【设计意图】不仅从知识方面进行总结,还引导学生回顾发现问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培养了学习兴趣。
课后反思:
本节课学生以小组为单位进行合作学习,从自己的已有经验出发,积极地进行操作、测量、计算,并对自己的结论进行思考、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,教师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有积极性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础。
YJS21.cOm更多幼儿园教案小编推荐
三角形的内角和教案六篇
居安思危,思则有备,有备无患。杰出的幼儿教学工作者能使孩子们充分的学习吸收到课本知识,为了将学生的效率提上来,老师会准备一份教案,教案有利于老师在课堂上与学生更好的交流。幼儿园教案的内容要写些什么更好呢?有请驻留片刻,小编为你推荐三角形的内角和教案六篇,但愿对你的学习工作带来帮助。
三角形的内角和教案(篇1)
(一)创设情境,悬念引入
一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的`关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。
具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。
(二)探索新知
1、动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。
(将拼图展示在黑板上)
2、尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。
3、证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
4、学以致用,反馈练习
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,则∠C=?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B—∠C=40°,则∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?
解:设∠A=x°,则∠B=3x°,∠C=5x°
由三角形内角和定理得,x+3x+5x=180
解得,x=20
∴∠A=20°∠B=60°∠C=100°
(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?
第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。
通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。
5、巩固提高,以生为本
(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。
(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。
本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用。能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。
6、思维拓展,开放发散
如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。
本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。
(三)归纳总结,同化顺应
1、学生谈体会
2、教师总结,出示本节知识要点
3、教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
(四)作业
1、必做题:习题3.1第10、11、12题
2、选做题:习题3.1第13、14题
(五)板书设计
三角形内角和
学生拼图展示已知:求证:
证明:开放题:
三角形的内角和教案(篇2)
“三角形内角和”教学设计
教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。 教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。 教学重点:
学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。 教学难点:
学生理解不同探究方法的内涵和对所得结论的灵活运用。 设计思路:
三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。
同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。
教学准备:多媒体课件、三角尺等。 教学过程:
一、激趣引入
(一)认识三角形内角
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点? 生1:三角形是由三条线段围成的图形。 生2:三角形有三个角,……
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠
1、∠
2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。 (利用交互式电子白板的画图、手写功能,直接演示找三角形三个内角的过程并标示出来,帮助学生理解三角形的内角的概念。)
(二)设疑,激发学生探究新知的心理 师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理) 生:能。 师:请听要求,画一个有两个内角是直角的三角形,开始。 师:有谁画出来啦? 生1:不能画。
生2:只能画两个直角,围不成三角形。 生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。 师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道? 生:想。
师:那就让我们一起来研究吧! (揭示矛盾,巧妙引入新知的探究)
(利用交互式电子白板的画图、手写功能,让学生直观感受三角形中不可能有2个90度的内角。设置认知矛盾,使学生在矛盾中去发现问题、探究问题。)
二、动手操作,探究新知
(一)研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形) 师:也就是这个三角形各角的度数。它们的和怎样? 生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么? 生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。 (利用交互式电子白板的手写功能,直接在由三角板抽象出来的三角形上标出各个角的度数并列式求出其内角和。)
(二)研究一般三角形内角和 1.猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。 生1:180°。 生2:不一定。 ……
2.操作、验证一般三角形内角和是180°。 (1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧! 师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
(2)小组汇报结果。
师:请各小组汇报探究结果。 生1:180°。 生2:175°。 生3:182°。 ……
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢? 生:把它们剪下来放在一起。 1.用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。 2.汇报验证结果。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。 生3:钝角三角形的内角和还是180°。 3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
(此部分内容是本节课的重点及难点所在,因此,在教学中:
1、利用交互式电子白板资源共享中即时显示度数的量角器,令学生上台演示量三角形各个角的大小的操作变得更简单、准确。增强了师生及生生之间的互动性。
2、利用交互式电子白板强大的链接功能,将网络资源链接过来:动画形象演示“拼”的方法验证三角形内角和的过程,弥补了人工操作无法直观再现学生的思维过程的短处。通过以上两点,将学生在研究三角形内角和为什么是180°的思维过程呈现出来,达到突出重点以及突破难点的目的。) 师:我们可以得出一个怎样的结论? 生:三角形的内角和是180°。
(屏幕显示:三角形的内角和是180°学生齐读一遍。)
(利用交互式电子白板的隐藏、拖拽功能,将结论在适当的时候呈现。)
师:为什么用测量计算的方法不能得到统一的结果呢? 生1:量的不准。
生2:有的量角器有误差。 师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因 为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢? 生:不可能。 师:为什么?
生:因为两个锐角和已经超过了180°。 师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2.按要求计算。(数学信息较为隐藏和生活中的实际问题)
(
1、利用交互式电子白板的屏幕捕获、链接等功能,让练习逐步呈现,让学生解决问题时更加专注。
2、利用交互式电子白板的手写功能,将学生解决问题的多种方法同时呈现,进行对比,加强了师生及生生之间的互动交流。)
五、全课小结。
师:今天你学到了哪些知识?是怎样获取这些知识的?(学生自由发言) (利用交互式电子白板的即时记忆功能,用课堂生成的课件资源回顾总结,便于学生再次回顾课堂学习过程,明确学习所得。)
三角形的内角和教案(篇3)
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知 引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
【设计意图:也自然导入新课。】
二、提出问题 引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】
三、操作验证 形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设: ①量算法 ②剪拼法 ③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
【设计意图:
《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】
四、应用结论 解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测: 三角形的内角和是180°?
验证: 量 拼
结论: 任意三角形的内角和是180°
三角形的内角和教案(篇4)
探索与发现
(一)-----三 角 形 内 角 和
说 课 稿
一、教材分析
“三角形内角和”是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了三角形的主要特征和三角形的分类的基础上进一步探究三角形有关性质中的三个内角的性质。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步探索发现三边性质的基础。
二、设计思路
基于教材的内容安排和呈现结构特点我拟定本节课的教学目标为: 1.通过自主探索、合作交流,发现三角形内角和等于180度。
2.通过学生画、量、撕拼、折拼、观察等活动,培养学生的探索发现动手操作能力及阅读插图找信息的能力。
3.能运用三角形内角和这一性质解决简单的实际问题。
4.让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:
探索并发现三角形内角和等于180度。教学难点:
运用三角形的内角和的性质解决简单的实际问题。教学方法:
课件演示、小组合作 教学准备:
三角尺、量角器、三角形纸片、双面胶、课件 教学流程:
根据设定的教学目标和教材呈现的各个情境主题图为线索,我把“三角形内角和”的知识分四个步骤来完成:
一、“创设情境,建立模型”:
复习三角形的有关知识为新知的学习做好铺垫,改编创设书上27页“大小三角形争论”情景引入新课,引起学生好奇心,激发探究欲望。
二、动手操作,自主探究: 1.活动一,量一量,通过测量发现大小,形状不同的每个三角形,三个内角的度数和都接近180度;
2.活动二,撕一撕,拼一拼。学生会发现撕下的三个角,可以拼成一个平角,也进一步证明了三角形的三个内角和是180°。
3.活动三,折一折。折叠一个三角形的三个内角,把三个角折叠在一起,三个角在一条直线上,从面得到三角形的三个内角和等于180°。
学生通过上面三个活动的操作,得出了一个结论:三角形内角和是180°.三、巩固与应用
利用今天所学知识回到课始判断大小三角形谁说得对.设计一般三角形已知两个角度度数,求第三个角的度数,学会运用三角形内角和是180度来解决,在这里我也注重对学生阅读插图能力的培养,让学生看书先说说图上告诉了哪些信息,要求什么,然后再想办法计算。
四、总结与拓展
假如你是一个三角形,你该如何向别人介绍自己? 根据三角形内角和等于180°,你能求出四边形的内角和是多少吗?
富兵
2014年3月4日
北师大版四年级数学下册
探 索 与 发 现
(一)----三角形内角和(说课稿)
官 庄 学 区 中 心 小 学
富 兵
2014年3月4日
三角形的内角和教案(篇5)
一、说教材
1、教学内容苏教版《义务教育六年制小学教科书·数学》四年级下册第130~131页。
2、教材简析
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的。通过学习三角形的内角和使学生学会求三角形中第三个内角的度数的方法,同时让学生经历探索、猜想、归纳等过程,发展学生的合情推理能力。
3、教学目标
(1)让学生探索发现三角形的内角和是180°。
(2)通过动手拼摆等活动提高学生的动手能力和思维能力,感受数学的转化思想。
(3)进一步发展学生空间观念。
4、教学重点
探索发现三角形的内角和是180°。
5、教具准备
多媒体课件
6、学具准备
每人准备几个不同类型的三角形。
二、说教法、学法
新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证,通过实验、操作、交流等活动,获得知识与能力,掌握解决问题的方法,获得情感体验。
三、说教学过程
(一)猜角设疑,揭示课题我们来做个游戏叫“猜角”。请同学们拿起桌子上量好角角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。想信吗?(不相信),下面我们来试一试。(师生猜角活动。)师:你想知道老师是怎么猜的吗?其中的奥秘就在今天我们要探索的知识。(板书:“的内角和”并齐读课题)[设计意图]在教学中激励学生展开积极的思维活动。先创设猜角的游戏情境,让学生对三角形三个角的度数关系产生好奇,引发学生的探究欲望。通过本节课的学习,你有什么收获?你还有什么问题吗?
三角形的内角和教案(篇6)
三角形内角和定理的证明说课稿
马建禄
一、说教材:
(一)、教材的地位及作用:
本节课是北师大版实验教科书八年级下册第六章第五节的内容。是在学习了平角、同位角、内错角、同旁内角、探索两直线平行的条件及三角形内角和定理的基础上,进一步探索三角形内角和定理的证明.为今后学习多边形内角和、外角和,圆等知识打下良好的基础,具有承上启下的作用。且三角形内角和定理在日常生活中,如机械制造、工程设计、国防等领域具有广泛应用。
(二)、教学目标设计:
1、知识与技能:
(1)掌握“三角形内角和定理”的证明及其简单应用。(2)对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
(3)通过一题多解,初步体会思维的多向性,引导学生的个性化发展。
2、过程与方法:通过动手操作、探索、观察、分析、归纳培养学生获得数学结论的能力。
3、情感与价值观:培养学生创造性,弘扬个性发展,体验解决
用为主线来展开。采用了教具演示的教学手段,使图形直观、形象地便于学生理解。以学生发展为本的原则,我运用启发式教学方法,引导学生动手操作、探索、讨论、归纳。在教学过程中,引导学生去探索,使学生感受到添加辅助线的数学思想,更好地掌握三角形内角和定理的证明及简单的应用,从而实现教师是引导者和学生是主体者的课堂教学理念。
(二)说学法
根据本节课特点和学生的实际,八年级学生基本具备动手操作、探索讨论、猜想、说理的能力,主要采用“操作—观察—讨论—证明—应用 ”的探究式的学习方式,教会学生“ 动手做,动脑想,大胆猜、会说理,学致用”的学习方法。增加学生参与的机会,使学生在掌握知识、形成技能的同时,培养科学的学习方法和自信心。
四、说教学过程设计
教学过程的设计应根据学生的实际情况,教法、学法的确定,以完成教学目标为目的。
(一)、创设问题情境,引入新课:
1.提出疑问:前面的课程学习了三角形三条边的关系,那么三角形的三个内角又存在怎样的关系呢?
2.动手实践:我们知道三角形三个内角的和等于180°.你还记得这个结论的探索过程吗?
三角形内角和教案汇总
“三角形内角和教案”教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。写好教案课件,可以避免重要内容被遗忘,大家是不是担心写不好教案课件?为满足你的需求,栏目小编特别编辑了“三角形内角和教案”,自信能够帮助你找到适合自己的内容!
三角形内角和教案 篇1
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题2此实验给我们一个什么启示?
问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
三角形内角和教案 篇2
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、
(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
(3)等边三角形的3个内角都是()。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。
(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。
2、判断
(1)一个三角形中最多有两个直角。()
(2)锐角三角形任意两个内角的和大于90。()
(3)有一个角是60的等腰三角形不一定是等边三角形。()
(4)三角形任意两个内角的和都大于第三个内角。()
(5)直角三角形中的两个锐角的和等于90。()
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
三角形内角和教案 篇3
《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页
1、透过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、透过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想.
3、透过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践潜力.
多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。
此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)
师:请大家仔细观察,它把这条绳子围成了什么三角形?
师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?
师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)
(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?
每人从学具筐中任选一个三角形,指出它的内角。
师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?
(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?
(2)直角三角形与钝角三角形同上。
(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.
刘老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。
学生汇报测量结果。
师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?
师小结:看来采用测量的方法会有误差,学习数学要用这种严谨的态度来对待,咱们再看看别的方法。
请用撕拼方法的学生上台展示撕拼的过程。
师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?
师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。
如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。
师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?
师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)
师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。
明白了这个结论能够帮忙我们解决那些问题呢?
1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?
师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?
在一个三角形ABC中,已知A45°,B85o,求с的度数。
在一个直角三角形中,已知с52o,求Α的度数。
爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
3、思考:
你能画出一个有两个直角或两个钝角的三角形吗?为什么?
这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。
【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:
1、精心设计学习活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生用心向上的学习情感。
整节课的学习资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长.
三角形内角和教案 篇4
《三角形的内角和是180°》教学设计
教学思路:
由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。
学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。
教学目标:
1、知识技能目标:
(1)理解和掌握三角形的内角和是180°;
(2)运用三角形的内角和知识解决实际问题和拓展性问题;
2、能力技能目标:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感与态度目标:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点
重点:理解掌握三角形的内角和是180°。
难点:运用三角形的内角和知识解决实际问题。教具、学具准备:
教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。
教学过程:
一、创设情境 生成问题
(一)课件出示三角形争吵图
在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?
(二)猜想什么是三角形的内角和
师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?
课件演示三角形的内角(内角和)
二、探索交流 解决问题
(一)探究猜想内角和的度数
师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?
生:用量角器进行度量。
师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。
生回答。(回答可能不一样。)
师:同学们通过刚才的汇报你有什么想说的吗?
生:我发现内角和的度数不一样。
师:是啊,什么原因呢?
生:可能是量的时候出现了差错。
师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?
板书课题:三角形的内角和
(二)讨论验证方法
以小组为单位来想一想我们可以怎么样来验证?
小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)
(三)动手验证
生活动,师巡视
(四)汇报
师:哪个小组来汇报你们的验证方法和验证结论?
组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。
师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?
组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。
组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。
哪个小组的同学最想上来展示一下你们的研究成果?
师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?
(动画演示剪拼验证过程)
边演示边解说。
见证奇迹的时刻到了,你发现了什么?
师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。
课件演示独特折法
同学们还有不同的验证方法吗?
组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。
组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。
出示:普通折法
师:还有不同折法吗?
组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。
师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?
组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。
师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?
课件演示长方形推理法。
师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。
看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。
小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。
三、巩固应用 内化提高
同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!
1、根据已知角的度数求出未知角的度数
(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)
2、求等边三角形各内角的度数
3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)
4、放风筝:
同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?
一个等腰三角形的风筝一个底角是70度,求顶角的度数?
5、挑战极限:
同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?
根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?
四、回顾整理反思提升
同学们通过这节的学习你有哪些收获?
三角形内角和教案 篇5
一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。
本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。
从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
三、说教学目标
根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。
【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。
首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
根据视频中三角形的对话,顺势引出题目——三角形的内角和。
设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。
接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。
此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。
接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。
练习题组设计如下:
第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?
设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?
这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识
在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?
这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。
为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。
三角形内角和教案 篇6
教学目的:
1、学生通过量、折、拼、剪、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。在应用三角形内角和知识解决问题的过程中促进学生数学思维发展。
3、让学生在探究数学的过程中体验发现的乐趣,增强学好数学的信心。
教学重点:
让学生探究猜想并验证三角形内角和等于180°。
教学难点:
理解所有三角形的内角之和都是180°。
教学准备:
不同类型的三角形纸片,剪刀,量角器。
教学过程:
一、复习旧知,提示课题
1、一个平角是多少度?1个平角等于几个直角?
2、长方形有什么特征?(生汇报:长方形对边相等,有4个角,4个角都是直角)
3、三角形按角分可分成几类?
4、引出内角的概念,我们把图形里面的角叫做内角。三角形有几个内角?三角形三个内角的度数和叫做三角形的内角和。今天我们一起来研究三角形的内角和。(板书课题:三角形的内角和)
设计意图:学生对数学知识的学习,在很多时候都是对已有数学知识的延伸和发展。本节课,我充分认识到学生已有知识对新知的铺垫和孕伏作用,设计了三道复习题,把角的度数,长方形的特征,三角形的分类这些原本零散的数学知识纳入到一个整体,让旧知的复习、新知的孕伏和引入有机的结合起来。
二、创设情境,大胆猜想
1、长方形的内角和是多少度?为什么?如果沿长方形的一条对角线剪开,长方形就变成了两个什么图形?
2、出示三个三角形,说一说分别属于哪一类?(板书:锐角三角形 直角三角形 钝角三角形),判断这三个三角形的内角和谁大?为什么?(板书:内角和)
3、你猜三角形的内角和是多少度?(板书:是180°)
设计意图:数学教学最为重要的是要培养学生对数学的感觉,给学生一双数学的眼睛,由于学生已经知道长方形的内角和是360°,抓住时机,要求学生猜一猜三角形的内角和是多少度,以此培养学生的探索精神和创新意识。
三、动手操作,探究验证。
1、小组合作。
同学们能够用什么方法来验证三角形的内角和是180°,请同学们小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!
2、汇报交流。
谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是180°的?
量一量:
生:我们小组的方法是用量角器测量出三个内角的度数,再求出它们的和。
师:你们的方法是分别测量三个内角的度数,那你们测量的三个内角的度数分别是多少?(生汇报时吩咐学生记录下来并算出内角和)你觉得这个小组的方法怎样?(抽生评价)这种方法可出现误差吗?为什么?(生回答)
师:能不能因此否定我们刚才的猜想呢?还有不同的方法吗?
折一折:
生:我们是通过折一折的方法得出结论的。(边说边演示)。我将直角三角形的两个锐角折向直角,三个顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°,所以我得出结论:直角三角形的内角和是 180°。
生:我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是 180°。
生:我拿一个钝角三角形,用同样的方法去折,发现钝角三角形的三个角也正好拼在一起组成一个平角,所以我得出结论:钝角三角形的内角和是 180°。
生:直角三角形的三个角也可以用同样的方法折拼成一个平角。
师:真是心灵手巧的孩子,让我们把掌声送给他们!动脑筋的同学真多,请你说。
拼一拼:
生:我发现两个直角三角形正好可以拼成一个长方形,长方形的四个角都是直角,所以,长方形的内角和是 360°。再除以2,就得到直角三角形的内角和是180°。
师:能从不同的角度去思考问题,你真棒!
剪一剪,摆一摆:
生:我们将每个三角形的三个角都剪下来,再把每个三角形的三个角的顶点重合,发现每个三角形的三个角都组成了一个平角,这就证明了三角形的内角和是180°。
师:你们只验证了三个三角形,为什么从中能得出“三角形的内角和是180°”的结论呢?
生:因为三角形按角分可以分为三类,钝角三角形,直角三角形和锐角三角形。我们已经通过各种的方法证明了这三种类型的三角形的内角和是180°,所以可以得出“三角形的内角和是180°”的结论。
师:说得真好,我们给他鼓掌。
师概括小结。:刚才同学们用量、折、拼、计算、推理、剪等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,(师手指课题)你们真不错,我为你们成功的学习表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是180°”。
设计意图:新课标注重学生三维目标的培养,在这里,我要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。小组合作是课程改革所倡导的一种学习方式,本节课,我立足于学生的创新意识和实践能力的培养,把学习的时空还给学生,大胆地开展小组合作学习,使学生通过量、折、拼、剪、摆等操作学具活动主动掌握三角形内角和是180°,同时学生的发散思维也能得到有效培养。
四、实践应用,解决问题
1、那么同学们能不能根据三角形的内角和是180°求出三角形中任意一个角的度数,请完成书85页上“做一做”。
2、请完成书88页第9题
(提示:这一题只知道一个角的度数,另一个角是多少度,从哪看出来的?直角三角形中的一个锐角还可以怎样算?)
3、请完成书88页第10题
设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。最后让学生运用结论解决实际问题,为学生把知识转化为能力起到积极的促进作用。
五、拓展延伸,活用新知
现在老师手中有一个三角形,我一刀把它剪成两个图形,你猜这两个会是什么图形,它们的内角和是多少度?
把刚才的四边形剪去一个角,得到一个五边形,它的内角和是多少度?
继续剪掉一个角,得到一个六边形,它的内角和是多少度?你发现有什么规律吗?
(学生猜测→动手操作→计算内角和→归纳多边形内角和计算公式)
六、课堂小结,内化知识
今天,你有什么收获?
板书设计:
锐角三角形
因为 直角三角形 内角和是180°
钝角三角形
所以 三角形的内角和是180°
三角形内角和教案 篇7
【教材分析】
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。
【学习目标】
知识目标:掌握三角形内角和是180度这一规律,并能实际应用。
能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。
情感目标: 让学生体会几何图形内在的结构美。
【教学过程】
一、 情景激趣,质疑猜想。
播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。
钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”
师:想一想,什么是三角形的三个内角的和。
生:三角形的三个内角的度数和。
师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?
学生进行猜想,自由发言。
(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)
二、自主探究,验证猜想
师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?
生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。
生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。
生3:我把三角形的三个角撕下来,拼一拼是否180°。
生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
……
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)
学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。
(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)
三、交流评价,归纳结论。
学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。
实验报告单
实验名称
三角形内角和
实验目的
探究三角形内角和是多少度。
实验材料
尺子
剪刀
量角器
锐角三角形纸片
直角三角形纸片
钝角三角形纸片
我的方法
我的发现
我的表现
自评
互评
学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。
师生共同归纳,得出结论:
三角形内角和等于180°
(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)
四、分层练习,巩固创新。
①课件出示:
师:这个三角形是什么三角形?知道几个内角的度数?
生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。
师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。
学生做完后反馈讲评时让学生说说自己的方法。
生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。
②学生完成完成P29的第一题。
引导学生按照前面的方法独立完成,教师巡视,集体订正。
③猜一猜三角形的另外两个角可能各是多少度。
同桌同学互相说一说。(答案不唯一)
④小组操作探究活动。
让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。
方 法
四边形内角和
用量角器量出每个内角的度数,并相加。
把四边形四个角剪下来,拼在一起。
把四边形分为两个三角形。
填表后让学生想一想、互相说一说,四边形内角和是多少度?
(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)
三角形内角和教案 篇8
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三、自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法:
1、教师取出三角形教具,把三个角撕下来,拼在一起,
2、师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四、巩固练习,知识升华。
1、完成课本第28页的“试一试”第三题。
2、想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3、有一个四边形,你能不用量角器而算出它的四个内角和吗?
意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
五、总结延伸
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教案 篇9
一、教学目标:
1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。
2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。
3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。
二、教学重难点
教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程
教学难点:运用三角形的内角和解决实际问题。
三、教具、学具准备:
课件、一副三角尺、几个三角形。学生准备一副三角尺。
四、教学过程:
一、创设情境 揭示课题。
师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形
师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类
师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!
师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。
师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)
师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。
今天我们就来研究有关三角形内角和的知识。(板书课题)
二、探索交流,解决问
(一)、大胆猜想,产生分歧
师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)
生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)
生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)
生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
(二)验证猜想,解决问题
师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。
师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)
师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。
师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°
师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这
三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?
生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。
师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。
师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。
师:谁愿意第一个向大家介绍你们组的验证方法?
组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!
师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?
组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)
(展示:3个角折成了一个平角。)
师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?
组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °
师:(出示一个很小的三角形)它呢? 生:180 °
师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?
(生有的答360°,有的180 °。)
师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?
师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)
师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。
师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°
三、巩固应用,内化提高
1、解决问题:
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?
四、回顾整理,反思提升
通过今天的学习,大家有什么收获?
拓展创新
小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
三角形内角和教案 篇10
探索与发现:三角形内角和
课型
新授课
设计说明
本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。
1.重视知识的探究与发现。
在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。
2.重视学生的合作探究学习。
使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。
课前准备
教师准备:PPT课件 量角器 直尺 三角尺
学生准备:量角器 三角尺
教学过程
一、常识导入。(3分钟)
1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。
2.导入新课:这节课我们也来验证一下三角形的内角和。
1.倾听教师的介绍,了解帕斯卡。
2.明确本节课的学习内容。
1.填空。
(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分钟)
(一)量算法。
1.探究特殊三角形的内角和。
(1)出示一副三角尺,引导学生说一说各个角的度数。
(2)引导学生算一算它们的内角和各是多少度。
(3)引导学生得出结论。
2.探究一般三角形的内角和。
(1)引导学生猜一猜其他三角形的内角和是多少度。
(2)组织学生验证一般三角形的内角和是180°。
①引导学生量出每个内角的度数,再计算三个内角的和。
②引导学生分工合作,把结果填入记录表中。
③引导学生说说自己的发现。
(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。
(二)剪拼法。
1.组织学生用剪拼的方法求三角形的内角和。
2.引导学生总结发现。
3.课件演示,得出三角形的内角和是180°的结论。
(三)折拼法。
1.引导学生结合剪拼法尝试折拼法。
2.引导学生得出结论。
3.课件演示折拼法。
(一)1.(1)说出每个三角尺中各个角的度数。
①90°;60°;30°。
②90°;45°;45°。
(2)独立算出每个三角尺的内角和。
(3)得出结论:这两个三角尺的内角和都是180°。
2.(1)同桌之间互相说说自己的看法。
猜测:一种是内角和可能是180°,另一种是内角和一定是180°。
(2)小组合作进行探究,量一量,算一算,说一说。
三角形种类
每个内角
的度数
三个内
角的和
锐角三角形
65°
46°
68°
179°
钝角三角形
110°
25°
46°
181°
等腰三角形
70°
55°
55°
180°
等边三角形
60°
60°
60°
180°
通过观察发现:三角形的内角和都在180°左右。
(3)听老师讲解,明确三角形的内角和是180°。
(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。
2.发现三角形的三个内角正好拼成了一个平角,也就是180°。
3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。
(三)1.动手折一折、拼一拼。
2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。
3.观看课件演示,再次明确三角形的内角和是180°。
2.算一算。
在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?
3.在能组成三角形的三个角的后面画“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一个三角形,其中一个角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、巩固练习。(16分钟)
把正确答案的序号填在括号里。
1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。
A.90° B.180° C.360°
2.一个三角形中有两个锐角,则第三个角( )。
A.也是锐角
B.一定是直角
C.一定是钝角
D.无法确定
小组合作,选一选,明确答案。
1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。
2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。
6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?
四、课堂总结,拓展延伸。(3分钟)
1.总结本节课的学习内容。
2.布置课后作业。
谈自己本节课的收获。
小学数学三角形教案
教案课件是老师需要精心准备的,这就需要我们老师自己抽时间去完成。教师制定和实施教案的过程是教师专业能力发展的重要体现。小编为大家整理了“小学数学三角形教案”的一些实用知识供大家参考,希望您能够持续关注我们的网站掌握更多关于这个话题的内容!
小学数学三角形教案 篇1
教学目标:
1、知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、过程与方法: 是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。
教学重点:
理解并掌握三角形面积的计算公式
教学难点:
理解三角形面积计算公式的推导过程
教学方法:
创设情境新知讲授巩固总结练习提高
教学用具:
多媒体课件、三角形学具
教学过程:
一、创设情境
师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)
师:同学们,红领巾是什么形状的?
生:三角形的
师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。
板书:三角形的面积
二、新知探究
1、课件出示一个平行四边形
师:平行四边形的面积怎么计算?
生:平行四边形的面积=底高(板书:平行四边形的面积=底高)
师:平行四边形的.面积公式是怎样得到的?
生说推导过程
师:在研究平行四边形的面积的时,我门是把平行四边形转化成学过的长方形来研究的,那三角形的面积你打算怎么研究呢?
生1:我想把它转化成已学过的图形。
生2:我想看看三角形能不能转化成长方形或平行和四边形。
2、动手实验
师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。
生小组合作,教师巡视指导。
3、展示成果,推导公式
小学数学三角形教案 篇2
一、说教材
《三角形的内角和》是人教版小学四年级下册的内容,“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情
本节课的教学是在学生已经认识了三角形、平角,学会测量角的度数及三角形的分类、已具备一定的探究经验和技能的基础上探索和发现三角形内角和等于180度,为理解三角形三个内角的关系以及在今后学习多边形内角和打下基础。
三、说教学目标
根据教材的特点,我制定出本节课的三维目标分别是:
撕拼、折叠等方法,探索和发现三角形内角和是180°。能运用新知识解决问题。
动手实践能力,发展学生的空间观念,培养学生自主探究能力。
3、激发学生主动学习数学的兴趣,体验知识的形成过程,实现自主发展。
四、说教学重点:
探究和发现三角形内角和是180°
五.说教学难点:
用不同方法探究、验证三角形的内角和是180°
六.说教学准备
课件、学生准备不同类型的三角形各一个,长方形或正方形、剪刀、量角器。
七、说教法学法
这节课如果作为一般的讲授课教学,其实说来很容易,只需要告诉学生三角形的内角和是180度,学生记住这个结论就可以直接进行练习了。显然这种教学设计不符合新的教学理念 ,《新课程改革》指出:教师要从知识的传授者向学生学习活动的组织者引导者合作者转变,为了将这节课的目标真正的落到实处,我把这节课定性为“开放型探究课”,开展了一系列的数学探究活动,让学生在探究活动中亲身去体验知识的形成过程,从而实现自主发展。所以本节课我主要采用了以下几种教学方法:
(引导学生在合作中学习数学。例如:分小组测量三角形每个内角的度数并算出它们的总和。
(引导学生在探究中学习数学。例如:当同学们无法判断大小三角形的內角和谁大谁小时
,自己想办法进一步探究.
(引导学生在探究中完成归纳推理过程。例如:通过拼一拼、折一折、分一分等方法层层推进,这样由普通到特殊再到一般的推理过程.
(引导学生在归纳推理的基础上实现知识迁移。例如:当学生探究三角形的内角和之后,引导学生利用本节课所学知识进一步探究多边形的内角和。
八、说教学流程
学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下4个环节:
1、创设情景,以情激趣
首先上课一开始,我利用多媒体出示大小两个三角形为比谁的内角和大而争吵,让正方形来判断谁大谁小的教学情景,富有挑战性,充满了浓浓的吸引力,学生的好奇心好胜心让他们产生一种想立即判断出谁大谁小的强烈愿望,激发了学生的求知欲。为了加深对内角和意义认识和理解我把正方形巧妙的融入了情景中,为后来探究三角形的内角和度数做了铺垫。
2、 合作交流
探究新知
这一环节的设计我是分4部分完成的:
(1).量一量
我紧紧抓住小学生强烈的好奇心,先引导他们用量角器量一量的方法去探究比较大小三角形的内角和,可能会出现大于折一折等不同的方法探究不同的三角形的内角和是多少度。
(拼一拼、折一折
学生已经学习了三角形有关知识,已具备一定的探究经验和技能。所以在自主探究和验证三角形的内角和是180
度时,我充分调动学生学习的积极性,挖掘他们的学习潜力,给他们提供充分自主探究和交流的时间和空间。引导他们利用手中的学具自己去研究,不做任何拼折方法的提示,不局限学生的思维方式,完全放手,选择自己喜欢的方法探究,同学们可能会用不同的方法进行剪拼、折拼,对他们的探究精神我都予以表扬和肯定。
(加深内化
学生亲身经历探索、实验、发现、讨论、交流、验证等一系列的数学活动后,体会到:这些三角形的内角和是相等的。都是简练的数学语言表述探究方法学生汇报并演示三角形内角和折拼方法。学生通过动口表述,动手演示,观看验证、加深了他们对三角形内角和是180度的直观理解,更加深了对知识的内化。
(解决问题
在学生得出三角形的内角和是180度这一瓜熟蒂落,水到渠成的时候,我出示了本节课的课题。继而让学生对大小三角形内角和谁大谁小的问题作出判断:他们说的都不对,这两个三角形的内角和都是
分析思维能力,激发了他们的创新意识、参与意识,体验成功的同时掌握和体会数学的学习方法,初步感知数学知识的科学性和严密性。在学生在探究中,实现自主体验,获得自主发展。
解决问题
本环节我设计了以下几种题型:辨析3思考题,4拓展题,这几种题型由简单到复杂,巩固了这节课学到的知识,也解决了一些实际的问题,最后一道实践活动让学生根据三角形的内角和探索经验去探索多边形的内角和,对知识进行了迁移,加深了知识的内化,更是学生通过自主体验获得知识自我建构的升华。
全课小结
这一环节我利用数学文化给学生介绍三角形的内角和180度的历史,旨在使学生了解数学知识的博大精深,领悟数学的学习方法,同时也是对本节课三角形的内角和是180度这一知识点作出小结。通过谈感想,增强学生学习数学知识的信心,也是对学生提出的希望:对待学习要有不断探索和创新的精神,只有亲身经历了知识的形成过程,学习效率才会更高!
小学数学三角形教案 篇3
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义.
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1.通过量一量算一算拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题.
2.通过把三角形的内角和转化为平角进行探究实验,渗透转化的数学思想.
3.通过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践能力.
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识.对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°.在整个过程中学生要了解的是内角的概念,如何验证得出三角形的内角和是180°.因此本节课我提出的教学的重点是:验证三角形的内角和是180°.
小学数学三角形教案 篇4
1、知识技能:
(1)掌握等腰三角形的性质。
(2)运用等腰三角形的性质进行证明和计算。
2、数学思考:
(1)观察等腰三角形的对称性,发展形象思维。
(2)经历等腰三角形性质的探究过程,在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。
3、问题解决:
(1)通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。
(2)通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力,发展学生的应用意识、创新意识、反思意识。
4、情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
重点是等腰三角形的性质及应用。
人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹,下面请同学们观察这几幅图片,看看这些伟大的人类建筑中都含有一个什么样的基本图形?
师1:同学们,这几张图片中共同存在的基本图形是什么?
等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝,可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。(板书)12.3.1等腰三角形
师1:在小学时我们就知道两条边相等的三角形叫做等腰三角形。
下面我们利用剪纸的方法将手中的矩形纸片变变形。请大家跟着老师一起做:先将纸片向下对折,再把角斜向下折叠,沿折痕剪下,打开就得到一个等腰三角形。
观察这个等腰三角形,我们称相等的边叫做――腰,那么另一边叫做――底边,两腰的夹角叫做――顶角,腰和底边的夹角叫做――底角。
师1:接下来,我们再度观察手中的等腰三角形,它是轴对称图形吗?为什么?
师2:仔细观察:将等腰三角形ABC沿折痕对折,请大家找出其中重合的线段和角。哪位同学可以发表一下自己的看法?
师3:这些线段是互相重合的,它们存在什么数量关系?重合的角呢?
师4:通过刚才的分析,由这些重合的线段和角,你能发现等腰三角形的性质吗?说一说你的猜想。
(板书)猜想①等腰三角形的两个底角相等。
猜想②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
师1:请同学们用心观察等腰三角形ABC:随着等腰三角形的形状变化,观察两个底角是否永远相等?这说明什么?
师2:请同学们再认真观察,随着等腰三角形的形状变化,AD是否永远是顶角的平分线、底边上的中线、底边上的高?这又能说明什么?
师1:来看猜想1等腰三角形的两个底角相等。将这个命题改写成“如果―那么―”的形式,该如何叙述?
今天大家从不同角度添加辅助线,将等腰三角形问题转化成全等三角形问题,进而证明出等腰三角形的性质1,接下来,请大家将性质1齐读1遍。性质1简称:等边对等角。下面我们用符号语言描述性质的因果关系。同学们一定要注意,在应用“等边对等角”时必须是在同一个三角形中。
师5:由性质1的证明过程,你能不能证明出猜想2呢?下面让我们一同观察性质1的证明过程,在作出等腰三角形顶角平分线的基础上,由三角形全等,我们还能得到什么结论?
师6:类比这种证明方法,当我们作出等腰三角形底边上的中线时,又能得到什么结论呢?
经过证明它平分顶角并平分底边。通过刚才的证明,我们得到三个结论,这三个结论我们能否用一句话概括?也就证明出了性质2。接下来,我们来看一组填空题,这就是性质2的数学符号表述。仔细观察这三组符号语言,在等腰三角形的前提下,我们只要知道顶角平分线、底边上的中线、底边上的高这三个条件中的任意一条,即可推出其余两个是成立的。
等腰三角形的性质为我们今后证明两条线段相等、两个角相等提供了重要依据。
3.辩证思考等腰三角形的性质:
我们再来看性质2“等腰三角形的顶角平分线、底边上的中线、底边上的'高互相重合”,那么底角的平分线,腰上的中线和高是否互相重合?请大家动手折叠来说明。
所以等腰三角形的性质2必须强调的是顶角平分线、底边上的中线、底边上的高互相重合。
利用我们今天所学的主要内容:等腰三角形的性质,能解决什么样的具体问题?请看例1,独立思考第(1)、(2)问,有答案,请举手。
师1:请大家观察∠BDC是等腰△ABD的外角,思考∠BDC与∠A有何数量关系?
师2:思考第(3)问,如何求各角的度数?请同学们在练习本上求解第(3)问。
这道题目我们结合图形,利用方程进行求解,可以使我们的表述更加清晰。
下面请大家再看一个例题,齐读例2,有思路,请举手回答。
下面,我们进行两组小练习,看看谁的速度快?
师1:通过这两个题目,你有什么发现?我们发现在等腰三角形中,若已知角为锐角,则它既可以作为顶角,也可以作为底角,需要分情况讨论;若已知角为钝角,则它只能作为顶角。
通过今天的数学学习,你有哪些收获?
(六)划分层次,布置作业。
(A)P56 1,4。
(B)P56 1,4,6。
小学数学三角形教案 篇5
写说课稿首先必须明确什么叫说课,所谓说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。以下是小学数学第八册《三角形的特性》说课稿范文,希望大家喜欢!
小学数学第八册《三角形的特性》说课稿
一、说教材
(一)教材分析
《三角形的特性》是人教课标版小学数学第八册第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的认识是学习平面图形知识的起点,也为学习平面几何、立体几何打下基础。
本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。
(二)教学目标
根据本节课在教材中的地位和作用,依据新课程标准的.基本理念和学生的认知水平,我拟定了以下教学目标:
1、知识目标:理解三角形的定义,掌握三角形特征和特性,并会给三角形画高。
2、能力目标:学会通过观察、操作、分析和概括去获得的学习方法,体验数学与生活的联系,培养学生的观察、分析、操作的能力,进一步发展空间观念。
3、情感目标:在小组合作、探究与交流的过程中,增强学生创新意识和团结协助的精神。
(三)教学重点、难点
教学重点:理解三角形的定义,掌握三角形的特征和特性。
教学难点:给三角形确定高和画高。
(四)教具准备:三角板、课件、数学用具盒、幻灯片
(五)学具准备:三角尺、数学用具盒、图纸。
二、说教法、学法
1、说教法
本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。先创设情境激发学生的学习兴趣,然后让学生自学课 本,独立探索,再让学生操作实践,合作交流,从而达到概念的自主建构;在整个教学过程中充分体现了以学生为主体,教师为主导的教学思想,让学生在活动中感 受数学之美。
2、说学法
根据本节课的教学目标和教法,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历“做数学”的过程,真正理解和掌握基本的数学知识和技能,获得广泛的数学活动经验,建立学习成就感和信心,使学生成为数学学习的主人。
三、说教学过程
这节课的教学过程,我是秉着新课标的精神,在整个教学流程设计上力求充分体现“以学生为主体”、“以学生发展为本”的教育理念,我将教学思路拟定为“创设 情境、诱发兴趣——合作交流、探索新知——深化训练,拓展延伸——质疑反思,总结评价”,努力构建探索型的和谐课堂教学模式。
三角形教案合集五篇
每一位教师都需要在课前准备好自己的教案课件,本学期又到了编写教案课件的时候。教案是帮助学生更好地理解学科知识和提升综合能力的有效工具,那么什么样的教案才算是优秀的教案课件呢?你难道还没有阅读过“三角形教案”吗?赶紧去看看吧,祝愿你在学习和工作上都能更上一层楼!
三角形教案【篇1】
教材简析与设计意图:
《约分》是人教版实验教材第十册内容,约分是分数基本性质的直接应用。新课标指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,是数学教育面向全体学生,为学生的全面发展创造条件。要尊重学生身心发展特点和教育规律,转变教育观念,激发学生独立思考和创新意识,让学生既学会知识,又学会学习,使学生生动活泼积极主动地发展。
在约分教学中,注重培养学生的学习情感,激发发展动机;创造机会,提供发展条件;因材施教,扩大发展层面;激活思维,深化发展效果。引导学生积极主动地参与全过程,从而体现“以学生发展为本”的原则。
教学目标:1、经历知识的形成过程,使学生理解约分和最简分数的意义,探索约分的方法。
2、掌握约分的方法,能根据实际情况正确进行约分。
3、培养学生的观察、比较和归纳等思维能力。
教学难点:很快看出分子、分母的公因数,并能准确地判断约分的结果是不是最简分数。
师:一共100米,已经游了75米,看到这两个条件你能想到什么?
师:已经游了全程的 75/100和游了全程的3/4是一回事吗?
生: 我们组认为75/100=3/4,因为75÷100=0.75 3÷4=0.75 所以75/100=3/4
师:你们运用分数与除法的关系找到它们是相等的,还有其他的验证方法吗?
生:我们运用分数的基本性质:75/100的分子和分母同时除以25,得到3/4。
师:你们组不仅运用了分数的基本性质,而且还找到了75和100的最大公因数25,从而验证出相等,能学以致用,多好啊!
师:通过刚才的验证我们知道75/100=3/4,还能说出一些和3/4相等的分数吗?
生:6/8、12/16、15/20、30/40 ------
生:3/4最简单,因为3/4的分子和分母是一对互质数。
师:对,我们就把分子和分母只有公因数1的这样的分数就叫做最简分数。
生:因为1/4的分子和分母只有公因数1,所以它是最简分数。
师:那你现在知道1/4和25/100的关系了吗?
师:很好,你们还能再举出一些最简分数的例子吗?
教师总结:同学们通过刚才的观察、猜测、验证得出了最简分数的意义,大家表现的非常好,下面我们就来把一个分数化简称最简分数。
师:仔细读题,如何理解“化成最简分数”这句话。
生:就是把24/30变成和它大小相等,并且分子和分母的公因数只有1这样的分数。
生:24/30=24÷2/30÷2=12/15 12/15=12÷3/15÷3=4/5。
生:先用24和30的公因数2去除,发现12/15不是最简分数,还有公因数3,再用3去除,最后得到最简分数4/5。
生:24/30=24÷6/30÷6=4/5 ,我是先找到24和30的最大公因数6,再用6去除分子和分母从而得到最简分数4/5。
师:同学们对比一下这两种方法,哪种更好一些呢?
生:找最大公因数的方法能更快地把一个分数化简成最简分数。
师小结:同学们运用分数的基本性质把24/30化简成最简分数,你们知道吗,刚才的这一过程叫做约分。(板书课题)
师:看完后,你能回答小精灵提出的问题“每一步中都是用分子、分母的哪个公因数去除的?“
师:在把一个分数化简成最简分数时,如果能很快找到分子和分母的最大公因数,就可以用最大公因数去约分,如果一下子找不到最大公因数,可以一步一步地用公因数去约分。下面请你仿照这一方法,把8/12进行约分。
师:用你们手中的圆片代表蛋糕,并很快表示它的8/32。
学生积极思考,有的认真观察分数,有的急于动手折8/32,最终出现两种折法。
生1:我是把圆片对折了5次,平均分成了32份,再表示出其中的8份。
师:你很认真的折出了这个蛋糕的8/32,就是时间长了些,为什么有些同学却折得很快呢?
生2:我发现8/32的分子和分母都有最大公因数8,约分后得到1/4。
师:多好啊!通过你的认真观察,运用今天学的知识-----约分,很快地找到了这个蛋糕的“8/32”,真是个善于动脑筋的孩子。
师小结:学习约分不仅可以分蛋糕,还可以运用到生活中的很多地方,只要你是个善于观察善于思考的孩子,你一定能做得最好、用得更好。
2、下面哪些分数没有化成最简分数,请把它们化成最简分数。
16/24=4/6 15/36=5/12 28/42=14/21 16/12=8/6
3、用最简分数表示小明每项活动占全天时间的几分之几?
4、 我校六年级三个班在3.12的植树活动中,一班种了总数的17/30,二班种了总数的20/60,三班种了总数的7/30,你知道哪个植树最多吗?
生:20/60化简成10/30,在比较这三个分数的大小,发现哦一班种得最多。
师:你用约分的方法解决了生活中的实际问题,很好!完成了这道题后,同学们想说些什么呢?
生:看来约分不一定必须化简成最简分数,要根据实际而定。
师:说的多好啊!你们不仅会学以致用,而且还会根据实际情况灵活运用。
三角形教案【篇2】
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,
今天老师还给大家带来了一个老朋友,请看,是什么?
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
三角形教案【篇3】
苏教版小学数学四年级下册第22~23页,第24页“想想做做”第1~3题。
这节课的教学内容是“空间与图形”的重要内容之一。通过学习可以加深和拓展学生对三角形的认识,同时也可以让学生积累一些认识图形的经验与方法。例题1首先提供现实背景让学生从中找三角形,并说说生活中看到过的三角形,从整体上初步感知三角形。接着让学生动手做出一个三角形,从而体会三角形是由三条线段围成的,并抽象出图形,进而介绍三角形各部分的名称,形成三角型概念。例题2则是让学生在活动中感受三角形三条边的长度关系,发现三角形两条边的长度和大于第三边。教材还安排来“想想做做”,让学生通过画图、观察、操作及时巩固所学的知识。
1、通过观察、操作、交流等活动,进一步认识三角形;让学生经历合作探究的过程,自主发现三角形的三边关系,并能利用关系解决简单实际问题。
2、引导学生经历探索、发现、创造、交流等有趣的数学活动过程,培养学生的观察理解能力、动手操作能力、合作交流能力、分析概括能力,进一步发展空间观念,提高学生运用知识解决问题的能力,增强学生的创新意识。
3、激发学生对数学的好奇心,增强学生学习数学的兴趣,培养学生用数学的眼光去判断、解决生活中的问题,使其产生对生活的理性思维的数学习惯。
【教学重点】认识三角形的特征。
【教学难点】探究三角形三条边之间的关系。
在学习活动中,学生对于一个知识点更多的是关注它是什么,而忽视它为什么是这样。因此在教学中添加了从以前学过的旧知识“角”中引出三角形,找到新旧知识间的生长点。在教学三角形的特征后,回过来让学生给三角形取名,让学生明白“三角形”名称存在的理由。既开阔了学生的知识视野,又加深了学生的知识理解。
1、图形王国里有许多图形,今天老师要带大家认识一个新的图形(板书:认识)
2、你想通过这堂课的学习,了解这个新图形的哪些方面呢?
1、同学们,赵老师要来看看谁的眼睛最亮,谁的记性最好,准备好了吗?
2、多媒体出示长方形、直角三角形、正方形、锐角三角形、圆。(2秒后隐去)提问:刚才出现的图形中哪种图形最多?再看一遍。
4、同学们,在以前的学习中我们已经初步认识了三角形。(补充板书:三角形。)
5、(出示例题1的图片)你能在这张图片中找到三角形吗?
在我们身边你能找到三角形吗?(指名说)在教室里你能找到三角形吗?
6、谈话:生活中的许多物体上都有三角形,一起来看看。
1、感受三角形的边角特征。
(1)谈话:刚才同学们在生活中找到了许多三角形,,那你能用老师提供的材料想办法做出一个三角形吗?(小组活动)谁来说说你是怎么做的?
③沿三角尺的边画的。(你画了几条首尾相接的线段?)(板书:3条线段)
④用直尺在方格纸上画的。(你画了几条首尾相接的线段?)(板书:3条线段)
(3)同学们真棒,都能用自己的方法做出了三角形。请看黑板,这个图形认识吗?请说出角各部分的名称。你能把它变成一个三角形吗?(指名到黑板上画)
(4)你会把角变成一个三角形吗?由角的各部分名称,你能说说三角形各部分的名称吗?(板书:3条边、3个角、3个顶点。)
(5)通过刚才的做一做和现在的变一变,你知道三角形有哪些特征?现在你知道为什么这个图形的名字是三角形了吧?
不过啊,我们生活中还是习惯叫它三角形。
(1)同学们会做三角形了,下面我们要在点子图上画出两个不同的三角形。(出示想想做做第1题)
师拿学生作业交流:你是怎么画的?(画三角形时我们可以先确定它的三个顶点。)
(2)这三个点能画在同一条直线上吗?看来啊,只要三个点不在同一条直线上,两两相连就能够画出三角形,那么是不是任意的三条线段都能围成三角形呢?
3、研究三角形三条边的关系。
(1)谈话:老师给大家准备了长度分别为10厘米、6厘米、5厘米、4厘米的四根小棒,任意选三根围一围,看看能否围成三角形。可以把每一次所用小棒的数据记录在作业纸的表格中。
(2)交流:谁来说说你选了哪三根小棒,能围成三角形吗?
(3)同学们每次都是选三根小棒,为什么有的能围成三角形,有的不能围成三角形呢,这里面又有怎样的奥秘呢?我们先来观察这个三角形(6cm、5cm、10cm)。
(4)仔细观察,比较三根小棒的长度,说说你有什么发现?可以和你的同桌交流交流。引导学生发现:6+5>10、6+10>5、5+10>6。
(5)是不是这样呢?我们来看这个三角形(4cm、5cm、6cm)的三条边是不是也有这样的关系?
(6)现在我们来看看这三根小棒为什么不能围成三角形?(出示6cm、4cm、10cm。)
(7)出示(4cm5cm10cm):指出:再次说明两条边的长度和要大于第三边,但现在有两条边的长度和等小于第三边,所以不能围成三角形。
请同学们思考:在判断任意的三条线段能不能围成三角形时,是不是要把所有的两边之和都算出来和第三边作比较?
1、老师这里还有几组线段要请同学们来判断一下能不能围成三角形。下面我们要采取抢答的形式,老师说开始,你就可以站起来回答,看看哪位同学的反应最快。好吗?①6cm、9cm、3cm;②7m、6m、5m;③4dm、10dm、8dm。
2、放学后老师还要去趟少年宫,请看(出示地图),从学校到少年宫有几条路线?走哪一条路最近呢?你是怎么想的,能用今天的知识来解释吗?
(1)有一个活动角,已知这条边是2cm,这条边是5cm,请问第三条边可以是几厘米(填整数)?
(2)如果一个三角形的最短边是5cm,另外两条边可以是几厘米?
(3)如果三条边的和是5cm,三条边分别是几厘米?
刚才同学们都想了解新图形的名字、样子、特征,现在都了解了吗?谁愿意把你了解的知识介绍给同学听一听。
三角形教案【篇4】
一、说教材
1、教材分析
《与三角形有关的角》是九年制义务教育新人教版七年级下册第七章第二节的内容,本节课是在学生学习了“与三角形有关的线段”之后,由线至面进一步研究三角形的角。本节知识不仅是对前面“角”知识的升华与综合运用,也是研究多边形中角的问题的基础。
2、教学目标分析
根据新课标的要求及七年级学生的认知水平,我确定本节课的教学目标如下:
(1)知识与技能目标:
发现并证明三角形内角和定理,使学生体验合情推理与演绎推理的相互依赖和相互补充的辨证关系,进一步体会证明的必要性。
(2)过程与方法目标:
经历“猜想验证—逻辑证明—应用拓广—归纳概括”的探究过程,使学生体会命题研究的一般方法,进而提升学生的数学推理能力和推理意识。
(3)情感、态度与价值观目标:引导学生通过小组合作学习,培养动手实践、合作交流和语言表达的能力,丰富与人交往的经历和体验。
3、教学重难点分析
重点:三角形内角和定理;
难点:三角形内角和定理的证明;
二、说教法
本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化。在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是用拼图法探索三角形内角和是180°的证明方法,教师采用点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。
三、说学法
课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
四、说教学过程
【环节一】复习回顾,导入新课
1、在本上画一个任意三角形。
2、和同桌交流你前面学习了哪些三角形中的线段?三角形的角有怎样的性质?
设计意图:设计操作活动回顾旧知识,并将操作活动与学生的思维活动、语言表达有机结合,实现数学思考的内化,避免了传统的问答式回顾、参与人数少、顾及不到各层面学生、用时较多等问题。
【环节二】猜想发现
1、三角形内角和是多少度?
2、你能用实验的方法来验证你的猜想吗?
拼图实验,分两步完成。
第一步:我先示范图(1)的拼法,分析拼图,发现三角形内角和;
第二步:每个学生把课前准备好的三角形纸片的两个内角剪下,和第三个内角拼在一起。学生展示自己的拼法。
在拼角时,如果让学生剪下三角形的内角,学生很可能会把三角形的三个内角都剪下,把这个三角形分成四块,虽然三个角拼在一起构成了平角,但从这种拼法中寻找证明三角形内角和定理的方法有一定难度。于是,我采取了先示范图(1)的拼法(即剪下三角形两个内角的拼在第三个内角的两旁),然后让学生动手操作:剪下两个角,拼在第三个角的一旁。
在本环节中,我还有一点困惑:如果在图(1)把∠B拼在∠A的右边,把∠C拼在∠A的左边;或者在图(2)中把∠B拼在中间,能找到三角形内角和定理的`证明方法吗?
【环节三】逻辑证明
从刚才的操作过程中,你能发现证明的思路吗?
小组活动流程:
1、先独立思考;
2、组内交流你的证明思路;
3、选出小组代表发言。
设计意图:第一,通过作平行线“搬两个角”,运用平行线的性质和平角的定义证明。启发学生过△ABC的顶点A作直线∥BC,指导学生写出已知、求证、证明过程,规范证明格式;第二,在证明三角形内角和定理时,可以“搬两个角”来说理。如果只“搬一个角”行吗?“搬三个角”呢?这个问题留给同学们在课后研讨。
【环节四】应用练习:
1、求出图中x的值。
2、在△ABC中,∠A︰∠B︰∠C=1︰2︰3,则最小的内角为x度。
设计意图:通过课堂练习,使学生掌握三角形的内角和定理。
3、如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向。从C岛看A,B两岛的视角∠ACB是多少度?
对于第3题的讲解,我是分三步进行的:
第一步:分析,根据题意,找到图形中∠1、∠1+∠2、∠4的度数;
第二步:板书解答过程,师生共同完成;
第三步:寻找其他的解法,由学生小组讨论、交流,然后汇报,老师点评。学生说了一种解法,我补充了另一种解法的思路,解答过程留给学生课后完成。
其他解题思路:
(1)如图1,过点C作AD的垂线,交直线AD于点M,交直线BE于点N。
(2)如图2,过点C作CF∥AD。
设计意图:1、使学生了解数学与生活的紧密联系;2、通过例题的解析,让学生体会分析问题的基本方法,渗透数形结合思想;3、培养学生的一题多思,一题多解的创新精神。
【环节五】课堂小测
1、如图,一种滑翔伞的形状是左右对称的四边形ABCD,其中∠A=150°,∠B=∠D=40°,则∠C的度数为。
2、如图:从A处观测C处时仰角∠CAD=30°,从B处观测C处时仰角∠CBD=45°,从C处观测A,B两处时视角∠ACB是多少?
测验结束,汇报交流,老师及时点评。
【环节六】回顾反思
三角形教案【篇5】
教学难点:
帮助学生认识到为什么要“÷2”
我们已经学习过哪些平面图形的面积计算?请你用字母公式来说一说。
能说说这些公式是分别用什么方法得到的呢?
[复习中的这两问,第一个问题是帮助学生回忆相关的知识基础,这是学习新知的一个重要前提。后一问,主要是从学习方法上考虑的。数面积单位的方块数或是用等积变形,这两种方法将是我们这课学习三角形面积计算的重要方法。
将刚才复习中的三种图形,利用课件的演示,添上一条对角线。
S 表示三角形的面积, a和h分别表示三角形的底和高,谁能用字母来表示上面的公式?
3、学生在小组交流的时候,可能会有不同的意见,比如就只用一个三角形,通过剪、拼,也可以得到一个平行四边形。如图:
这个三角形的面积就等于平行四边形的面积。平行四边形的底就是三角形的底,平行四边形的高是三角形高的一半,所以平行四边形的面积=底×(高÷2)
4、学生阅读第16页的“你知道吗?”,通过阅读,再与上面的方法做一比较。
师:这几种方法都正确地算出了三角形的面积。它们之间有什么相同的地方呢?
1、完成“练一练”
电脑分别演示这两题。在交流答案的时候,引导学生说清楚什么时候要“×2”,什么时候要“÷2”,为什么?以进一步加深对三角形面积公式与平行四边形面积公式之间联系的理解。
继续完成p.17想想做做的第1题。
2、完成“试一试”,算出这块三角形交通标志牌的面积。
在交流的时候,要给学生正确解答这类题书写格式的示范,培养学生规范地应用计算公式完成练习。
指名板演,讲评的时候注意发现学生练习中的问题。比如书写的格式、计算中的.问题、“÷2”的遗漏、单位名称等,都要一一指出并纠正。
一个特例:第一张图画的是一个直角三角形,它的一组直角边就分别是它的底和高。
3、画一画,比一比:在方格图上画出面积是6平方厘米的三角形,你能有几种画法?
比如:
汇总学生的各种画法之后,指名说说自己在画的时候是怎么想的?通过交流,使学生进一步认识到“6平方厘米”先要考虑“12平方厘米”(对应的平行四边形面积),进而考虑只要底和高相乘得“12”就可以了;这样画出的三角形虽然形状各不相同,但面积都是6平方厘米。
四、全课总结:
这节课我们学习的是三角形面积的计算,说说你知道了哪些具体的知识?怎么得到这些知识的?