北师大版数学九年级上册6.2第2课时反比例函数的性质优秀教案反思
发布时间:2022-03-03 小学数学教案 北师大版 北师大版小学数学教案 小学北师大版五年级上册数学教案现在向您介绍幼儿园教案《北师大版数学九年级上册6.2第2课时反比例函数的性质优秀教案反思》
《北师大版数学九年级上册6.2第2课时反比例函数的性质优秀教案反思》这是一篇九年级上册数学教案,图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。运用多媒比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。
第2课时反比例函数的性质
1.理解并掌握反比例函数图象的性质;(重点)
2.能利用反比例函数的图象与性质解决问题.(难点)
一、情景导入
在一个平面直角坐标系中,根据所提供的两组数据描绘出相应的反比例函数图象.
x-6-3-2-11236
y-1-2-3-66321
x-6-3-2-11236
y1266-6-3-2-1
观察这两个图象,试着求出它们的解析式,看看它们之间是否存在着某些关系?
二、合作探究
探究点一:反比例函数图象的性质
【类型一】利用反比例函数的性质确定字母的取值范围
在反比例函数y=1-kx的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()
A.-1B.0C.1D.2
解析:反比例函数y=1-kx的图象的每一条曲线上,y都随x的增大而增大,根据反比例函数的性质可知,该图象的两个分支分别在第二、四象限内,所以该函数的比例系数1-k<0,解得k>1.故只有D项符合题意.故选D.
方法总结:反比例函数图象的位置和函数的增减性,都是由比例系数k的符号决定的;反过来,由双曲线所在位置和函数的增减性,也可以推断出k的符号.
【类型二】比较函数值的大小
在反比例函数y=-1x的图象上有三点(x1,y1),(x2,y2),(x3,y3),若x1>x2>0>x3,则下列各式正确的是()
A.y3>y1>y2B.y3>y2>y1
C.y1>y2>y3D.y1>y3>y2
解析:本题方法较多,一是根据x1,x2,x3的大小即可比较;二是画出草图,根据反比例函数图象的性质比较;三是利用特殊值法.
(方法一)比较法:由题意,得y1=-1x1,y2=-1x2,y3=-1x3,因为x1>x2>0>x3,所以y3>y1>y2.
(方法二)图象法:
如图,在直角坐标系中作出y=-1x的草图,描出符合条件的三个点,观察图象直接得到y3>y1>y2.(wWw.FZ76.com 工作计划之家)
(方法三)特殊值法:设x1=2,x2=1,x3=-1,则y1=-12,y2=-1,y3=1,所以y3>y1>y2.故选A.方法总结:此题的三种解法中,图象法形象直观,具有一般性;特殊值法最简单,这种方法对于解答许多选择题都很有效,要注意学会使用.
探究点二:反比例函数图象中比例系数k的几何意义
如图,四边形OABC是边长为1的正方形,反比例函数y=kx的图象经过点B(x0,y0),则k的值为.
解析:∵四边形OABC是边长为1的正方形,∴它的面积为1,且BA⊥y轴.又∵点B(x0,y0)是反比例函数y=kx图象上的一点,则有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵点B在第二象限,∴k=-1.
方法总结:利用正方形或矩形或三角形的面积确定|k|的值之后,要注意根据函数图象所在位置或函数的增减性确定k的符号.
三、板书设计
反比例函数的性质性质当k>0时,在每一象限内,y的值随x的值的增大而减小当k<0时,在每一象限内,y的值随x的值的增大而增大反比例函数图象中比例系数k的几何意义
通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质,进行语言表述,训练学生的概括、总结能力,在相互交流中发展从图象中获取信息的能力.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.
【反思】
图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。运用多媒比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。
体会:
通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。
yjs21.cOm更多幼儿园教案编辑推荐
北师大版数学九年级上册6.3反比例函数的应用优秀教案反思
现在向您介绍幼儿园教案《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》
《北师大版数学九年级上册6.3反比例函数的应用优秀教案反思》这是一篇九年级上册数学教案,教师应以学段教学目标为背景,以本章教学目标为标准来考察学生的学习状况。在教与学的过程中,了解学生数学活动中情感与智力的参与程度和目标达到的水平,及时进行归因分析,不断积极引导和激励。同时利用诊断结果不断改进自己的教学。
6.3反比例函数的应用
1.会根据实际问题中变量之间的关系,建立反比例函数模型;(重点)
2.能利用反比例函数解决实际问题.(难点)
一、情景导入
我们都知道,气球内可以充满一定质量的气体.
如果在温度不变的情况下,气球内气体的气压p(kPa)与气体体积V(m3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?
二、合作探究
探究点一:实际问题与反比例函数
做拉面的过程中,渗透着反比例函数的知识.一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:
(1)写出y与S之间的函数表达式;
(2)当面条的横截面积为1.6mm2时,面条的总长度是多少米?
(3)要使面条的横截面积不多于1.28mm2,面条的总长度至少是多少米?
解析:由题意可设y与S之间的函数表达式为y=kS,而P(32,4)为函数图象上一点,所以把对应的S,y的值代入函数表达式即可求出比例系数,从而得出反比例函数的表达式,最后根据反比例函数的图象和性质解题.
解:(1)由题意可设y与S之间的函数关系式为y=kS.∵点P(4,32)在图象上,
∴32=k4,∴k=128.
∴y与S之间的函数表达式为y=128S(S>0);
(2)把S=1.6代入y=128S中,得y=1281.6=80.
∴当面条的横截面积为1.6mm2时,面条的总长度是80m;
(3)把S=1.28代入y=128S,得y=100.
由图象可知,要使面条的横截面积不多于1.28mm2,面条的总长度至少应为100m.
方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.
探究点二:反比例函数与其他学科知识的综合
某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干木块,构筑成一条临时近道.木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.
(1)请直接写出这一函数表达式和自变量的取值范围;
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板的面积至少要多大?
解析:由于木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,而图象经过点A,于是可以利用待定系数法求得反比例函数的关系式,进而可以进一步求解.
解:(1)设木板对地面的压强p(Pa)与木板面积S(m2)的反比例函数关系式为p=kS(S>0).
因为反比例函数的图象经过点A(1.5,400),所以有k=600.
所以反比例函数的关系式为p=600S(S>0);
(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;
(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.
方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p=,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.
三、板书设计
反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合
经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
【反思】
“反比例函数的图像与性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应该有意识地加强反比例函数与正比例函数之间的对比。对比可以从以下几个方面进行:
(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?
(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?
(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?
从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。
此外,在学习反比例函数图像的性质(k大于0双曲线的两个分支在一、三象限,k小于0双曲线的两个分支在二、四象限)时,学生由画法观察图象可知;而增减性由解析式y等于k比x(k不等于0),学生也容易理解,但从图象观察增减性较难,借助计算机的动态演示就容易多了。运用多媒体比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。
通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。
在评价学生的学习时应关注以下几个过程
1、关注学生学习过程,进行形成性评价
教师应以学段教学目标为背景,以本章教学目标为标准来考察学生的学习状况。在教与学的过程中,了解学生数学活动中情感与智力的参与程度和目标达到的水平,及时进行归因分析,不断积极引导和激励。同时利用诊断结果不断改进自己的教学。
2、知识技能的评价,注重学生对函数概念及反比例函数的理解水平。
本部分内容中,对知识技能的评价包括:能否理解反比例函数的概念,了解函数及其图象的主要性质;能否根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题等。对这些知识技能的评价,应当更多的关注其在实际问题情境中的意义理解。如对于反比例函数的概念及其性质,关键是体会它们在不同情境中的应用,只要学生能在具体情境应用它们解决问题即可,而不要过于关注其具体运用的熟练程度,如可以要求学生举例说明反比例函数在显示生活中的应用等。
3、发展性评价,关注数学活动引起人的变化
观察反比例函数图象获取函数相关性质的信息有较大空间,考察学生能否对信息作出灵敏反应,应用时,能否善于分析和决策,灵活支配运用知识有效的解决问题。关注并追踪这些活动所引起的学生的持久变化。
不足与改进:在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在活动一画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征,为活动二猜想作很好的铺垫.我的改进设想是:在活动一画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?”留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.
北师大版数学九年级下册3.6第2课时切线的判定及三角形的内切圆1教案反思
现在向您介绍幼儿园教案《北师大版数学九年级下册3.6第2课时切线的判定及三角形的内切圆1教案反思》
《北师大版数学九年级下册3.6第2课时切线的判定及三角形的内切圆1教案反思》这是一篇九年级下册数学教案,本节课多处设计了观察探究、分组讨论等学生活动内容,如动手操作“切线的判定定理的发现过程”,以及讲解例题时学生的参与,课堂练习的设计都体现了以教师为主导、学生为主体的教学原则.
3.6直线和圆的位置关系
第2课时切线的判定及三角形的内切圆
1.掌握切线的判定定理,并会运用它进行切线的证明;(重点)
2.能灵活选用切线的三种判定方法判定一条直线是圆的切线;(难点)
3.掌握画三角形内切圆的方法和三角形内心的概念.(重点)
一、情境导入
下雨天,当你转动雨伞,你会发现雨伞上的水珠顺着伞面的边缘飞出.仔细观察一下,水珠是顺着什么样的方向飞出的?这就是我们所要研究的直线与圆相切的情况.
二、合作探究
探究点一:切线的判定
【类型一】已知直线过圆上的某一个点,证明圆的切线
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,求证:CD是⊙O的切线.
解析:要证明CD是⊙O的切线,即证明OC⊥CD.连接OC,由AC=CD,∠D=30°,则∠A=∠D=30°,得到∠COD=60°,所以∠OCD=90°.
证明:连接OC,如图,∵AC=CD,∠D=30°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°,∴∠COD=60°,∴∠OCD=90°,即OC⊥CD.∴CD是⊙O的切线.
方法总结:一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型二】直线与圆的公共点没有确定时,证明圆的切线
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.
解析:连接OM,过点O作ON⊥CD于点N,用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON即可.
证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC.又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.
方法总结:如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到这条直线的距离等于半径.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题
【类型三】切线的性质和判定的综合应用
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(1)求证:AC是△BDE的外接圆的切线;
(2)若AD=23,AE=6,求EC的长.
解析:(1)取BD的中点O,连接OE,如图,由∠BED=90°,可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,可得结论;(2)设⊙O的半径为r,根据勾股定理和平行线分线段成比例定理,可求答案.
(1)证明:取BD的中点O,连接OE,如图所示,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心.∵BE平分∠ABC,∴∠CBE=∠OBE.∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;
(2)解:设⊙O的半径为r,则OA=OD+DA=r+23,OE=r.在Rt△AEO中,有AE2+OE2=AO2,即62+r2=(r+23)2,解得r=23.∵OE∥BC,∴AECE=AOOB,即6CE=4323,∴CE=3.
方法总结:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
探究点二:三角形的内切圆
【类型一】利用三角形的内心求角的度数
如图,⊙O内切于△ABC,切点D、E、F分别在BC、AB、AC上.已知∠B=50°,∠C=60°,连接OE,OF,DE,DF,那么∠EDF等于()
A.40°
B.55°
C.65°
D.70°
解析:∵∠A+∠B+∠C=180°,∠B=50°,∠C=60°,∴∠A=70°.∵⊙O内切于△ABC,切点分别为D、E、F,∴∠OEA=∠OFA=90°,∴∠EOF=360°-∠A-∠OEA-∠OFA=110°,∴∠EDF=12∠EOF=55°.故选B.
方法总结:解决本题的关键是理解三角形内心的概念,求出∠EOF的度数.
变式训练:见《学练优》本课时练习“课堂达标训练”第10题
【类型二】求三角形内切圆半径
如图,Rt△ABC中,∠C=90°,AC=6,CB=8,则△ABC的内切圆半径r为()
A.1B.2C.1.5D.2.5
解析:∵∠C=90°,AC=6,CB=8,∴AB=AC2+BC2=10,∴△ABC的内切圆半径r=6+8-102=2.故选B.
方法总结:记住直角边为a、b,斜边为c的三角形的内切圆半径为a+b-c2,可以大大简化计算.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
【类型三】三角形内心的综合应用
如图①,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.
(1)BE与IE相等吗?请说明理由.
(2)如图②,连接BI,CI,CE,若∠BED=∠CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.
解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;
(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.
方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
三、板书设计
切线的判定及三角形的内切圆
1.切线的判定方法
2.三角形的内切圆和内心的概念
本节课多处设计了观察探究、分组讨论等学生活动内容,如动手操作“切线的判定定理的发现过程”,以及讲解例题时学生的参与,课堂练习的设计都体现了以教师为主导、学生为主体的教学原则.
北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思
现在向您介绍幼儿园教案《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》
《北师大版数学八年级上册1.3勾股定理的应用1优秀教案反思》这是一篇八年级上册数学教案,本节课是学生在学习了三直角三角形的性质、直角三角形勾股定理逆定理的基础上开展的,更进一步加深学生勾股定理的理解,提高学生对数形结合的应用与理解。
1.3勾股定理的应用
1.能熟练运用勾股定理求最短距离;(难点)
2.能运用勾股定理及其逆定理解决简单的实际问题.(重点)
一、情境导入
一个门框的宽为1.5m,高为2m,如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?
二、合作探究
探究点一:求几何体表面上两点之间的最短距离
【类型一】长方体上的最短线段
如图①,长方体的高为3cm,底面是正方形,边长为2cm,现有绳子从D出发,沿长方体表面到达B′点,问绳子最短是多少厘米?
解析:可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.
解:如图②,在Rt△DD′B′中,由勾股定理得B′D2=32+42=25;
如图③,在Rt△DC′B′中,由勾股定理得B′D2=22+52=29.
因为29>25,所以第一种情况绳子最短,最短为5cm.
方法总结:此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.
【类型二】圆柱上的最短线段
为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图①.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?
解析:将圆筒侧面展开成平面图形,利用平面上两点之间线段最短求解,构造直角三角形,利用勾股定理来解决.
解:如图②,在Rt△ABC中,因为AC=36cm,BC=108÷4=27(cm).由勾股定理,得AB2=AC2+BC2=362+272=2025=452,所以AB=45cm,所以整个油纸的长为45×4=180(cm).
方法总结:解决这类问题的关键就是转化,即把曲面转化为平面,曲线转化成直线,构造直角三角形,利用勾股定理求出未知线段长.
探究点二:利用勾股定理解决实际问题
如图,在一次夏令营活动中,小明从营地A出发,沿北偏东53°方向走了400m到达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A、C两点之间的距离.
解析:把实际问题中的角度转化为图形中的角度,找到直角三角形,利用勾股定理求解.
解:如图,过点B作BE∥AD.∴∠DAB=∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A、C两点间的距离为500m.
方法总结:此类问题解题的关键是将实际问题转化为数学问题;在数学模型(直角三角形)中,应用勾股定理或勾股定理的逆定理解题.
三、板书设计
通过观察图形,探索图形间的关系,培养学生的空间观念.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.在利用勾股定理解决实际问题的过程中,感受数学学习的魅力.
【反思】
本节课是学生在学习了三直角三角形的性质、直角三角形勾股定理逆定理的基础上开展的,更进一步加深学生勾股定理的理解,提高学生对数形结合的应用与理解。本节课首先安排了对圆柱形中的最短距离的观察猜想,由学生讨论如何实现圆柱中的最短距离,要把立体图形展开成为平面图形,平面图形中,有结论:两点之间,线段最短。在进一步由学生质疑,一定这样的方法得到的是最短距离吗?有没有其他的路径,进而讨论圆柱中的特殊情况,当圆柱是扁平的圆柱时,得到的最短距离还是把圆柱侧面展开构造的长方形的斜边长吗?最后由教师补充总结,当圆柱时细长的圆柱时,最短距离是把圆柱侧面展开构造的长方形的斜边长;当圆柱时扁平的圆柱时,最短距离是圆柱的高加圆柱的底面直径,至于这个圆柱到底是细长的还是扁平的,要具体问题具体分析。
当学生具备这样的理论基础,在圆柱的基础上讨论长方体的最短距离时,就事半功倍了,用类比思想,得到长方体中的最短距离,因为展开方式不同,所以分类讨论,最短距离分三种情况:1.最短距离2=(长+宽)2+高2;
2.最短距离2=(长+高)2+宽2;
3.最短距离2=(宽+高)2+长2,从三种情况中找到最小的就是最短距离;进而总结利用勾股定理求最短距离的步骤:
1.将立体图形展开;展开时注意:只需要展开包含相关点的面,可能会存在多种展开方式
2.确定相关点的位置;
3.连接相关点,构造直角三角形;
4.利用勾股定理求解。
通过总结如何将立体图形中的最短路线转换成平面图形中的最短路线,让学生体会到数学来源于生活又应用的生活,在学习的过程中体会获得成功的喜悦,提高获得提高学生学习数学的兴趣和信心,但课堂上质疑追问要恰到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
新北师大版四年级下册数学第五单元《等量关系》优秀教学反思
现在向您介绍幼儿园教案《新北师大版四年级下册数学第五单元《等量关系》优秀教学反思》
《新北师大版四年级下册数学第五单元《等量关系》优秀教学反思》这是一篇四年级下册数学教案,在教学中教师“讲”的少,学生“说”的和“做”的较多。我们知道真正的数学学习,不是简单接受外部所授予的知识,而是主动建构。
【反思】
1.本课中的天平形象直观,使学生易于理解,进而建立等量关系的概念。
2.在教学中教师“讲”的少,学生“说”的和“做”的较多。我们知道真正的数学学习,不是简单接受外部所授予的知识,而是主动建构。在教学中要求学生独立思考,鼓励学生联系生活实际创造性地解决问题,让学生把思考过程、结果说出来,这有利于培养学生的思维能力,拓宽学生的思维空间。
【反思】
本节课是在学生学会用字母表示数的基础上进行教学的,本节课的教学对学生学习方程、解方程及运用方程解决简单的实际问题起着承上启下的作用,它是学生学习用方程解决问题的起始课,在本单元中具有重要的地位。
我这节课的教学设计:首先,从学生熟悉的跷跷板情境导入,呈现了一个跷跷板由不想等到相等的过程,学生经历观察和描述跷跷板两边的平衡现象,从而得到“1只鹅的质量等于2只鸭子和1只鸡的质量”,通过调动学生的生活经验帮助学生理解了什么是等量关系。然后设计了寻找妹妹身高与姚明、笑笑的身高的等量关系,以姚明的身高为标准,提供了一组具有倍数关系和相差关系的身高数据。通过学生独立思考,发展学生发现、表达等量关系的学习经验,再采取小组合作学习的形式,鼓励学生用写等量关系的形式、画图等多种方式来表示等量关系,并且进一步认识到同一个等量关系可以有不同的表示形式。接下来设计了一个砸金蛋的游戏,充分调动学生的积极性,把学生吸引到寻找等量关系的练习活动中,引导学生用语言描述具体情境中的等量关系,通过反复体验感知找出等量关系,进一步理解等量关系。最后通过寻找生活中的等量关系,加深学生对等量关系的认识,知道等量关系在日常生活中广泛应用。
在教学中,我发现我比较急于求成,对于回答错误的学生急于给与修正,其实应该留更多时间给学生自己或者让同伴来帮忙。本节课浅显易懂,学生的积极性不高课堂氛围比较沉闷,对于课堂语言的组织和课堂气氛的调控能力有待加强。